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Mediated nuclear import and export of TAZ
and the underlying molecular requirements
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Nucleocytoplasmic distribution of Yap/TAZ is regulated by the Hippo pathway and the

cytoskeleton. While interactions with cytosolic and nuclear “retention factors” (14–3–3 and

TEAD) are known to control their localization, fundamental aspects of Yap/TAZ shuttling

remain undefined. It is unclear if translocation occurs only by passive diffusion or via

mediated transport, and neither the potential nuclear localization and efflux signals (NLS,

NES) nor their putative regulation have been identified. Here we show that TAZ cycling is a

mediated process and identify the underlying NLS and NES. The C-terminal NLS, representing

a new class of import motifs, is necessary and sufficient for efficient nuclear uptake via a

RAN-independent mechanism. RhoA activity directly stimulates this import. The NES lies

within the TEAD-binding domain and can be masked by TEAD, thereby preventing efflux.

Thus, we describe a RhoA-regulated NLS, a TEAD-regulated NES and propose an improved

model of nucleocytoplasmic TAZ shuttling beyond "retention".
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Yap and its paralog TAZ are transcriptional co-activators
that play key roles in tissue growth, differentiation,
development, and regeneration1,2. Moreover, dysregula-

tion of Yap/TAZ emerges as an important pathogenic factor in
cancer, arteriosclerosis, and—as recent studies including our own
indicate—organ fibrosis3–11. Yap/TAZ are primarily controlled at
the level of their nuclear accumulation (nucleocytoplasmic shut-
tling), which is affected by myriads of chemical and mechanical
cues, including the integrity of cell–cell contacts (cell density),
matrix stiffness, cellular tension, metabolic state, and soluble
mediators12–19. Most of these inputs converge on two distinct, yet
interdependent signal-transducing systems: the Hippo pathway
and the state of the actomyosin cytoskeleton. The former reg-
ulatory mode is better understood; sequential activity of the
Hippo core kinases MST1/2 and LATS1/2 keeps Yap/TAZ
phosphorylated, which promotes their binding to “cytosolic
retention factors”, primarily to 14–3–3 proteins20,21. Upon Hippo
inactivation, Yap/TAZ translocate to the nucleus where they
associate with various transcription factors, predominantly with
members of the TEAD family, which also act as their “nuclear
retention factors”22–25. The mechanisms underlying cytoskeleton-
dependent localization are incompletely elucidated, but certain
details are emerging; RhoA activation and actin polymerization
have been shown to promote (de)binding from “retention factors”
(e.g., AMOT)26–28, and a very recent work revealed that
mechanical forces could increase the permeability of the nuclear
pore29 thereby facilitating the nuclear accumulation of Yap.

However, fundamental questions about the nuclear shuttling of
Yap/TAZ remain open. The majority of current views explain
localization in terms of “retention models” wherein the critical
determinants are the interactions of Yap/TAZ with binding
partners. Given that many “retention factors” (e.g., 14–3–3 and
TEAD) also shuttle30,31, these models alone may not adequately
account for the compartmentalization of Yap/TAZ, a view also
raised by a work published while our paper was under revision32.
Importantly, none of the current models define the actual
translocation processes themselves, which ensue once the mole-
cules are “free”/transport-competent. Thus, it is uncertain if
nuclear entry occurs via simple diffusion or if it is a mediated
process. Supposing the latter, the structural requirements are
unknown: neither nuclear localization sequence(s) (NLS) nor
nuclear export sequence(s) (NES) have been identified. Further, it
remains largely unclear if the translocation steps (nuclear entry
and egress) per se are regulated. We addressed these essential
questions by generating diffusion-limited TAZ constructs, indu-
cible (rapamycin-triggered) influx and efflux systems, and by
applying mutagenesis. Using these approaches we have identified
a non-conventional NLS, necessary and sufficient for efficient
import, which is regulated by RhoA. We also found a critical
nuclear export signal (NES), which can be masked by TEAD.

Results
TAZ is imported through a facilitated process into the nucleus.
TAZ lacks any recognizable NLS that could account for a medi-
ated import into the nucleus upon Hippo inactivation. To test
whether nuclear translocation of TAZ involves facilitated trans-
port, we studied its localization under circumstances when pas-
sive diffusion through the nuclear pore was minimized. Passive
import can be reduced by artificially increasing the molecular
weight with tags33–35. We based our tag-design on mCitrine
building blocks since this fluorophore is inert to facilitated
import36 and does not oligomerize37, which allows size-
adjustments in increments of 27 kD. Constructed tags com-
prised one to five mCitrine molecules (1C- to 5C-tags) and gra-
dually pushed the molecular weight of TAZ fusions beyond any

reported exclusion limit for passive diffusion through the nuclear
pore complex (NPC)33–35 (Fig. 1a, b). To ensure that LATS-
dependent cytosolic “sequestration” by 14–3–3 proteins was not
the limiting factor for the nuclear accumulation of TAZ fusions,
we mutated all LATS-phosphorylation sites (TAZ 4SA), which
was shown to drive TAZ into the nucleus20,21. In parallel, we
fused the tags to a similar-sized control protein (mCherry) that
distributes evenly throughout the cell38 to detect residual passive
influx. The 1C-tag did not obstruct nuclear accumulation of TAZ
4SA, while 1C-control diffused freely, following the nuclear dis-
tribution of mCitrine alone35,36 (Fig. 1c, Supplementary Figure 2).
3C- and 5C-tags led to the exclusion of both TAZ 4SA and
control from the nucleus. However, the large tags did not abolish
mediated nuclear import per se, as seen with a construct com-
prising the strong NLS of simian virus 40 large T antigen (SV40;
Fig. 1c, last panel). We quantified nuclear enrichment of these
constructs by visual scoring (Fig. 1d, Supplementary Figure 3A
and 3B) and by an automated approach that measured nuclear-
to-cytoplasmic fluorescence ratios (RN/C; Fig. 1e, f, Supplemen-
tary Figure 3A and 3C). These analysis strategies compared well
(Supplementary Figure 3D) and revealed higher nuclear accu-
mulation of 1C-TAZ 4SA relative to 1C-control (Fig. 1d–f).
Moreover, they confirmed a robust nuclear exclusion of the 5C-
constructs. Importantly, the observed exclusion by no means
proved the absence of facilitated import; an alternative explana-
tion was that concomitant export outweighed influx. To distin-
guish the two possibilities, we inhibited the major nuclear export
factor CRM1 with Leptomycin B (LMB) and thereby trapped
shuttling proteins in the nucleus39–41. Upon LMB treatment, 5C-
control remained cytoplasmic, whereas 5C-TAZ 4SA accumu-
lated in the nucleus (Fig. 2a–c). This result established that TAZ
4SA, but not the control, shuttled between the two compartments
through mediated import and LMB-sensitive export.

The displayed import activity of TAZ 4SA was substantially
weaker than that of the strong SV40-NLS and ranked between the
weak SV40 K4A mutant and the medium-strength R5A mutant36

(Fig. 2d). This observation is consistent with the intricate
regulation of TAZ localization (as opposed to constitutive nuclear
accumulation of SV4042). In line with this notion, mediated
nuclear uptake of TAZ is limited by LATS activity, since 5C-
tagged wild-type (WT) TAZ accumulated less in the nucleus than
5C-TAZ 4SA when cells were treated with LMB (Fig. 2c). To
delineate the mechanistic underpinning of mediated import, we
sought to define the underlying structural requirements i.e., the
TAZ region(s) necessary for import.

Region 290–345 is sufficient and necessary for efficient TAZ
nuclear localization. We first analysed the localization of 5C-
tagged TAZ fragments (Fig. 3a) in the absence and presence of
LMB. Consistent with our results for full-length TAZ, all frag-
ments tested were mostly cytoplasmic without treatment
(Fig. 3b). In the presence of LMB most tested fragments showed
higher nuclear accumulation than 5C-control. Yet, only the C-
terminal fragment (270–400) mediated import of similar mag-
nitude as the full-length TAZ, and this accumulation was inde-
pendent of the comprised LATS-phosphorylation site S311
(270–400 S311A). Thus, we concentrated on the C-terminal 131
aminoacids and further localized this import capacity to the
highly conserved core region 290–345. Correspondingly, deletion
of this region in 5C-TAZ 4SA mitigated the LMB-induced
nuclear accumulation (Fig. 2c). Since LMB broadly inhibits efflux
and alters the entire nuclear proteome43, we sought to study
nuclear import under conditions that only blocked TAZ efflux in
a highly specific and inducible manner. Therefore, we developed a
system based on rapamycin-inducible sequestration in the
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Fig. 1 Large tags suppress nuclear accumulation of TAZ under steady-state conditions. a TAZ and a control (mCherry, red circle) were fused to increasing
numbers of mCitrine molecules (yellow circles). Molecular weights are indicated. b Western blot analysis of transiently over-expressed TAZ constructs in
LLC-PK1 cells, using a TAZ-specific antibody. Endogenous TAZ is marked by an arrowhead. An uncropped version is shown in Supplementary Figure 1A.
c Fluorescence microscopy images of LLC-PK1 cells transiently expressing control or TAZ 4SA constructs with varying tag-sizes (numbers of mCitrine
units). 5C-control-SV40 additionally comprises residues 114–135 of simian virus 40 (SV40) large tumor antigen that mediate strong nuclear import. This
construct demonstrates that the 5C-tag does not abolish mediated import and serves as positive control for nuclear localization. Images depict mCitrine
fluorescence. Scale bar represents 50 μm. Representative images of one experiment. Number of repeats: n= 3. d Visual quantification of cells with nuclear
enrichment of control and TAZ 4SA constructs. Cells were scored as “nuclear” (nuc.) if nuclear fluorescence was visibly higher than cytoplasmic
fluorescence. For each measurement, at least 100 cells were analysed. See also Supplementary Figure 3B. Data are represented as bar diagram, n= 7.
Throughout this work, data from visual analyses are depicted in the same way. e Automated analysis of the localization of indicated constructs in cells,
shown in (c), using the ImageXpress platform. For each construct, nucleocytoplasmic fluorescence ratios (RN/C) from more than 100 cells were obtained
from the inbuilt automated cell-recognition algorithm and the medians of these ratio distributions were calculated. Depicted histograms are averages, n=
3. f Comparison of median RN/C, determined in (e). Dotted and dashed lines represent RN/C thresholds for the classification of nuclear exclusion and
accumulation, respectively, as described in Supplementary Figure 3C. In the following, all automated analyses are presented as scatter charts. Data are
represented as means ± SD. *p < 0.05, **p < 0.01; Student’s t-test
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nucleus, which we termed RIS’N. In this system, strong
rapamycin-dependent heterodimerization between an immobile,
nuclear FKBP domain and a 5C-tagged FKBP−rapamycin-
binding domain (5C-FRB)44 traps shuttling 5C-FRB fusions in

the nucleus (Fig. 3c, left panel). When co-expressing the nuclear
FKBP-anchor (H2B-2xFKBP-mCherry) together with 5C-FRB or
5C-FRB fused to TAZ fragment 290–345 (5C-FRB-290–345), the
latter was slightly more nuclear even prior to stimulation.

0

1

2

3

Control
TAZ
4SA

K4A R5A SV40

No LMB

5 h LMB**
*

d

b
N

uc
./c

yt
o.

 r
at

io
c

5C- :

0

20

40

60

80

100

0 1 2 3 4 5

%
 n

uc
. a

cc
um

ul
at

io
n

LMB treatment [h]

***

*******

**

0 1 20.5 3 3.5 42.51.5

5C-TAZ 3SA Δ290-345

5C-control

5C-TAZ

5C-TAZ 4SA

N
uc

./c
yt

o.
 r

at
io

0.50

0.75

1.25

1.50

1.00

LMB treatment [h]

5C-control5C-TAZ 4SA

a

+
 5

 h
 L

M
B

5C-TAZ 4SA5C-control

mCitrine DAPI/mCitrine mCitrine DAPI/mCitrine

*
***

**
**

**

**

**
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construct (5C-TAZ 3SA Δ290–345) are significant at all time-points (p < 0.01, not indicated). Asterisks indicate significant differences between 5C-TAZ
4SA and 5C-TAZ. d Median RN/C of 5C-TAZ 4SA, 5C-control, and the 5C-tag fused to the minimal SV40-NLS (residues 126–132) or its weaker variants
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Importantly, rapamycin treatment strongly increased nuclear
enrichment of 5C-FRB 290–345 compared to 5C-FRB (Fig. 3c,
right panel). As a second, TAZ-specific alternative to LMB-
induced nuclear entrapment, we utilized the physiological
“retention factor” TEAD1. Overexpression of TEAD1 promoted

5C-TAZ nuclear accumulation in a concentration dependent
manner (Supplementary Figure 4A), but had no impact on the
TAZ mutant construct 5C-F52A that cannot bind TEAD25 or the
tag alone (5C-“−“; Fig. 3d). Importantly, TEAD1 only stopped
5C-TAZ export; import remained dependent on region 290–345
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as the corresponding deletion in TAZ (5C-Δ290–345) diminished
TEAD-triggered nuclear enrichment.

We next assessed whether import, mediated by region
290–345, is relevant for smaller constructs as well and, therefore,
bears physiological importance. First, we replaced the 5C-module
in our RIS’N system with a single mCitrine molecule and fused it
to the NES from the HIV protein Rev45 to increase the
cytoplasmic pool of the probe under basal conditions. In live-
cell experiments, rapamycin induced fast (within minutes)
nuclear accumulation of the corresponding 290–345 construct
(1C-NES-FRB-290–345), while the tag (1C-NES-FRB) accumu-
lated significantly slower (Fig. 4a). Similar results were obtained
using our automated-analysis pipeline on fixed cells (Supple-
mentary Figure 4B). Second, we tested whether region 290–345
would be required for nuclear localization of full-length TAZ in
the context of small tags. Deletion Δ290–345 strongly abrogated

the otherwise nuclear localization of 1C-TAZ 4SA (Fig. 4b) or
Myc-tagged TAZ 4SA (Fig. 4c), which demonstrated that this
region was not only sufficient, but also necessary for efficient
nuclear accumulation of TAZ. Moreover, automated analysis
revealed nuclear exclusion of 1C-TAZ 3SA Δ290–345, in contrast
to the diffusion-driven localization of 1C-control (Fig. 4d). These
findings indicated that in the absence of import, mediated by
region 290–345, nuclear efflux via an unknown mechanism (see
below) offset the diffusion-driven nuclear localization seen with
1C-control. Thus, the functional interplay of import and export
predominantly defined the steady-state cellular distribution of
TAZ 4SA beyond passive diffusion.

Since region 290–345 is part of the transactivation domain
(TAD; Fig. 3a), a largely disordered, acidic region essential for the
expression of TAZ-target genes46, it was conceivable that it also
contributed to gene expression, in addition to its crucial role for
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nuclear localization. We tested the transcriptional activity of the
complete TAD (fragment 270–400) and the 290–345 deletion
construct (270–400 Δ290–345) in the context of a Gal4-luciferase
reporter system (Fig. 4e). A SV40-NLS ensured that all constructs
were equally nuclear. Luciferase activity was ~15 fold reduced
when expression was driven by the 290–345 deletion construct. In
summary, we identified region 290–345 as sufficient and
necessary for efficient nuclear import of TAZ in addition to its
critical role for transcriptional activity.

Region 290–345 comprises a novel NLS that mediates RAN-
independent import. Next, we sought to map key features in
region 290–345, essential for import. To narrow down the loca-
tion of major import determinants, we first tested smaller frag-
ments for their nuclear accumulation, when fused to the 5C-tag.
We found that fifteen residues (327–341) retained the import
capacity of region 290–345 (Fig. 5a). Strikingly, this fragment is
the most acidic part of TAZ (Fig. 3a), and sequence alignment
(Fig. 5b) highlighted conservation of these negative charges.
Indeed, negative charges proved to be functionally essential;
mutation of the six Asp and Glu residues to Gly (“neutral”
mutation) reduced nuclear accumulation of 1C-TAZ 4SA to the
same extent as deletion 290–345 (compare Figs 5c and 4d). We
noted that the critical negative residues flanked the conserved
motif FLxx(V/L/I/M) (Fig. 5b). Intriguingly, such a pattern, i.e.,
the hydrophobic motif flanked by negative charges, occurred at
two additional regions in TAZ: at 357–373 in the TAD and in the
C-terminal PDZ binding site (393–400), the latter of which has
been shown to contribute to nuclear accumulation20. Thus, we
asked if the FLxx(V/L/I/M) motif in 327–341 is critical for
nuclear entry and if these other regions also confer transport
capacity via this motif. Mutation of the hydrophobic residues in
region 327–341 to alanine (mNLS1, Fig. 5b) significantly reduced
nuclear accumulation of 1C-TAZ 4SA, as did the mutations of the
other sites (mNLS2 and mNLS3, Fig. 5c, d). Albeit the effects of
the individual hydrophobic mutations were subtle, simultaneous
mutation of all three sites had a robust and additive effect.

Since TAZ molecules can dimerize47,48, we considered that a
piggyback mechanism involving endogenous TAZ might con-
tribute to the nuclear accumulation of our constructs. To address
this possibility, we first downregulated endogenous TAZ using
siRNA and expressed an “anchorless” TAZ mutant (5C-TAZ 4SA
F52A), incapable of binding the major “retention factors” 14–3–3
and TEAD20,21,25. Despite efficient reduction in endogenous TAZ
(Supplementary Figure 5A), the nuclear accumulation of 5C-
anchlorless was not affected (Supplementary Figure 5B). As a
second approach, we directly assessed the capacity of region
290–345 to bind full-length TAZ. Cells were transfected with
Myc-tagged TAZ 4SA and various 1C-constructs, and immuno-
precipitations were performed using GFP-trap beads. While Myc-
tagged TAZ 4SA readily co-precipitated with 1C-TAZ 4SA, it
showed only background association with 1C-290–345 (Supple-
mentary Figure 5C). Conversely, deletion Δ290–345 in 1C-TAZ
4SA did not reduce the association with Myc-tagged TAZ 4SA.
Therefore, the proposed TAZ-NLS in region 290–345 appears not
to coincide with the major dimerization site. This conclusion is
consistent with previous observations showing that dimerization
is mediated by the coiled–coiled domain48, and some critical
cysteines that reside outside of the NLS47. Together, these
experiments ruled out a key role for endogenous TAZ in the
import of the tested fragments.

Given that the identified TAZ-NLS vastly differ from the
classic, positively charged NLS such as that found in SV40, we
wondered whether TAZ import also depended on the small
GTPase RAN. We inhibited classic import (as exemplified by

5C-R5A) by expressing the constitutively active RAN mutant
G19V49,50 or by siRNA-mediated knockdown of endogenous
RAN (Fig. 5e, f), and then tested the effect on the cellular
distribution of the anchorless mutant. Neither RAN G19V
expression nor RAN knockdown inhibited nuclear accumulation
of 5C-tagged anchorless TAZ in the presence of LMB (Fig. 5e, f).
Furthermore, nuclear localization of 1C-anchorless TAZ was also
not affected by RAN G19V expression (Supplementary Fig-
ure 5D). Taken together, we identified a novel nuclear localization
signal, defined by negatively charged and hydrophobic residues,
that mediates import of TAZ in a RAN GTPase-independent
manner. In addition to the major localization signal present in
327–341, at least two other motifs contribute to import.

Regulation of TAZ import by RhoA activation. To address
whether LATS-independent, cytoskeletal/RhoA-mediated regula-
tion of TAZ might function through import control, we activated
RhoA with Rho activator II (RhoII) or expressed the con-
stitutively active mutant RhoA Q63L (Supplementary Figure 6A)
and monitored TAZ localization. RhoA activity increased nuclear
accumulation of the anchorless construct, 1C-TAZ 4SA F52A
(Fig. 6a). It also increased the accumulation of 5C-TAZ 4SA in
the presence of LMB (Fig. 6b, c), proving that the import step was
enhanced. Remarkably, RhoA activation could even increase
import of 5C-290–345 (Fig. 6d and Supplementary Figure 6B),
and this effect was TAZ-specific, as RhoA did not enhance classic
import via the SV40 R5A NLS (Fig. 6e). Since RhoA is upstream
of several kinases, we tested whether its activation might have
increased import through LATS-independent TAZ phosphor-
ylation. We did not observe changes in the migration patterns of
1C-TAZ 4SA (Fig. 6f) or 1C-290–345 (Supplementary Figure 6C)
on conventional polyacrylamide gels or phosphorylation-sensitive
Phos-tag gels when RhoA was activated. In contrast, the phos-
phatase inhibitor okadaic acid (OA), which was used as a positive
control, induced strong band shifts indicative of phosphorylation.
Consistent with these results, elimination of potential phos-
phorylation sites in region 290–345 or introducing phosphomi-
metic mutations did not affect basic nuclear import
(Supplementary Figure 7) but prevented the OA-induced band
shift (Supplementary Figure 6C). In summary, our results show
that facilitated import through region 290–345 was enhanced by
RhoA activity. This effect was TAZ-specific but was not due to
TAZ phosphorylation.

Identification of TAZ-NES. Our results on the LMB-inducible
nuclear accumulation of large (Fig. 2) and small TAZ constructs
(Supplementary Figure 8) also suggested the presence of a CRM1-
mediated export process, a view raised earlier based on the LMB
sensitivity of endogenous Yap and TAZ14,51,52. However, the
responsible NES has not been identified. As no such obvious
sequence could be predicted, we followed the same fragmentation
approach as shown in Fig. 3a to identify TAZ region(s) that
relocated the nuclear 1C-tag to the cytoplasm (Fig. 7a). Such
nuclear exclusion is a strong indicator for a functional NES. Of
the three fragments tested, only 2–125 was entirely cytoplasmic,
consistent with the presence of the 14–3–3 binding site in this
fragment. However, 14–3–3 binding could not be the sole reason
for the exclusion because mutation of the LATS-phosphorylation
sites (1C-2-125 3SA) failed to promote nuclear accumulation,
suggesting the presence of a NES. To verify this notion and
narrow down the responsible elements, we cut the fragment into
half and analyzed the distribution of the 1C-tagged subfragments
(2–60, termed TEAD-binding domain (TBD) and 60–125). Both
fragments revealed nuclear exclusion, but the latter re-distributed
into the nucleus when the LATS phosphorylation sites were
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mutated (1C-60–125 3SA), in line with 14–3–3-based exclusion
(Fig. 7b). LMB treatment abolished the differences between the
various constructs, indicating that their initial differential dis-
tribution was not due to their inability to translocate into the
nucleus. Intriguingly, when TEAD1 was co-expressed, 1C-TBD
relocated to the nucleus (Fig. 7c). Thus, paradoxically, the TBD
appears to have two opposite functions: it can promote cyto-
plasmic localization, as well as TEAD-dependent nuclear

“retention” of TAZ. In the following experiments we wished to
dissect the structural features responsible for these opposite
functions.

The TBD comprises a CRM1-dependent NES. Sequence align-
ment highlighted a conserved pattern of hydrophobic residues in
the TEAD-binding site vaguely reminiscent of a CRM1-
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dependent NES (Fig. 8a). We introduced four sets of mutations
(F52A and M1-3) to probe the importance of these hydrophobic
residues for nuclear exclusion of 1C-TBD. Residues mutated in
F52A and M1 were dispensable, the two constructs still localized
to the cytoplasm like the WT 1C-TBD (Fig. 8b). In contrast,
mutants M2 and M3 accumulated in the nucleus. Further trun-
cation analysis localized the functionally most critical region for
nuclear exclusion to the first 40 residues of TAZ (Supplementary
Figure 9A). Next, we assessed the TEAD-binding capacity of these
mutants (vis-à-vis their localization properties) by co-
immunoprecipitation experiments. To avoid complications

arising from differential localizations of the mutants, we used
cytoplasmic 5C-TAZ constructs and the TAZ binding domain of
TEAD (TAZBD), which is evenly distributed throughout cells53.
We found that mutations M1 and M2 maintained TEAD binding,
whereas mutations M3 and F52A abrogated it (Fig. 8c), in line
with previous findings25. Together, the results showed that
mutations in M1 did not prevent TEAD binding or export. In
contrast, residues mutated in M2 were essential for nuclear
exclusion, F52 was critical for TEAD binding, and sites in M3
contributed to both functions. Hence, nuclear exclusion was
provided primarily by a set of residues within region 2–40 that
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overlapped with, but was distinct from, the TEAD-binding site
spanning residues 25–53 in TAZ54,55. These findings offered an
explanation for the opposing roles of the TBD in TAZ localiza-
tion. Namely, the TBD confers nuclear localization by TEAD-
binding, which masks residues important for efflux. Conversely,
in the absence of interaction with TEAD, the TBD can mediate
efflux. To test these assumptions, we co-expressed TEAD with the
various 1C-TBD constructs (Supplementary Figure 9B). TEAD
expression induced nuclear accumulation of 1C-TBD, but not of
the non-binding mutant F52A. When the intrinsic export func-
tion per se was corrupted, however, TEAD binding was dis-
pensable for nuclear accumulation: binding and non-binding
mutants M2 and M3 were both nuclear.

To verify that the TBD was essential for TAZ export,
independent of concomitant re-entry, we employed a
rapamycin-inducible sequestration in the cytoplasm (RIS’C)
system, based on a cytoplasmic, membrane bound FKBP-trap
and 1C-FRB-TAZ constructs comprising the “anchorless” muta-
tions (4SA F52A) (Fig. 8d). The M2 mutations strongly
diminished efflux upon rapamycin-induced cytosolic sequestra-
tion, as evidenced by the slower decay of nuclear fluorescence
(Fig. 8e, Supplementary Figure 9C). Moreover, pre-treatment
with LMB reduced export to background levels (Fig. 8f). These
experiments verified that the TBD comprised a functional, LMB-
sensitive NES. Both functions of the TBD, nuclear export and
TEAD binding were also relevant for the localization of full-
length TAZ. Inhibition of export by the M2 mutations (Fig. 8g) or
deletion of the entire TBD (Supplementary Figure 9D) increased
nuclear accumulation, whereas disruption of TEAD binding alone
diminished it (F52A, Fig. 8g).

Since active RhoA increases nuclear accumulation of TAZ, we
wondered if it inhibited export, in addition to stimulating import.
RhoA Q63L expression had no effect on export as determined by
the RIS’C system (Supplementary Figure 9E) and caused only
modest increase in nuclear 1C-TBD (Supplementary Figure 9F),
which was also observed with a 1C-construct comprising the Rev-
NES45 (1C-RevNES). This suggests that RhoA activity leads to a
general, weak export inhibition in addition to an increase in TAZ
import.

Considering that 14–3–3 and TEAD bind to nearby sites in
TAZ (Fig. 3a) but have opposite effects (their binding facilitates
nuclear or cytosolic accumulation, respectively), we wondered if
there might be a competition between these regulators. In fact,
reciprocal binding of 14–3–3 and TEAD to TAZ was suggested
earlier21,56, but those experiments did not distinguish between
exclusion due to different compartmentalization of the binding
partners and true competition for the TAZ binding sites. We
performed co-immunoprecipitation experiments with 5C-TAZ
constructs to detect binding of endogenous 14–3–3 in the
cytoplasm. Co-expression of the TAZ binding domain (TAZBD)
competed off 14–3–3 from 5C-TAZ, but not from 5C-TAZ F52A,
which cannot bind TAZBD (Fig. 8h). These results are consistent
with the higher affinity of TAZ for TEAD (in-vitro, 42 ± 19 nM57)
compared to the lower ligand binding affinities of 14–3–3
proteins (in-vitro, ~100–500 nM58,59). Taken together, these
latter findings extend the existing models of the regulation of
TAZ distribution in two important aspects; they show that TEAD
promotes TAZ nuclear “retention” by masking the newly
identified TAZ-NES and suggest an intrinsic competition between
TEAD and 14–3–3 for TAZ (see Fig. 9 and Discussion).

Discussion
One of the major knowledge gaps in the rapidly growing field of
Yap/TAZ biology has concerned the mechanisms and molecular
requirements underlying nuclear translocation of these pro-
teins60. Our studies unequivocally demonstrate that nuclear
influx of TAZ is, at least in part, a mediated process, i.e., it is not
only brought about by passive diffusion of “free” cytosolic TAZ,
but also involves a cellular machinery with the capacity to
translocate even large proteins (>150 kD) into the nucleus. The
responsible NLS, which is both necessary and sufficient for effi-
cient mediated transport is “unusual” in that it contains nega-
tively charged residues, flanking the hydrophobic motifs FLXXV/
L/I/M. This signature is present in all Yap/TAZ homologs except
Drosophila Yorkie which, instead, comprises a functionally
unrelated NLS61. Moreover, this motif is also contained in a small
set of other proteins, the majority of which are nuclear and
involved in transcription (Supplementary Figure 10).
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Interestingly, the NLS is also required for the transcriptional
activity of TAZ per se, beyond its localization function (Fig. 4e).
Together these findings afford two propositions: the identified
motif in TAZ could be the prototype of a new class of bona fide
NLS, and these sequences may have double function, supporting
nuclear entry and transactivation. The TAZ-NLS is of medium
strength, i.e., it is considerably weaker than the supraphysiological
SV40-NLS, which drives exclusive nuclear localization. This
propensity allows fine-tuned, graded regulation of nuclear TAZ
accumulation. Keeping with this notion, we have identified three
copies of this NLS motif in TAZ. While we have shown that the
first (327–341) is critical for efficient import, the others (357–373
and 393–400) may also contribute (see Fig. 2c for LMB-induced
import of a construct lacking the critical region 290–345). Of
interest, the most C-terminal one of these, coinciding with the
PDZ binding site, has been demonstrated to facilitate nuclear
accumulation of TAZ in a previous study20, raising the interesting
possibility that this motif can simultaneously partake in import
and “retention”.

Further, consistent with its “non-canonical” nature, the TAZ-
NLS conducts import independent of RAN. This raises the
intriguing possibility that, given its biochemical properties, it
could directly interact with the hydrophobic, positively charged
Phe/Gly (FG) meshwork of the NPC, similar to a small set of
other transcription factors (e.g., NXF family, and possibly β-
catenin)62,63. Alternatively, the motif may mediate TAZ binding
to transporters that provide RAN-independent entry. Char-
acterization of this novel import mechanism warrants further
studies. However, it has to be emphasized that the overall nuclear
accumulation of TAZ depends not only on its import and export,
but also on the distributions of its “retention factors” and mod-
ifying kinases (e.g., LATS), which are likely affected by importins
and RAN30,53.

We also provide evidence that TAZ import itself is a regulated
process, and that the NLS is sufficient to confer this regulation.
We found that RhoA activation increased nuclear influx of TAZ
and the isolated NLS, but not of cargos with classic NLS. How can
active RhoA promote TAZ-specific entry? A recent elegant
study29 has shown that mechanical loading of the cytoskeleton
leads to nuclear flattening, which in turn deforms the nuclear
pore, thereby increasing its permeability for molecules with low
mechanical stability, such as Yap. Our finding that RhoA sti-
mulates TAZ import is in agreement with the general conclusion
that the cytoskeleton modulates nuclear entry. However,
mechanically induced rise in pore permeability, a priori, is
not expected to be sequence-specific, while our observations
indicated TAZ-specific transport. It is plausible, however, that the
force-induced changes in the NPC may also stimulate sequence-
specific, mediated import of TAZ in addition to passive influx.
Alternatively, RhoA could increase influx by modulating TAZ

and/or the import machinery. While the NLS and its vicinity
contain several phosphorylation sites, we did not detect RhoA-
induced TAZ phosphorylation, and our mutagenesis studies
suggested that these phosphorylation sites were not required for
basal import. However, these findings do not exclude the possi-
bility that CDK1 or Src-mediated phosphorylation of TAZ can
impact TAZ import64,65.

It is worthwhile to consider the interplay between the classic,
cytoplasmic “retention mechanism”, and influx regulation. We
found that the Hippo pathway mitigates the mediated TAZ influx
into the nucleus. Mechanistically, 14–3–3 binding increases the
molecular weight of TAZ by ~58 kD which is more than the size
difference between nuclear 1C-TAZ 4SA and cytoplasmic 3C-
TAZ 4SA. Thus, a simple increase in the complex size could be
sufficient to reduce influx and thereby “retain” TAZ in the
cytoplasm. In fact, this interpretation seems to be consistent with
findings published while our work was under review32. While that
paper considers export as the main regulated step of Yap locali-
zation (see below), the authors also found that a LATS-
independent mutant (5SA) exhibited a significantly higher
import rate than WT in cancer-associated fibroblasts (CAFs),
although the change was the opposite in normal fibroblasts. In
this regard our epithelial cells show CAF-like behavior. In addi-
tion, we cannot exclude that 14–3–3 controls the TAZ-NLS, as
described for other proteins66,67.

While LMB-induced nuclear accumulation of TAZ has been
reported14,52, it was unclear whether this phenomenon was pri-
marily due to nuclear entrapment of TAZ-interacting proteins or
reflected the inhibition of TAZ export per se via its own NES. In
this study we have identified the responsible TAZ-NES, which is
also conserved in Yap. Therefore, the emerging role of export in
Yap regulation32 further increases the importance of this finding.
The identified TAZ-NES overlaps with the binding site for TEAD,
consistent with earlier studies showing that TEAD binding is a
rate-limiting factor in TAZ efflux25. This observation puts TEAD-
dependent regulation of TAZ traffic in a new light: TAZ nuclear
“retention” entails TEAD-mediated masking of the NES.

We also found that TEAD can compete off 14–3–3 from TAZ.
It is tempting to speculate that the inverse scenario might also
exist, namely that 14–3–3 could compete off TEAD from TAZ
under certain conditions. If this is so, it would enhance efflux
according to our masking model. In fact, our masking model,
as well as the idea of reciprocal competition, align well with recent
findings showing that a LATS phosphorylation mutant
Yap (which cannot bind 14–3–3) exhibits diminished export,
while a TEAD-binding-deficient mutant has a higher export
rate than WT in CAFs32. Given the emerging role of post-
translational modifications (phosphorylation, palmitoylation,
glutathionylation) of both TEAD and TAZ68–71, which can alter
their affinity for each other, along with the increasing list of

NES NLSTAZ

14–3–314–3–3

Nuclear retention by TEAD
NES and 14–3–3 binding site blocked

NLS
TEAD

TEAD

NES NLS

14–3–3

TEAD

Basal cycling
NES and NLS counteract

Cytoplasmic retention by 14–3–3
import inhibited, NES accessible

?

Hippo HippoHippo

Fig. 9 Model for NES masking- and competition-mediated regulation of nuclear export. 14–3–3 and TEAD recognition sites in the N-terminus of TAZ are in
close proximity. Binding of TEAD blocks the function of the NES and might limit access of 14–3–3, thereby switching off export (left). Various regulatory
inputs impeding TEAD–TAZ interaction are indicated by “question mark” (see Discussion); the NES remains accessible, leading to nuclear exit (right). The
input of the Hippo pathway (on S89 phosphorylation) is indicated
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TEAD-interacting proteins that could control Yap/TAZ
binding68,72, such regulation of efflux might signify a major
mechanism in TAZ (and Yap) trafficking. Along these lines, a
recent study found that osmotic stress induces the nuclear efflux
of both TEAD and TAZ, and also reduces the association of these
proteins30. This finding is also consistent with the potential lib-
eration of the TAZ-NES via TEAD debinding. Nonetheless, Yap/
TAZ efflux might be brought about by alternative mechanisms as
well, such as the recently described Merlin-mediated nuclear
export73. Further studies are warranted to characterize the various
modes of TAZ export, the corresponding (pathophysiological)
stimuli, and the underlying changes in the interaction of Yap/
TAZ with their binding partners.

In summary, localization of TAZ (and Yap) has been suggested
to be affected by a multitude of (potentially non-exclusive)
mechanisms, the relative contribution of which remains to be
determined in a stimulus- and cell type-specific manner. These
entail (a) LATS-dependent and (b) LATS-independent release
from cytoplasmic binding partners (14–3-320,21 and AMOT26–28,
respectively), which might augment the most diffusible pool of
TAZ; (c) increase in the permeability of the nuclear pore;29 (d)
stimulation of NLS-mediated import (current study); and (e) a
modulation of export32, at least in part by masking the NES
(current study).

Taken together, we propose a refined model for TAZ shuttling
(Figure 9), which includes three novel aspects: the presence of an
NLS, the potency of which is enhanced by RhoA; the presence of
an NES, which is masked by TEAD binding; and a competition
between 14–3–3 and TEAD. Identification of the molecular
determinants of influx and efflux should facilitate pharmacolo-
gical targeting of Yap/TAZ shuttling and function, which play
central roles in cell growth, differentiation, carcinogenesis, and
fibrosis.

Methods
Reagents and antibodies. For western blot analysis, proteins were detected using
the following antibodies: anti-TAZ (BD Biosciences, 560235, 1:1000), anti-RAN
(Cell Signaling Technology, #4462, 1:1000), anti-c-Myc (Santa Cruz Biotechnology,
SC-40, 1:1000), anti-pan-14–3–3 (Santa Cruz Biotechnology, SC-629, 1:1000), and
anti-GFP (SC-8334, 1:1000). Jackson ImmunoResearch Laboratories was the source
for HRP, IRDye680RD, and IRDye800CW conjugated secondary antibodies. Alexa
488 or 555 conjugated secondary antibodies were from Invitrogen. HRP conjugated
secondary antibodies were used in 1:5000 for western blot analysis, fluorescent
secondary antibodies 1:10000. Leptomycin B, Rapamycin, and okadaic acid were
purchased from Sigma Aldrich and RhoII activator from Cytoskeleton Inc. Phos-
tag gels (Wako Pure Chemical Industries, Ltd.) were ordered from Cedarlane.

Cell culture. LLC-PK1 cells74 were cultured in low glucose DMEM, supplemented
with 10% FBS and penicillin/streptomycin (all Life Technologies). For live-cell
confocal imaging, cells were incubated in synthetic medium (20 mM HEPES, pH
7.4, 130 mM NaCl, 3 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM glucose) in the
absence of serum at room temperature. In all experiments where indicated, cells
were treated with RhoII (1 μg/ml) for 6h and/or LMB (20 ng/ml) and/or Rapa-
mycin (1 μM) or the corresponding vehicles for the indicated times.

Expression plasmids and siRNA transfection. 5xGal4-TATA-luciferase was a gift
from Richard Maurer75, pPGS-3HA-TEAD1 and pCMX-Gal4-TEAD2 were gifts
from Kunliang Guan55,76 (Addgene plasmids #46756, #33055, and #33107). HA-
tagged RANWT and G19V constructs were a gift from Andrew Wilde50. The Myc-
tag expression vector with Asc1 and Pac1 sites was a gift from Gerald Gish. TAZ
4SA was a gift from Jeff Wrana18. Other plasmids used as template in polymerase
chain reactions (PCR) were gifts form Tony Pawson. All fluorescently tagged
constructs were based on pcDNA3.1(−), with mCitrine or mCherry coding regions
inserted using Xho1 and EcoR1 sites. Additional mCitrine copies were successively
introduced using the EcoR1 and BamH1 sites in the pcDNA3.1(−)-mCitrine
constructs and Mfe1 and BamH1 sites flanking the mCitrine encoding insert. The
ligation of Mfe1 and EcoR1 cleaved ends destroyed these restriction sites. An
internal EcoR1 site close to the 3′end of the mCitrine insert allowed further
insertion-rounds. TAZ, MRTF, RhoA, and mCherry coding sequences were
inserted using Asc1 and Pac1 sites. Point mutations, deletions and insertions of
NLS, NES, FRB domains, FKBP domains, the Lyn-kinase myristoylation site,
H2B, or linker regions were created by standard overlapping PCR techniques. For

luciferase experiments, the TEAD2 coding region in pCMX-Gal4-TEAD2 was
replaced by a DNA fragment encoding the SV40-NLS and TAZ fragment 270–400
using EcoR1 and Kpn1 sites. Asc1 and Pac1 sites flanking the TAZ region were
used to exchange it with TAZ 270–400 Δ290–345 or the coding region of mCherry.
For Myc-TEAD expression constructs, fragments encoding aminoacids 17–426
(“full-length” with the N-terminus of isoform 2) or 208–426 (“TAZBD”) were
cloned into the Myc-tag vector via Asc1 and Pac1 sites. For all PCR reactions a
high fidelity proof reading polymerase (Phusion; Thermo Scientific) was used.
Restriction enzymes were purchased from New England BioLabs. All constructs
generated were verified by sequencing. Transfections were performed using X-
tremeGENE 9 (Roche Applied Science) or jetPRIME (PolyPlus Transfection SA)
according to the manufacturer’s instructions. Controls for samples coexpres-
sing TEAD or RhoA constructs comprised empty vector. Porcine-specific siRNAs
used in knockdown experiments were directed against the following sequences :
TAZ 5′-CAAGAACATACACCTACGGTTGT-3′;7 RAN 5′-GCAA-
CAAAGTGGATATTAA-3′. Oligonucleotides were synthesized and purchased
from Thermo Scientific or Sigma-Aldrich. NR control siRNA was obtained from
Applied Biosystems. Cells were transfected with 100 nM siRNAs alone or together
with plasmids using jetPRIME and were analysed for silencing or the cellular
localization of co-transfected constructs 48h later.

Luciferase reporter assay. Cells were transfected with 5xGal4-TATA-luciferase
reporter, comprising 5 Gal4 binding sites and either pCMX-Gal4-NLS-mCherry,
pCMX-Gal4-NLS-TAZ 270–400, or pCMX-Gal4-NLS-TAZ 270–400 Δ290–345.
Furthermore, the normalizing plasmid pRL-TK (Promega) and pcDNA3-mCherry
as carrier DNA were added to the transfection mix. Renilla luciferase and firefly
luciferase activities in cell lysates were measured using a reporter assay system (Dual
Luciferase; Promega) in a luminometer (Lumat 9507; Berthold). Firefly/renilla ratios
are expressed as fold changes compared to the firefly/renilla ratio of the control74.

Immunoprecipitation and western blotting. To examine interactions between
endogenous 14–3–3 and/or indicated, transiently expressed, constructs, LLC-PK1
cells were harvested from 10 cm dishes and lysed in Tris-buffered saline, com-
prising 1 mM EDTA, 20 mM Sodium Fluoride, and 1% Triton X-100 and sup-
plemented with 1 mM PMSF, 1 mM Sodium Vanadate, and Complete Mini
Protease Inhibitor (Roche). Lysates were spun at 4 °C, 12,000 rpm for 5 min to
remove cell debris and analyzed for protein content (BCA Protein Assay; Pierce
Biotechnology). Supernatants were incubated with GFP-trap beads (ChromoTek)
for 1 h and beads were washed three times afterwards. Bound proteins were eluted
using SDS-PAGE sample buffer and subjected to SDS-PAGE followed by western
blot analysis using nitrocellulose membranes. Aliquots of each input were run in
parallel to monitor expression levels. Samples for Phos-tag gels were prepared by
lysing cells directly in 2x SDS-PAGE sample buffer. Phos-tag gels were run and
proteins transferred onto membranes according to the manufacturer’s instructions.
Immunodetections were either performed using ECL Plus reagents (GE Healthcare
Life Sciences) and a GS800 densitometer or the infrared Odyssey imager (LI-COR).

Immunofluorescence and fluorescence confocal microscopy. For immuno-
fluorescence microscopy, LLC-PK1 cells were grown on glass coverslips, transfected
with Myc-tagged constructs and fixed with 4% paraformaldehyde. Following per-
meabilization with 0.1% Triton X-100 and blocking with BSA, cells were first
incubated with anti-c-Myc (1:100) primary antibody and then with fluorescently
conjugated secondary antibody (Alexa 488 or 555, 1:1000). For fluorescence
microscopy, cells were transfected with constructs indicated in the figures and fixed
with 4% paraformaldehyde. DAPI (Lonza) was used to counterstain nuclei. Cov-
erslips were mounted on slides using fluorescent mounting medium (Dako).
Images were captured using a WaveFX spinning-disk microscopy system (Quorum
Technologies) equipped with ORCA-Flash4.0 digital camera, driven by the Meta-
Morph software. Visual quantification of the cellular localization was performed by
scoring cells as “cytoplasmic” (cyto.) if nuclear fluorescence was lower than cyto-
plasmic fluorescence, as “pan” if both compartments had similar fluorescence
levels, or as “nuclear” (nuc.) if nuclear fluorescence was higher. For simplicity, in all
figures, except Supplementary Figure 3B, only nuclear fractions are reported. At
least 10 randomly selected fields per condition were analysed, with a total of at least
100 scored cells. A minimum of three independent experiments were conducted.
All image processing was done according to the Journal’s guidelines.

Automated localization analysis. LLC-PK1 cells were plated into multi-well cell-
culture plates (Falcon) and co-transfected with constructs indicated in the figures.
After 24 h, cells were fixed with 4% paraformaldehyde and nuclei were stained with
DAPI (Lonza). A total of 25 images per well were acquired using the ImageXpress
Micro system (Molecular Devices) and analysed with the inbuilt Multi Wavelength
Translocation analysis module. Nuclear-to-cytoplasmic ratios were calculated and
the median of each distribution was reported.

Live-cell experiments. For export studies, LLC-PK1 cells plated into 35-mm glass
bottom dishes (MaTek) were co-transfected with Myr-Lyn-2xFKBP-mCherry and
either 1C-FRB-TAZ 4SA F52A or 1C-FRB-TAZ 4SA F52A-M2 constructs.
Experiments were performed 24 h later. Cells were preincubated in synthetic
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medium at room temperature for at least 15min. Using a WaveFX spinning-disk
microscopy system, images were acquired every minute, before and for at least
15min after rapamycin addition. For import studies, LLC-PK1 cells on 35-mm glass
bottom dishes were co-transfected with H2B-2xFKBP-mCherry and either 1C-FRB-
NES-290–345 or 1C-FRB-NES constructs. After 24 h, images were acquired every
30 sec and time-averaged to one minute, before and for at least 15 min after
rapamycin addition using a Viva View system (Olympus). Data were collected from
at least 29 cells for each condition from nuclear and cytoplasmic regions within the
same cell and a control region outside of cells for background correction. Data
points were excluded if the cytoplasmic mean fluorescence intensities were less than
20% above background. Images were analysed using ImageJ77.

Statistics. For each construct, typically more than 100 transfected cells were
visually inspected per experiment. For automated analysis, 100–5000 transfected
cells were analysed per construct and experiment. N identifies the number of
repeats of independent experiments. All experiments were repeated at least three
times. Data are presented as bar diagrams (visual analysis, luciferase experiments,
and database searches) or scatter plots (automated analysis and live-cell experi-
ments) as mean ± standard deviation (SD) or standard error of the mean (SEM).
Statistical significance was determined by one-sided ANOVA, if more than two
groups existed. All ANOVA analyses resulted in P < 0.001. Unpaired, two-tailed
Student’s t tests were performed and P < 0.05 was accepted as significant. Statistical
analysis was done in Excel (Microsoft). Significance values: ns, not significant (P >
0.05), *P < 0.05, **P < 0.01, ***P < 0.001. For curve fitting, SigmaPlot (Systat Soft-
ware, Inc.) and Prism (GraphPad Software, Inc.) were used.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability statement
The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.
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