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A web server for comparative analysis of single-cell
RNA-seq data
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Single cell RNA-Seq (scRNA-seq) studies profile thousands of cells in heterogeneous

environments. Current methods for characterizing cells perform unsupervised analysis fol-

lowed by assignment using a small set of known marker genes. Such approaches are limited

to a few, well characterized cell types. We developed an automated pipeline to download,

process, and annotate publicly available scRNA-seq datasets to enable large scale supervised

characterization. We extend supervised neural networks to obtain efficient and accurate

representations for scRNA-seq data. We apply our pipeline to analyze data from over 500

different studies with over 300 unique cell types and show that supervised methods out-

perform unsupervised methods for cell type identification. A case study highlights the use-

fulness of these methods for comparing cell type distributions in healthy and diseased mice.

Finally, we present scQuery, a web server which uses our neural networks and fast matching

methods to determine cell types, key genes, and more.
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S ingle-cell RNA sequencing (scRNA-seq) has recently
emerged as a major advancement in the field of tran-
scriptomics1. Compared to bulk (many cells at a time)

RNA-seq, scRNA-seq can achieve a higher degree of resolution,
revealing many properties of subpopulations in heterogeneous
groups of cells2. Several different cell types have now been pro-
filed using scRNA-seq leading to the characterization of sub-
types, identification of new marker genes, and analysis of cell fate
and development3–5.

While most work attempted to characterize expression profiles
for specific (known) cell types, more recent work has attempted to
use this technology to compare differences between different
states (for example, disease vs. healthy cell distributions) or time
(for example, sets of cells in different developmental time points
or age)6,7. For such studies, the main focus is on the character-
ization of the different cell types within each population being
compared, and the analysis of the differences in such types. To
date, such work primarily relied on known markers8 or unsu-
pervised (dimensionality reduction or clustering) methods9.
Markers, while useful, are limited and are not available for several
cell types. Unsupervised methods are useful to overcome this, and
may allow users to observe large differences in expression profiles,
but as we and others have shown, they are harder to interpret and
often less accurate than supervised methods10.

To address these problems, we have developed a framework
that combines the idea of markers for cell types with the scale
obtained from global analysis of all available scRNA-seq data. We
developed scQuery, a web server that utilizes scRNA-seq data
collected from over 500 different experiments for the analysis
of new scRNA-Seq data. The web server provides users with
information about the cell type predicted for each cell, overall cell-
type distribution, set of differentially expressed (DE) genes
identified for cells, prior data that is closest to the new data, and
more.

Here, we test scQuery in several cross-validation experiments.
We also perform a case study in which we analyze close to 2000
cells from a neurodegeneration study6, and demonstrate that our
pipeline and web server enable coherent comparative analysis of
scRNA-seq datasets. As we show, in all cases we observe good
performance of the methods we use and of the overall web server
for the analysis of new scRNA-seq data.

Results
Pipeline and web server overview. We developed a pipeline
(Fig. 1) for querying, downloading, aligning, and quantifying
scRNA-seq data. Following queries to the major repositories
(Methods), we uniformly processed all datasets so that each was
represented by the same set of genes and underwent the same
normalization procedure (RPKM). We next attempt to assign
each cell to a common ontology term using text analysis
(Methods and Supporting Methods). This uniform processing
allowed us to generate a combined dataset that represented
expression experiments from more than 500 different scRNA-seq
studies, representing 300 unique cell types, and totaling almost
150 K expression profiles that passed our stringent filtering cri-
teria for both expression quality and ontology assignment
(Methods). We next used supervised neural network (NN)
models to learn reduced dimension representations for each of
the input profiles. We tested several different types of NNs
including architectures that utilize prior biological knowledge10 to
reduce overfitting as well as architectures that directly learn a
discriminatory reduced dimension profile (siamese11 and triplet12

architectures). Reduced dimension profiles for all data were then
stored on a web server that allows users to perform queries to
compare new scRNA-seq experiments to all data collected so far

to determine cell types, identify similar experiments, and focus on
key genes.

Statistics for data processing and downloads. To retrieve all
available scRNA-seq data, we queried the two largest databases,
GEO and ArrayExpress, for scRNA-seq data. Supplementary
Figure 1 presents screenshots of queries to the NCBI GEO and
ArrayExpress databases similar to the ones we used here, though
our queries utilized automated APIs instead of the web interfaces
shown in these figures. Supplementary Figure 2 and Fig. 2,
respectively, show study and cell counts by month, with respect to
the “release date” data provided by GEO and ArrayExpress. As
can be seen, while cell counts increase over time, there is a lag in
availability of raw data and author-processed supplementary data
available through NCBI GEO and ArrayExpress systems. Since
our pipeline is automated, we expect to be able to collect and
analyze much more data over the next several months.

Our “mouse single-cell RNA-seq” query matched a total of
193,414 cells, of which 151,084 have raw data and 29,216 had
only author-processed data. We used established ontologies to
determine the cell type that was profiled (Methods) for each cell
expression dataset we downloaded. Of the 2481 unique
descriptors we obtained for all cells, 1909 map to at least one
term in the cell ontology. Of the 5010 distinct cell ontology terms
(restricted to the CL and UBERON namespaces), 331 are
assigned at least one cell expression profile.

Of the 151,084 cells for which raw data are available, 114,249
had alignment rates above our cutoff of 40%. Of these 114,249, we
identified 2473 raw data files that contained reads from multiple
cells, but lacked any metadata that allowed us to assign reads to
individual cells. This leaves 143,465 cells that are usable for
building our scRNA-seq database.

Neural networks for supervised dimensionality reduction. We
trained several different types of supervised NNs. These included
models with the label matching a cell type as the output (with the
layer before last serving as the reduced dimension)10 and models
that directly optimize a discriminatory reduced dimension layer
(using as input pairs or triplets of matched and unmatched
profiles). See Supplementary Figs. 10, 12, and 13 for details. Some
of the models utilized prior biological knowledge as part of the
architecture to reduce overfitting (including protein–protein and
protein–DNA interaction data, termed PPI and TF respectively,
and hierarchical GO assignments) while others did not (dense).
We experimented with various hyperparameters (Methods), and
all of our neural network models were trained for up to 100
epochs, with training terminated early, if the model converged.
All models converged sooner than the full 100 epochs (Supple-
mentary Fig. 4). Performance on a held out validation set was
assessed after each epoch during training. The final weights
chosen for each model were those at the end of the epoch with the
lowest validation loss out of the 100 epochs. For triplet networks,
we also monitored the fraction of “active triplets” in each batch as
a selection criterion33. Most models trained in minutes (Supple-
mentary Table 1).

Prior work10 has shown that NN weights can be used to
identify relevant groupings of genes. Here we focused on the
accuracy of the learned networks. After training each of our
neural embedding models, we evaluated their performance using
retrieval testing as described in Methods. The training set we used
contained 36,473 cells, while the test (“query”) set consisted of
2,330 cells. Cells used for testing are completely disjoint from the
set of cells that were used for training and come from different
studies so that batch effects and other experimental artifacts do
not affect performance and evaluation. The results of this retrieval
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Fig. 1 Pipeline for large-scale, automated analysis of scRNA-seq data. a Bi-weekly querying of GEO and ArrayExpress to download the latest data, followed
by automatic label inference by mapping to the Cell Ontology. b Uniform alignment of all datasets using HISAT2, followed by quantification to obtain RPKM
values. c Supervised dimensionality reduction using our neural embedding models. d Identification of cell-type-specific gene lists using differential
expression analysis. e Integration of data and methods into a publicly available web application
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testing for a selection of architecture types and cell types are
shown in Fig. 3. These models have been trained using the data
that we processed ourselves in addition to data from studies that
only had author-processed data available (these required missing-
data imputation, see Methods) though similar results were
obtained on models trained using only our own processed data
(Supplementary Fig. 6). It is common to assess retrieval
performance with mean average precision (MAP). Here, each
value in the table represents the mean average flexible precision

(MAFP, Supporting Methods), which allows for scores between 0
and 1 for matching a cell type to a similar or parent type (for
example, a cortex cell matched to brain, Methods).

The best scoring model achieved a weighted average (accross
all query cell types) MAFP of 0.576, which is very high when
considering the fact that this was a 45-way classification problem
(while our database contains over 300 cell types, only 45 types
had independent data from multiple studies and these were used
for the analysis discussed here). When restricting the analysis to
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Fig. 2 Monthly cell count available on GEO and ArrayExpress. Cell counts by month, separated into four categories: usable, below our alignment rate
threshold, no raw or author-processed data available, and unmapped to ontology terms
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Hematop-
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Skin
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Weighted
average
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cell types)
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PT dense 1136 100 0.683 1.000 0.931 0.574 0.145 0.909 0.621 0.623

PT dense 1136 500 100 0.798 0.977 0.905 0.930 0.091 0.909 0.573 0.586

Triplet

PT (frac active) ppitf 1136 500 100 0.382 0.951 0.955 0.644 0.493 0.941 0.598 0.594

PT (val loss) ppitf 1136 500 100 0.308 0.961 0.963 0.516 0.640 0.942 0.552 0.550

Siamese

PT dense 1136 500 100 0.510 0.981 0.937 0.996 0.258 0.896 0.426 0.483

PT ppitf 1136 100 0.113 0.767 0.385 0.952 0.082 0.870 0.159 0.224

N/A

PCA 100 0.696 0.946 0.863 0.889 0.167 0.901 0.488 0.494

Original data 0.019 0.976 0.539 0.823 0.146 0.797 0.062 0.109

Fig. 3 Neural embedding retrieval testing results. Retrieval testing results of various architectures, as well as PCA and the original (unreduced) expression
data. Scores are MAFP (mean average flexible precision) values (Supporting Methods). “PT” indicates that the model had been pretrained using the
unsupervised strategy (Supporting Methods). “Ppitf” refers to architectures based on protein–protien and protein–DNA interactions (Supporting Methods,
Supplementary Fig. 12). Numbers after the model name indicate the hidden layer sizes. For example, “dense 1136 500 100” is an architecture with three
hidden layers. The metrics in parenthesis for the triplet architectures indicate the metric used to select the best weights over the training epochs. For
example, “frac active” indicates that the weights chosen for that model were the ones that had the lowest fraction of active triplets in each mini-batch. We
highlight the best performing model in each cell type with a bolded value. We can see that in every column, the best model is always one of our neural
embedding models. The final column shows the weighted average score over those cell types, where the weights are the number of such cells in the query
set. The best neural embedding model (PT dense 1136 100, top row) outperformed PCA 100 (0.623 vs. 0.494) with a p-value of 1.253 × 10−41 based on
two-tailed t-test. Source data are provided as a Source Data file
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the six cell types for which we had more than 1000 cells in our
database, results for this model further improved to 0.623, which
is significantly better than PCA 100 (paired t-test p-value: 1.253 ×
10−41). A paired t-test comparison on the full query set of cells is
shown in Supplementary Table 2. This top performing model
(first row in Fig. 3) employed a dense architecture (two-hidden-
layer perceptron network). The next best model overall (based on
the weighted average) was a similarly defined and performing
dense architecture with three hidden layers (in Source Data),
followed by a PPITF architecture with three hidden layers (the
first one being sparsely connected to the input based on prior
biological knowledge) trained as a triplet network (third row in
Fig. 3). We also see that for specific cell types, other neural
networks perform better. Specifically, triplet networks perform
best for neuron, embryo, and retina. Siamese architectures
perform the best in the neural cell type. We also note that the
best performing models were those that were pretrained with an
unsupervised strategy (a full table with result from over 100
models, including those from models without pretraining are
available on our web server). Finally, as is clear from the last two
rows, supervised neural network embeddings consistently out-
perform PCA and the original data in the retrieval task. Even
when we consider only those cell types that are rare in our
training data (<1% of total training population), we again see our
neural embedding models outperforming PCA and original data
(Supplementary Fig. 5).

Functional analysis of cell-type-specific DE genes. We further
used our ontology assignments to identify cell-type-specific genes
(Methods). The differential expression analysis we conducted is
based on multiple studies for each cell type. Our procedure
performs DE analysis for each study, for each cell type inde-
pendently and then combines the results. This method ensures
that resulting DE genes are not batch or lab related but rather real
DE for the specific cell type. We used this method to identify cell-
type-specific genes for 66 cell types. The number of significant
(<0.05 FDR adjusted p-value) DE genes for each cell type ranged
from 31 for embryonic stem cells to 7576 for B cells. The full list
of DE genes can be found on the supporting web server.

To determine the accuracy of the DE genes and to showcase
the effectiveness of the automated processing and ontology
assignments, we performed Gene Ontology (GO) enrichment
analysis on the set of DE genes for each cell type (Supporting
Methods). Results for a number of the cell types are presented in
Table 1. As can be seen, even though each of the cell-type data we
used combined multiple studies from different labs, the categories
identified for all of the cell types are highly specific indicating that
the automated cell-type assignment and processing were able to
correctly group related experiments.

As an example, the top three enriched terms for “retina” are
“nervous system process” (p= 7.63 × 10−9), “sensory perception
of light stimulus” (p= 7.63 × 10−9), and “visual perception” (p=
7.63 × 10−9). Cells of dorsal root ganglion are sensory neurons as
reflected in Table 1 with terms such as “sensory perception of
pain” (p= 3.54 × 10−6) and “detection of temperature stimulus”
(p= 9.86 × 10−6). For “T cell,” nine of the top ten terms are
related to immune response and specific aspects of the T cell-
mediated immune system. Complete results are available from the
supporting web server.

Mouse brain case study. To test the application of our pipeline
we used it to study a recent scRNA-seq neurodegeneration dataset
that was not included in our database6. This study profiled 2208
microglial cells extracted from the hippocampus of the CK-p25
mouse model of severe neurodegeneration. In the CK-p25 mouse

model, the expression of p25, a calpain cleaved kinase activator, is
induced and results in Alzheimer’s disease-like pathology. In the
original study, the microglial cells were extracted from control
and CK-p25 mice from four time points: before p25 induction
(3 months old), and 1, 2, and 6 weeks after induction (3 months
1 week, 3 months 2 weeks old, and 4 months 2 weeks old,
respectively). The goal of the study was to compare the response
of microglial cells to determine distinct molecular sub-types,
uncover disease-stage-specific states, and further characterize the
heterogeneity in microglial response. We used the raw read data
to perform alignment and quantification (Methods) resulting in
1990 cells that passed our alignment thresholds and were used for
the analysis that follows.

We used these data to test several aspects of the method,
pipeline, and website. We performed a complete analysis of the
roughly 2000 cells using the scQuery web server (see below),
which only took a few minutes. We first compared the supervised
(using NN) and unsupervised dimensionality reduction. The cells
were transformed to a lower dimensional space using the “PT
dense 1136 100” NN followed by t-SNE to get them to 2
dimensions. We compared this to a completely unsupervised
dimensionality reduction, as was done in the original paper.
Supplementary Fig. 7 presents the results of this analysis. We
observe that the supervised method is able to better account for
the differences between the two populations of healthy and
disease cells.

Cell-type classifications. We next performed retrieval analysis by
using the mouse brain cells as queries against our large database
of labeled cells. We classified each query cell based on the most
common label in its 100 nearest neighbors in the database
(Methods). The results of this cell-type classification can be seen
in Fig. 4.

We next compared the cell assignments for three different
groups. An early time point (3 months old) in which the healthy
and disease mouse models are not expected to diverge, a later
time point (4 months 2 weeks old) in which differences are
expected to be pronounced, and all data collected from the
healthy and disease data. As can be seen in Fig. 4a, our
assignment indeed reflects these stages with a much more
significant difference for the later time point compared to the
earlier one, with the entire dataset (which includes more
intermediate points) in the middle. Focusing on the later time
point, Fig. 4b shows the cell-type distribution. Several of the cell
types identified by the method correspond to brain cells (brain,
cortex, meningeal cluster) while others are related to blood and
immune response (bone marrow, macrophage). The most
common classification among the query cells was “fibroblast.”
Recent studies have shown that fibroblast-like cells are common
in the brain13, and that brain fibroblast cells can express neuronal
markers14.

As can be seen, the main difference observed between the
disease and healthy mice is the increase in the immune system-
related types of “bone marrow” and “macrophage” cells in the
disease model. We believe that while the method labeled these
cells as macrophages, they are actually microglia cells that were
indeed the cells the authors tried to isolate. To confirm this, we
analyzed sets of marker genes that are distinct for macrophages
and for microglia15. Supplementary Fig. 9 shows that indeed, for
the cells identified by the method the expressed markers are
primarily microglia markers.

The main reason that the method identified them as
macrophages is the lack of training data for microglial cells in
our database (our train data of high-confidence cell types
contains no microglial cells and 273 macrophage cells; our full
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database contains only 44 microglial cells compared to 603
macrophage cells). Still, the result that disease samples contain
more immune cells, which is only based on our analysis of
scRNA-seq data (without using any known immune markers)
indicates that as more scRNA-seq studies are performed and
entered into our database, the accuracy of the results would
increase.

Comparison to macrophage differentially expressed genes. We
further characterized the gene expression within these microglial
cells by comparing the gene expression in the query cells to our
cell-type-specific DE genes (Methods). We uploaded the RPKM
gene expression values for 256 microglial cells from late-stage
neurodegenerative mice (6 weeks after p25 induction) to our web
server6. Given the hits from the retrieval database, we then
selected a cluster of these that were enriched for “macrophage”,
and then viewed the expression (logRPKM) of our previously
calculated cell-type-specific marker genes as a heatmap for a
subset of these cells. A cropped screenshot of the interactive
heatmap provided by the web server is shown in Supplementary

Fig. 8, where we see that there is a rough agreement in upregu-
lation and downregulation trends of the set of macrophage-
specific DE genes we identified between the cells in the database
(leftmost column) and the query (microglial) cells. We would
expect to see this expression pattern for these genes in these cells,
as microglia are distinct from macrophages, but are related in
function.

Among the upregulated genes selected for “macrophage”, we
see genes that are also found to be upregulated in late-response
clusters including a microglial marker (Csf1r), a gene belonging to
the chemokine superfamily of proteins (Ccl4), a major histo-
compatability complex (MHC) class II gene (Cd74), and other
genes related to immune response (Lilrb4a, Lgals3)6, (magenta
highlights in Supplementary Fig. 8). We also see that a different
microglial marker (C1qa)16 is upregulated. In addition to re-
identifying genes of interest from the original study, our method
is also able to highlight additional genes that are biologically
relevant. These are highlighted in yellow in Supplementary Fig. 8
and include more chemokines (Ccl2, Ccl6, Ccl9), another MHC
class II gene (H2-ab1), and other cell surface antigens (Cd14,
Cd48, Cd52, Cd53).

Table 1 Results of GO enrichment analysis

Cell type Experiments GO ID Name p-Value

Retina 2 GO:0050877 Nervous system process 7.63e−09
GO:0050953 Sensory perception of light stimulus 7.63e−09
GO:0007601 Visual perception 7.63e−09
GO:0007423 Sensory organ development 8.69e−09
GO:0060041 Retina development in camera-type eye 8.69e−09
GO:0007600 Sensory perception 4.09e−08
GO:0001654 Eye development 3.96e−07
GO:0003008 System process 6.67e−07
GO:0009584 Detection of visible light 6.86e−07
GO:0043010 Camera-type eye development 1.23e−06

Dorsal root ganglion 3 GO:0019233 Sensory perception of pain 3.54e−06
GO:0016048 Detection of temperature stimulus 9.86e−06
GO:0031175 Neuron projection development 2.41e−04
GO:0050965 Detection of temperature stimulus involved in… 2.51e−04
GO:0050877 Nervous system process 2.51e−04
GO:0050961 Detection of temperature stimulus involved in… 2.51e−04
GO:0048666 Neuron development 3.49e−04
GO:0009581 Detection of external stimulus 3.79e−04
GO:0009582 Detection of abiotic stimulus 3.79e−04
GO:0007600 Sensory perception 4.31e−04

Skin epidermis 2 GO:0009888 Tissue development 2.99e−06
GO:0043588 Skin development 2.99e−06
GO:0042303 Molting cycle 9.57e−05
GO:0042633 Hair cycle 9.57e−05
GO:0030177 Positive regulation of Wnt signaling pathway 1.16e−04
GO:0042476 Odontogenesis 1.16e−04
GO:0009653 Anatomical structure morphogenesis 1.87e−04
GO:0022404 Molting cycle process 2.37e−04
GO:0030111 Regulation of Wnt signaling pathway 2.37e−04
GO:0022405 Hair cycle process 2.37e−04

T cell 4 GO:0002376 Immune system process 4.68e−10
GO:0006955 Immune response 3.86e−08
GO:0046649 Lymphocyte activation 1.25e−07
GO:0045321 Leukocyte activation 1.25e−07
GO:0002682 Regulation of immune system process 1.25e−07
GO:0042110 T cell activation 2.75e−07
GO:0050776 Regulation of immune response 2.84e−07
GO:0002684 Positive regulation of immune system process 3.82e−07
GO:0001775 Cell activation 4.54e−07
GO:0002252 Immune effector process 6.38e−07

Top 10 enriched “GO: Biological Process” terms using top 50 upregulated DE genes for each cell type (FDR adjusted p-values). “Experiments” refers to the number of studies used to compute
differentially expressed genes (Methods)
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Query and retrieval. To enable users to compare new scRNA-seq
data to the data we processed, and to determine the composition
of cell types in such samples, we developed a web application.
After processing their data (Methods) users can upload it to
the server. Next, uploaded data are compared to all studies
stored in the database. For this, we use approximate nearest
neighbor approaches to match these to the data we have pre-
processed. Embedding in the reduced dimension representation
and the fast matching queries of thousands of cells against
hundreds of thousands of database cells can be performed in
minutes.

Figure 5 presents an example of a partial analysis of newly
uploaded data by the web server. The web server clusters
cells based on their matched types (Fig. 5a), plots their 2D
embedding with respect to all other cell types in the database
(Fig. 5b), highlights the top represented ontology terms in the
uploaded cells (Fig. 5c), and provides additional information
about specific studies that it matched to the uploaded data
(Fig. 5d).

Discussion
We developed a computational pipeline to process all scRNA-seq
data deposited in public repositories. We have identified over
500 studies of scRNA-seq data. For each, we attempted to
download the raw data and to assign each cell to a restricted
ontology of cell types. For cells for which this information existed,
we uniformly processed all reads, ran them through a supervised
dimensionality reduction method based on NNs, and created a
database of cell-type profiles. Using the scQuery server, users can
upload new data, process it in the same way, and then compare it
to all collected scRNA-seq data. We view the main goal of
scQuery as a way to assist experimentalists who are performing
exploratory analysis of new scRNA-Seq studies or re-analyzing
existing studies. scQuery addresses several issues in the analysis of
new scRNA-Seq data by automating the annotation process based
on prior deposited samples.

In addition to cell assignments, the web server allows users to
view the metadata on which the assignment is based, view the
ontology terms that are enriched for their data and the

distribution it predicts, and compare the expression of genes in
the new profiled cells to genes identified as DE for the various cell
types. The web server also clusters the cells and plots a 2D
dimensionality reduction plot to compare the expression of the
users’ cells with all prior cell types it stores. Applying the method
to analyze recent neurodegeneration data led to the identification
of significant differences between cell distributions of healthy
and diseased mouse models, with the largest observed difference
being the set of immune-related cell types that are more
prevalent in the diseased mouse. Our method also revealed
additional upregulated immune-related genes in the
late-stage neurodegenerative cells that were classified as “macro-
phage” cells.

While the pipeline was able to process several of the datasets
we identified on public repositories, not all of them could be
analyzed. Specifically, many studies lacked raw scRNA-seq reads,
and thus could not be processed via our uniform expression
quantification pipeline. Though we were able to find author-
processed expression data for many studies, usage of this data is
complicated by different gene selections, data format differences
(e.g. RPKM vs. FPKM vs. TPM vs. read counts), and
more. Additionally, several studies profiled thousands of cells
but published far fewer raw data files, with each raw data
file containing reads from hundreds or thousands of cells
but no metadata that allows each read to be assigned to a unique
cell.

In addition to issues with processing data that has already been
profiled and deposited, we observed that cell-type distribution in
our database is still very skewed. While some cell types are very
well represented (“bone marrow cell”: 6283 cells, “dendritic cell”:
4126 cells, “embryonic stem cell”: 2963 cells) others are either
completely missing or were only represented with very few
samples (“leukocyte”: 12 cells, “B cell”: 22 cells, “microglial cell”:
44 cells, “cardiac muscle cell”: 72 cells). Such skewed distribution
can cause challenges to our method leading to cells being assigned
to similar, but not the correct, types. These are still the early days
of scRNA-seq analysis with several public and private efforts to
characterize cell types more comprehensively. Our dataset
retrieval and processing pipeline (including cell-type assign-
ments) is fully automated and we expect that once more
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experiments are available they would be added to the database
and server. We believe that as more data accumulates the accu-
racy of scQuery would increase making it the tool of choice for
cell-type assignment and analysis.

Methods
Data collection and preprocessing. We selected a mouse gene set of interest
based on the NCBI Consensus CDS (CCDS) which contains 20,499 distinct genes.
For genes with multiple isoforms, we consolidate all available coding regions
(Supporting Methods). To search for scRNA-seq datasets, we queried the NCBI
Gene Expression Omnibus (GEO) and the ArrayExpress database for mouse
single-cell RNA-seq series (See Supporting Methods for the queries we used). We
then download metadata for each series returned in this query and parse this
metadata to identify the distinct samples that comprise each series. We examined
the metadata for each sample (e.g., library strategy, library source, data processing)
and exclude any samples that do not contain scRNA-seq data.

We next attempted to download each study’s raw RNA-seq reads and for those
studies for which these data are available, we developed a pipeline that uniformly
processed scRNA-seq data. We use the reference mouse genome from the UCSC
genome browser17 (build mm10), and align RNA-seq reads with HISAT218 version
2.1.0. We align reads as single-end or paired-end as appropriate, and discard
samples for which fewer than 40% of reads align to coding regions. We represent
gene expression using RPKM. See Supplementary Fig. 3 for a histogram of read
counts per series.

Labeling using Cell Ontology terms. We use the Cell Ontology (CL)19 available
from http://obofoundry.org/ontology/cl.html to identify the specific cell types
which are represented in our GEO query results. We parsed the ontology terms
into a directed acyclic graph structure, adding edges between terms for “is_a” and
“part_of” relationships. Note that this choice of edge direction means that all edges
point toward the root nodes in the ontology.

We use the name and any available synonyms for each ontology term to
automatically identify the matching terms for each sample of interest (Supporting
Methods). This produces a set of ontology term hits for each sample. We filter
these ontology term hits by excluding any terms that are descendants of any other
selected terms (e.g., term CL:0000000 “cell” matches many studies), producing a set
of “specific” ontology terms for each sample—for any two nodes u and v in such a
set, neither u nor v is a descendant of the other in the ontology.

Dimensionality reduction. Most current analysis methods for scRNA-seq data use
some form of dimensionality reduction to visualize and analyze the data, most
notably PCA and similar methods20,21 and t-SNE22. Past work has shown that
while such methods are useful, supervised methods for dimensionality reduction
may improve the ability to accurately represent different cell types10.

Using neural networks for dimensionality reduction has been shown to work
well as a supervised technique to learn compact, discriminative representations of
data23. The original, unreduced dimensions form the input layer to a neural
network, where each dimension is an input unit. After training the model towards a
particular objective (such as classification), the last hidden layer, which is typically
much smaller in the number of units than the input layer, may be taken as a
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reduced dimensionality representation of the data. These learned features are
referred to as neural embeddings in the literature, and here we tested a number of
different neural network architectures which either explicitly optimize these neural
embeddings (for example, siamese24 and triplet networks12) or those that only
optimize the label accuracy. All neural networks we used were implemented in
Python using the Keras API25.

Neural network architectures. Prior work showed that sparsely connected NN
architectures based on protein interaction data can be more effective in deter-
mining cell types when compared to dense networks10. Here we further studied
other NN networks architectures and compared their performance to the PPI and
dense networks. First, we looked at another method to group genes based on the
Gene Ontology (GO)26. To construct a hierarchical neural network architecture
that mirrors the structure of GO, we associate input genes with GO nodes. Multiple
genes are associated (and connected to) the same node. We use this grouping of the
input genes as the first hidden layer of a neural network. Nodes in the next hidden
layer will be constructed from GO nodes that are descendants of nodes in the prior
layer. We continue this process until the last hidden layer has the desired number
of nodes (the size of our reduced dimension). The final result is the network
depicted in Supplementary Fig. 13. See also Supporting Methods.

Siamese architectures trained with contrastive loss. The NNs discussed above
indirectly optimize the neural embedding layer by optimizing a classification target
function (correct assignment of scRNA-seq data to cell types). A number of NN
architectures have been proposed to explicitly optimize the embedding itself. For
example, siamese neural networks11,24 (Supplementary Fig. 10) consist of two
identical twin subnetworks which share the same weights. The outputs of both
subnetworks are connected to a conjoined layer (sometimes referred to as the
distance layer) which directly calculates a distance between the embeddings in the
last layers of the twin networks. The input to a siamese network is a pair of data
points and the output which is optimized is whether they are similar (same cell
type) or not. The loss is computed on the output of the distance layer, and heavily
penalizes large distances between items from the same class, while at the same time
penalizing small distances between items from different class. Specifically, the
network optimizes the following loss function:

Contrastive loss ¼
XP
i¼1

Yi
� �

Ls Di
� �þ 1� Yi

� �
Ld Di
� � ð1Þ

Where :

P is the set of all training examples pairs of data pointsð Þ
Y is the corresponding label for each pair 1 indicates thatð
the pair belong to the same class; 0 indicates that each

sample in the pair come from different classesÞ
D is the Euclidean distance between the points in the pair

computed by the network

Ls Dð Þ ¼ 1
2
ðDÞ2 ð2Þ

Ld Dð Þ ¼ 1
2 maxf0;m� Dgð Þ2

Wherem is amargin hyperparameter; usually set to 1
ð3Þ

Following the same motivations as siamese networks, triplet networks also seek
to learn an optimal embedding but do so by looking at three samples at a time
instead of just two as in a siamese network. The triplet loss used by Schroff et al.12

considers a point (anchor), a second point of the same class as the anchor
(positive), and a third point of a different class (negative). See Supporting Methods
for details.

Training and testing of neural embedding models. We conduct supervised
training of our neural embedding models using stochastic gradient descent.
Although our processed dataset contains many cells, each with a set of labels, we
train on a subset of “high confidence” cells to account for any label noise that may
have occurred in our automatic term matching process. This is done by only
keeping terms that have at least 75 cells mapping to them, and then only keeping
cells with a single mapping term. This led to a training set of 21,704 cells from the
data we processed ourselves (36,473 cells when combined with author-processed
data). We experimented with tanh, sigmoid, and ReLU activations, and found that
tanh performed the best. ReLU activation is useful for helping deeper networks
converge by preventing the vanishing gradient problem, but here our networks
only have a few hidden layers, so the advantage of ReLU is less clear. We also
experimented with different learning rates, momentums, and input normalizations
(see web server for full results).

Since our goal is to optimize a discriminative embedding, we test the quality of
our neural embeddings with retrieval testing, which is similar to the task of cell-
type inference. In retrieval testing, we query a cell (represented by the neural
embedding of its gene expression vector) against a large database of other cells
(which are also represented by their embeddings) to find the query’s nearest
neighbors in the database.

Accounting for batch effects is a central issue in studies which integrate data
from many different studies and experimental labs27,28. Here, we adopt a careful
training and evaluation strategy in order to account for batch effects. We separate
the studies for each cell type when training and testing so that the test set is
completely independent of the training set. We find all cell types which come from
more than one study, and hold out a complete study for each such cell type to be a
part of the test set (sometimes referred to as the “query” set in the context of
information retrieval). Cell types that do not exist in more than one study are all
kept in the training set. For our integrated dataset, our training set contained 45
cell types, while our query set was a subset of 26 of the training cell types. After
training the model using the training set, the training set can then be used as the
database in retrieval testing.

Evaluation of classification and embeddings. In both training and evaluation of
our neural embedding models, we are constantly faced with the question of how
similar two cell types are. A rigid (binary) distinction between cell types is not
appropriate since “neuron”, “hippocampus”, and “brain” are all related cell types,
and a model that groups these cell types together should not be penalized as much
as a model that groups completely unrelated cell types together. We have thus
extended the NN learning and evaluation methods to incorporate cell type simi-
larity when learning and testing the models. See Supporting Methods for details on
how these are used and how they are obtained.

Differential expression for cell types. We use the automated scRNA-seq
annotations we recovered to identify a set of differentially expressed genes for each
cell type. Unlike prior methods that often compare two specific scRNA-seq data-
sets, or use data from a single lab, our integrated approach allows for a much more
powerful analysis. Specifically, we can both focus on genes that are present in
multiple datasets (and so do not represent specific data generation biases) and
those that are unique in the context of the ontology graph (i.e., for two brain related
types, find genes that distinguish them rather than just distinguishing brain vs. all
others).

Our strategy, presented in Supplementary Algorithm 1, is DE-method agnostic,
meaning that we can utilize any of the various DE tools that exist. In practice we
have used Single-Cell Differential Expression (SCDE) here29. For this, we used read
counts rather than RPKM, as SCDE requires count data as input. This method
builds an error model for each cell in the data, where the model is a mixture
between a negative binomial and a Poisson (for dropout events) distribution, and
then uses these error models to identify differentially expressed genes. We also tried
another method, limma with the voom transformation30, but the list of DE genes
returned was too long for meaningful analysis (many of the reported DE genes had
the same p-value). Results of our comparison of SCDE and limma-voom are shown
in Supplementary Table 4.

Another key aspect of our strategy is the use of meta-analysis of multiple DE
experiments. The algorithm attempts to make the best use of the integrated dataset
by doing a separate DE experiment for each study that contains cells of a particular
cell type, and then combines these results into a final list of DE genes for the cell
type. See Supporting Methods for the details of this meta-analysis.

Large-scale query and retrieval. To enable users to compare new scRNA-seq data
to the public data we have processed, and to determine the composition of cell
types in such samples, we developed a web application. Users download a software
package available on the website to process SRA/FASTQ files. The software
implements a pipeline that generates RPKM values for the list of genes used in our
database and can work on a PC or a server (Supporting Methods).

Once the user processes their data, the data are uploaded to the server and
compared to all studies stored in the database. For this, we first use the NN to
reduce the dimensions of each of the input profiles and then use approximate
nearest neighbor approaches to match these to the data we have pre-processed as
we discuss below.

Since the number of unique scRNA-seq expression vectors we store is large, an
exact solution obtained by a linear scan of the dataset for the nearest neighbor cell
types would be too slow. To enable efficient searches, we benchmarked three
approximate nearest neighbor libraries: NMSLib31, ANNoY (https://github.com/
spotify/annoy), and FALCONN32. Benchmarking revealed that NMSLib was the
fastest method (Supplementary Table 3). NMSLib supports optimized
implementations for cosine similarity and L2-distance based nearest neighbor
retrieval. The indexing involves creation of hierarchical layers of proximity graphs.
Hyperparameters for index building and query runtime were tuned to trade-off a
high accuracy with reduced retrieval time. For NMSLib, these were: M= 10,
efConstruction= 500, efSearch= 100, space= “cosinesimil”, method= “hnsw”,
data_type= nmslib.DataType.DENSE_VECTOR, dtype= nmslib.DistType.
FLOAT. Time taken to create the index: 2.6830639410000003 secs.
Hyperparameters tuned for the ANNOY library were: number of trees= 50,
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search_k_var= 3000. Time taken to create the index: 1.3495307050000065 secs.
For FALCONN, a routine to compute and set the hyperparameters at optimal
values was used. This calibrates K (number of hash functions) and
last_cp_dimensions. Time taken to create the index: 0.12065599400011706 s.

Visualizing query results. We use the approximate nearest neighbors results to
compute a similarity measure of each query cell to each ontology term. This is done
by identifying the 100 nearest neighbors for each cell and determining the fraction
of these matches that belong to a specific cell type. This generates a matrix of
similarity measure entries for all query cells against all cell types which is presented
as a hierarchical clustering heatmap (Fig. 5a). All visualizations are based on this
matrix.

For each query cell qi and nearest neighbor nk, we calculate the similarity score
as:

sqink ¼ 1= 1þ D qi; nkð Þð Þ

Where k∈ [1, 100] and D is the euclidean distance function.
We sum (over the nearest neighbors) the similarities to a specific cell type ct to

obtain a cumulative similarity score of the query to that cell-type:

Sqict ¼
X
k

sqink � 1ct nkð Þ
� �

Where

1ct nkð Þ ¼ 1 if nk is cell type ct

0 otherwise

�

Thus, we obtain for each query a vector of similarity scores against all cell types.
Finally, we normalize the vector such that the cell-type-specific cumulative
similarities sum to 1. Each normalized vector forms a row in the hierarchical
heatmap.

We also perform further dimensionality reduction of the query via PCA to
obtain a 2D nearest-neighbor style visualization against all cell types in the database
and generate the ontology subgraph that matches the input cells. Users can click on
any of the nodes in that graph to view the cell type associated with it, DE genes
related to this cell type, and their expression in the query cells.

In addition to matching cells based on the NN reduced values, we also provide
users with the list of experiments in our database that contain cells that are most
similar to a subset of uploaded cells the user selects. This provides another layer of
analysis beyond the automated (though limited) ontology matching that is based
on the cell types extracted for the nearest neighbors.

Finally, users can obtain summary information about cell-type distribution in
their uploaded cells and can find the set of cells matched to any of the cell types in
our database.

Code availability. Code for our preprocessing (alignment/quantification) pipeline
is available at https://github.com/mruffalo/sc-rna-seq-pipeline. Code for training
and evaluation of our neural network models are available at https://github.com/
AmirAlavi/scrna_nn. Code for our differential expression analysis to find cell-type-
specific genes is available at https://github.com/AmirAlavi/single_cell_deg.

Data availability
The reprocessed data that support the findings of this study are publicly available
online at https://scquery.cs.cmu.edu/processed_data/.

Received: 8 June 2018 Accepted: 15 October 2018

References
1. Kolodziejczyk, A., Kim, J. K., Svensson, V., Marioni, J. & Teichmann, S. The

technology and biology of single-cell rna sequencing. Mol. Cell 58, 610–620
(2015).

2. Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic
associations masked in whole-tissue experiments. Nat Biotechnol. 31, 748–752
(2013).

3. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by
single-cell rna-seq. Science 347, 1138–1142 (2015).

4. Patel, A. P. et al. Single-cell rna-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344,1396–1401 (2014).

5. Lescroart, F. et al. Defining the earliest step of cardiovascular lineage
segregation by single-cell rna-seq. Science 359, 1177–1181 (2018).

6. Mathys, H. et al. Temporal tracking of microglia activation in
neurodegeneration at single-cell resolution. Cell Rep. 21, 366–380 (2017).

7. Rizvi, A. H. et al. Single-cell topological rna-seq analysis reveals insights into
cellular differentiation and development. Nat Biotechnol. 35, 551 (2017).

8. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-
scale single-cell rna sequencing. Nat Neurosci. 18, 145 (2015).

9. Jaitin, D. A. et al. Massively parallel single-cell rna-seq for marker-free
decomposition of tissues into cell types. Science 343, 776–779 (2014).

10. Lin, C., Jain, S., Kim, H. & Bar-Joseph, Z. Using neural networks for reducing the
dimensions of single-cell RNA-seq data. Nucleic Acids Res. 45, e156 (2017).

11. Koch, G., Zemel, R. & Salakhutdinov, R. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Workshop, Vol. 2 (2015).

12. Schroff, F., Kalenichenko, D. & Philbin, J. in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Boston, MA, USA,
815–823 (2015).

13. Park, T. I.-H. et al. Adult human brain neural progenitor cells (npcs) and
fibroblast-like cells have similar properties in vitro but only npcs differentiate
into neurons. PLoS ONE 7, e37742 (2012).

14. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the
brain vasculature. Nature 554, 475 (2018).

15. Hickman, S. E. et al. The microglial sensome revealed by direct rna
sequencing. Nat Neurosci. 16, 1896 (2013).

16. Zhang, Y. et al. An rna-sequencing transcriptome and splicing database of glia,
neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947
(2014).

17. Rosenbloom, K. R. et al. The ucsc genome browser database: 2015 update.
Nucleic Acids Res. 43, D670–D681 (2014).

18. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low
memory requirements. Nat Methods 12, 357–360 (2015).

19. Bard, J., Rhee, S. Y. & Ashburner, M. An ontology for cell types. Genome Biol.
6, R21 (2005).

20. Pierson, E. & Yau, C. Zifa: Dimensionality reduction for zero-inflated single-
cell gene expression analysis. Genome Biol. 16, 241 (2015).

21. Yau, C. et al. pcaReduce: hierarchical clustering of single cell transcriptional
profiles. BMC Bioinformatics 17, 140 (2016).

22. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell rna-seq. Science 352, 189–196 (2016).

23. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with
neural networks. Science 313, 504–507 (2006).

24. Chopra, S., Hadsell, R. & LeCun, Y. in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2005. CVPR 2005Vol. 1, 539–546
(IEEE, Washington, DC, 2005).

25. Chollet, F. et al. Keras. https://github.com/fchollet/keras (2015).
26. Consortium, G. O. et al. Expansion of the gene ontology knowledgebase and

resources. Nucleic Acids Res. 45, D331–D338 (2017).
27. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-

cell transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. 36, 411 (2018).

28. Haghverdi, L., Lun, A. T., Morgan, M. D. & Marioni, J. C. Batch effects in
single-cell rna-sequencing data are corrected by matching mutual nearest
neighbors. Nat Biotechnol. 36, 421 (2018).

29. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to
single-cell differential expression analysis. Nat Methods 11, 740 (2014).

30. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock
linear model analysis tools for rna-seq read counts. Genome Biol. 15, R29 (2014).

31. Boytsov, L. & Naidan, B. in Proc. Similarity Search and Applications—6th
International Conference, SISAP 2013, A Coruña, Spain, October 2–4, 2013,
280–293. https://doi.org/10.1007/978-3-642-41062-8_28 (2013).

32. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I. & Schmidt, L. in
Advances in Neural Information Processing Systems (eds Cortes, C. et al.)
1225–1233 (Curran Associates, Red Hook, NY, 2015).

33. Hermans, A., Beyer, L. & Leibe, B. In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017).

Acknowledgements
Work partially supported by NIH Grant 1R01GM122096, the Pennsylvania Department
of Health (Health ResearchNonformula Grant CURE Award 2015) and a James S.
McDonnell Foundation Scholars Award in Studying Complex Systems to Z.B.-J and by
NIH grant 1F32CA216937 to M.M.R. This work used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1548562. We thank Hongyu Zheng (Computational
Biology Dept., CMU) for his work on cell-type similarity calculation. We also thank
Andreas Pfenning for his suggestions and advice on the mouse brain case study analysis.

Author contributions
Conceptualization: Z.B.-J.; Methodology: Z.B.-J., A.A., and M.R.; Software: A.A., M.R., A.P.
and Z.H.; Formal analysis: A.A.; Investigation: Z.B.-J., A.A., and M.R.; Data curation: M.R.
and Z.H.; Writing—original draft: Z.B.-J., A.A., M.R., A.P. and Z.H.; Writing—review and

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07165-2

10 NATURE COMMUNICATIONS |          (2018) 9:4768 | DOI: 10.1038/s41467-018-07165-2 | www.nature.com/naturecommunications

https://github.com/mruffalo/sc-rna-seq-pipeline
https://github.com/AmirAlavi/scrna_nn
https://github.com/AmirAlavi/scrna_nn
https://github.com/AmirAlavi/single_cell_deg
https://scquery.cs.cmu.edu/processed_data/
https://github.com/fchollet/keras
https://doi.org/10.1007/978-3-642-41062-8_28
www.nature.com/naturecommunications


editing: Z.B.-J., A.A., M.R., A.P. and Z.H.; Visualization: A.A., M.R., and A.P.; Supervision:
Z.B.-J., A.A. and M.R.; Project administration: Z.B.-J.; Funding acquisition: Z.B.-J, M.R.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-07165-2.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07165-2 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4768 | DOI: 10.1038/s41467-018-07165-2 |www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-018-07165-2
https://doi.org/10.1038/s41467-018-07165-2
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	A web server for comparative analysis of single-cell RNA-seq data
	Results
	Pipeline and web server overview
	Statistics for data processing and downloads
	Neural networks for supervised dimensionality reduction
	Functional analysis of cell-type-specific DE genes
	Mouse brain case study
	Cell-type classifications
	Comparison to macrophage differentially expressed genes
	Query and retrieval

	Discussion
	Methods
	Data collection and preprocessing
	Labeling using Cell Ontology terms
	Dimensionality reduction
	Neural network architectures
	Siamese architectures trained with contrastive loss
	Training and testing of neural embedding models
	Evaluation of classification and embeddings
	Differential expression for cell types
	Large-scale query and retrieval
	Visualizing query results
	Code availability

	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	Electronic supplementary material
	ACKNOWLEDGEMENTS




