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Slc7a5 regulates Kv1.2 channels and modifies
functional outcomes of epilepsy-linked channel
mutations
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Kv1.2 is a prominent voltage-gated potassium channel that influences action potential gen-

eration and propagation in the central nervous system. We explored multi-protein complexes

containing Kv1.2 using mass spectrometry followed by screening for effects on Kv1.2. We

report that Slc7a5, a neutral amino acid transporter, has a profound impact on Kv1.2. Co-

expression with Slc7a5 reduces total Kv1.2 protein, and dramatically hyperpolarizes the

voltage-dependence of activation by −47mV. These effects are attenuated by expression of

Slc3a2, a known binding partner of Slc7a5. The profound Slc7a5-mediated current sup-

pression is partly explained by a combination of gating effects including accelerated inacti-

vation and a hyperpolarizing shift of channel activation, causing channels to accumulate in a

non-conducting state. Two recently reported Slc7a5 mutations linked to neurodevelopmental

delay exhibit a localization defect and have attenuated effects on Kv1.2. In addition, epilepsy-

linked gain-of-function Kv1.2 mutants exhibit enhanced sensitivity to Slc7a5.
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Kv1.2 is a prominent voltage-gated potassium channel in the
central nervous system, where it influences cellular excit-
ability and action potential propagation1–3. As the first

eukaryotic voltage-gated channel with a reported atomic resolu-
tion structure4, it has been used as a template for understanding
and investigating fundamental details of voltage-dependent reg-
ulation of ion channels. Genetic manipulation of Kv1.2 also
illustrates important subtype-specific roles for Kv channels in the
CNS. Early mouse knockout models showed a particular
requirement for Kv1.2 among the Kv1 subfamily, as Kv1.2
knockout mice fail to survive beyond 3 weeks of life due to severe
generalized seizures5. More mildly perturbative mutations of
Kv1.2 have been linked to an ataxic phenotype in mice6. The
advent of next-generation sequencing has accelerated the corre-
lation of genetic mutations with rare phenotypes, and several
Kv1.2 mutations have been identified in patients with severe
epilepsies7–10. Molecular phenotyping of these genetic defects in
heterologous systems yields basic information that may partly
inform the link between the mutation and the disease, but these
interpretations lack a more complete understanding of interac-
tions between channels and extrinsic regulators, such as accessory
proteins. Although our study focuses on Kv1.2, this shortcoming
is likely true for many investigations of disease-linked ion channel
or neurotransmitter receptor mutations.

The canonical accessory proteins for Kv1.2 and other
Kv1 subtypes are Kvβ subunits, which promote cell surface
maturation and (in some cases) inactivation11–13. Kv1.2 subunits
also bind to cytoskeletal anchors, including cortactin, in a tyr-
osine phosphorylation dependent manner that influences Kv1.2
endocytosis14,15. The sigma-1 receptor is another associated
protein of Kv1.2, reported to assemble with Kv1.2 and promote
trafficking to the cell membrane in response to cocaine expo-
sure16. Certain lipids, including phosphatidic acid, can alter the
voltage-dependence of Kv1.2 activation17. This list of interactors
is likely incomplete. For instance, several reports have described a
poorly understood dynamic regulation in heterologous systems
and primary dissociated neurons, generating wide cell-to-cell
variability of Kv1.2 gating that likely depends on extrinsic reg-
ulatory mechanisms (not directly encoded by the primary
sequence of the channel)18,19. Despite the variety of extrinsic
factors reported to regulate Kv1.2 channel gating, none of these
binding partners account for the dramatic moment-to-moment
alteration of Kv1.2 activity that has been observed. Therefore,
there are likely other interacting proteins and molecules with
significant effects on channel gating, which have not yet been
discovered.

In this study, we investigate the potential assembly of Kv1.2
with previously unrecognized accessory proteins. We use a mass
spectrometry approach to identify candidate genes, followed by
screening of their effects on Kv1.2. We report that Slc7a5, a
neutral amino acid transporter, associates with Kv1.2 channels
and dramatically alters gating and expression. Several aspects of
this putative regulatory complex stand out. Slc7a5 mutations have
been linked to recessively inherited neurodevelopmental delay20,
and while this has been attributed to its role as an amino acid
transporter, the pleiotropy we report suggests additional
mechanisms that could also contribute to severe neurological
phenotypes. Second, the assembly of an ion channel and trans-
porter is part of an emerging trend of functional interactions
between complex transmembrane proteins (channels, transpor-
ters, GPCRs)21–23. Third, the gating effects of Slc7a5 are more
dramatic than any previously reported accessory subunit of Kv1
channels, and we also describe a mechanism of current sup-
pression involving compounded effects of accelerated inactivation
and a pronounced hyperpolarizing shift of channel activation.
Finally, we report that gain-of-function Kv1.2 mutations

identified in patients with severe human epilepsy are particularly
susceptible to suppression by Slc7a5, and this may underlie the
paradoxical observation that both gain- and loss-of-function
Kv1.2 mutations lead to severe epilepsy10.

Results
Identification of Kv1.2-associated proteins. We have previously
reported marked variability of Kv1.2 gating parameters in com-
monly used expression systems, suggesting these channels are
subject to unrecognized regulatory mechanisms18,24. To identify
interacting proteins, we used 1D4 affinity purification of cross-
linked channel complexes, followed by quantitative LC–MS/MS
mass spectrometry. Cross-linking and mass spectrometry was
done using a hybrid channel (Kv1.5N/Kv1.2[S371T]) to enhance
cell surface maturation in HEK293 cells, followed by functional
validation using wild-type Kv1.2 (rat). Several previously reported
Kv1.2 regulatory proteins appeared in the screen (data supple-
ment), including several phosphatases and kinases14,25, and a
RhoA guanine nucleotide exchange factor26. Based on criteria
including abundance relative to pulldowns from untransfected
cells, and cross-referencing against the CRAPome27 we selected
30 candidate proteins for further screening by electrophysiology
in ltk- fibroblasts (Fig. 1a, a full list of proteins identified has been
deposited online, see Data Availability statement). Our previous
study highlighted a prominent effect of redox conditions on
Kv1.224, so we also purified protein in either ambient redox or
reducing conditions, and prioritized abundant proteins previously
identified to contain labile extracellular disulfide bonds28

(Fig. 1a). Electrophysiology recordings were performed in ambi-
ent redox conditions (Fig. 1b, c) and we measured the half-
activation voltage (V1/2, Fig. 1b) and current density (Fig. 1c).
Most proteins tested had little or no discernible impact on Kv1.2
electrical function, although we cannot rule out that they may
affect Kv1.2 under other experimental conditions. The neutral
amino acid transporter Slc7a5 (LAT1) had the most pronounced
impact on Kv1.2, greatly reducing Kv1.2 currents and shifting the
conductance-voltage relationship by approximately −40 mV
(Fig. 1b, c) in our initial screen.

Suppression of Kv1.2 currents by Slc7a5. We further explored
the effects of Slc7a5 on Kv1.2 using electrophysiology (Fig. 2a)
and western blot (Fig. 2b–d). Co-expression of Kv1.2 and Slc7a5
(2:1 transfection ratio) markedly decreased Kv1.2 current density,
recapitulating our initial screen (using a holding potential of −80
mV, and a voltage step to +60 mV). We also tested Slc3a2, which
also appeared with high abundance in the screen (Fig. 1a) and can
form a heterodimer with Slc7a529. Slc3a2 and Slc7a5 peptides
were both enriched in Kv1.2 cross-linked complexes, but Slc7a5
was not well identified by mass spectrometry (2 peptides, small
sequence coverage), likely because it is primarily composed of
transmembrane segments. Co-expression with Slc3a2 alone did
not affect Kv1.2 current density. The combination of Kv1.2,
Slc3a2, and Slc7a5 (2:2:1 transfection ratio) partially rescued the
Slc7a5-mediated suppression of Kv1.2 currents (Fig. 2a). These
experimental conditions were chosen to highlight the broad range
of regulation that is possible with various combinations of Kv1.2,
Slc7a5, and Slc3a2. Although, we have not examined this in detail,
our preliminary exploration demonstrated that co-transfection
with larger amounts of Slc7a5 (e.g., a 1:1 ratio with Kv1.2) caused
less prominent rescue by Slc3a2. Overall, these data suggest that
Kv1.2 function is influenced by the relative amounts of Slc7a5,
Slc3a2, and Kv1.2.

We also measured Kv1.2 protein expression after transient
transfection with Kv1.2 and combinations of Slc7a5 and Slc3a2
(Fig. 2b–d). Kv1.2 generates two prominent bands: a mature cell
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surface band, and a core glycosylated band30. Slc7a5+Kv1.2 (1:1)
co-expression diminished total Kv1.2 expression by 50 ± 15%
(mean ± s.d., here and throughout the text), relative to Kv1.2
alone. Slc3a2+Kv1.2 (1:1) did not significantly affect overall
expression (116 ± 43%), and co-expression of Slc3a2 with Slc7a5
+Kv1.2 (1:1:1) partially rescued Kv1.2 expression, to 68 ± 3%
(Fig. 2c), although this was not statistically significant compared
to WT Kv1.2 expression. In all cases, surface expression as a
fraction of total protein was not affected (Fig. 2d).

We noted an inconsistency between Kv1.2 current density vs.
protein expression, depending on the expression of Slc7a5 and
Slc3a2. For example, co-expression of Kv1.2+ Slc7a5+ Slc3a2
did not dramatically rescue protein expression (relative to Kv1.2
+ Slc7a5, Fig. 2b–d), but had consistently larger currents (Fig. 2a).
Thus, it was unclear why Slc7a5 caused more pronounced current
suppression. We recognized that Slc7a5-mediated current
suppression is likely a combination of effects on expression and
gating, because hyperpolarized holding voltages result in
significant disinhibition of Kv1.2 co-expressed with Slc7a5
(Fig. 3a). We measured Kv1.2 current at 0.3 s intervals, with
holding potentials between −80 mV and −120 mV. We observed
that with a holding potential of −120 mV, Kv1.2 currents increase
significantly during a 30 s pulse train, but not with −80 or −100
mV (Fig. 3b, c). We are uncertain whether significantly more
disinhibition can be achieved with more negative holding

potentials or a longer time at −120 mV, as the long application
of strong hyperpolarized voltages was a technical challenge that
frequently led to seal breakdown. As described later, it is also not
clear whether this disinhibition reflects recovery from a canonical
C-type inactivated state, or some other non-conducting state.

Slc7a5 induces a hyperpolarizing shift of Kv1.2 activation. The
recognition of hyperpolarization-mediated disinhibition allowed
us to examine gating effects in more detail. Kv1.2+ Slc7a5 co-
expression (2:1 transfection ratio) leads to a hyperpolarized V1/2

of Kv1.2 activation of −58 ± 3 mV, compared to −11 ± 3 mV in
Kv1.2 channels expressed alone. Co-expression of Slc3a2 with
Kv1.2 (1:1 transfection ratio) does not affect the V1/2 (−11 ± 10
mV). However, similar to the effects on current density, co-
expression of Kv1.2 with both Slc7a5 and Slc3a2 (2:1:2 ratio of
Kv1.2:Slc7a5:Slc3a2) rescues the Slc7a5-mediated gating shift,
generating a V1/2 of −16 ± 3 mV (Fig. 4a, b). Slc3a2 and Slc7a5
interact via an extracellular disulfide bond between Slc7a5 Cys164
and Slc3a2 Cys109, along with other intermolecular contacts31.
The disulfide bond is not essential for their mutual regulation of
Kv1.2, as the Slc7a5[C164A] mutant transporter retains the
ability to shift Kv1.2 gating, and causes a sevenfold current dis-
inhibition at negative voltages (Supplementary Figure 1a, b). Also,
gating effects mediated by Slc7a5[C164A] are rescued by
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overexpression of Slc3a2 (Supplementary Figure 1a, c), although
the extent of rescue seen in co-expression with Slc3a2 varies on a
cell-to-cell basis (gray lines, Supplementary Figure 1a). Thus, the
Slc7a5:Slc3a2 interaction does not rely solely on the formation of
an extracellular disulfide bond, consistent with a previous report
describing a broad interaction surface between Slc7a8 and
Slc3a232.

We have not exhaustively tested the entire Slc7 transporter
family. However, the effects of Slc7a5 exhibit some specificity, as
Kv1.2 is not affected by co-expression with Slc7a6, a closely
related transporter that also heterodimerizes with Slc3a233. Also,
the Slc1a5 amino acid transporter does not influence Kv1.2 gating
or current magnitude (Supplementary Figure 2a). Finally, Slc7a5
exhibits some degree of subtype specificity, as co-expression of
Slc7a5 did not influence Kv1.5 (Supplementary Figure 2b). Future
testing of other Kv1 channel types and Slc7 transporters will
catalog the specificity of reported effects.

The canonical accessory subunits of Kv1 family channels are
the Kvβ subunits. We tested whether Slc7a5 regulates channels
co-expressed with Kvβ1.3, which introduces rapid N-type
inactivation11,12. Co-expression with Kvβ1.3 does not prevent
Slc7a5-mediated gating or disinhibition effects (Fig. 4c, d). In
addition, rapid inactivation was apparent at positive voltages even
when Kvβ1.3 was co-expressed with Slc7a5 (Fig. 4e). This
combination of rapid inactivation together with a pronounced
activation shift demonstrates that channels can simultaneously
co-assemble with both Slc7a5 and Kvβ subunits.

Slc7a5 promotes Kv1.2 inactivation. The hyperpolarization-
induced current disinhibition led us to speculate that Slc7a5
might influence Kv1.2 inactivation. To investigate this, we used
the Kv1.2[V381T] mutant, which replaces the outer pore residue
equivalent to Shaker Thr449, making channels more prone to C-

type inactivation34. Kv1.2[V381T] channels exhibit a similar
Slc7a5-mediated gating shift as WT Kv1.2 (Fig. 5a), along with
disinhibition at −120 mV (Fig. 5b). Also, Slc7a5 co-expression
markedly accelerates the rate of inactivation of Kv1.2[V381T]
(Fig. 5c) and shifts the steady-state inactivation curve from −31
± 3 mV to −69 ± 6 mV (Fig. 5d). There is an important mismatch
that should be noted between inactivation (Fig. 5d) and disin-
hibition (Fig. 5b). Disinhibition at −120mV (Fig. 5b) was always
measured before the inactivation protocol. However, subsequent
recording of inactivation did not restore the original state/level of
current inhibition, as currents measured in the inactivation
protocol recovered with an interpulse holding voltage of −100
mV (7 s duration). These findings suggest that Slc7a5 promotes
C-type inactivation of Kv1.2[V381T] and may also promote
additional inactivated/non-conducting states over longer periods
of time (i.e., during incubation time prior to recording).

We also tested Slc7a5 effects on the Kv1.2[I304L][S308T]
(Kv1.2[LT]) mutant, which shifts channel activation to depolar-
ized voltages by dissociating voltage sensor movement from
channel opening35. We hypothesized that Kv1.2[LT] would be
less prone to current suppression by Slc7a5 because fewer
channels would activate at resting voltages. Slc7a5 caused a
hyperpolarizing shift of activation of Kv1.2[LT] (Fig. 5e). More
importantly, hyperpolarization to −120 mV did not cause
disinhibition, suggesting that Kv1.2[LT] channels have not
accumulated in an inactivated/non-conducting state (Fig. 5f, g).
Taken together, these findings suggest that Slc7a5 promotes C-
type inactivation (coupled to channel opening) and likely other
non-conducting states of Kv1.2, partially contributing to the
Slc7a5-mediated current suppression (Fig. 2a). In combination
with the shift in voltage dependence of channel activation, this
effect leads to a requirement for strong hyperpolarizing voltages
for disinhibition of current (Fig. 3).
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Kv1.2 and Slc7a5 are in close physical proximity. We further
investigated the physical nature of the Kv1.2:Slc7a5 interaction
using a bioluminescence resonance energy transfer (BRET)
approach to assess their proximity in HEK293 cells. We fused the
Nanoluc bioluminescent donor to Kv1.2 and used mEGFP as an
acceptor in various test constructs. We collected emission spectra
between 400 and 700 nm, resulting in a large emission peak
centered at ~455 nm corresponding to Nanoluc bioluminescence,
and variable levels of a shoulder with a peak centered at ~510 nm
corresponding to mEGFP emission. Emission spectra were well fit
by the sum of weighted components of the Nanoluc and mEGFP
spectra (Fig. 6a).

We tested a variety of mEGFP-tagged BRET acceptors. Kv1.2
can assemble as a homotetramer, therefore co-expression with
mEGFP-Kv1.2 generates mEGFP emission. Although not quite as
pronounced, mEGFP-Slc7a5 generated a clearly discernable
emission, whereas the Slc1a5 negative control generated a much
smaller emission (Fig. 6a, b). We calculated the area under the
curve (AUC) of the mEGFP emission component between 480
and 600 nm and normalized each AUC to a matched mEGFP-
Kv1.2 positive control (run in parallel with each experiment,
Fig. 6c). We also tested whether co-expression of Slc3a2 would
influence the BRET signal from mEGFP-Slc7a5. In the presence

of Slc3a2, the BRET signal from mEGFP-Slc7a5 was modestly
attenuated although these results are variable and ambiguous
(Fig. 6c, co-expression with Slc3a2 is not significantly different
from EGFP-Slc7a5 alone, but also not different from EGFP-
Slc1a5). These, along with our functional findings (Figs. 2, 4),
suggest that Kv1.2 and Slc7a5 are in close proximity and that
Slc3a2 may influence this association, although it is not clear
whether Slc3a2 occludes the Slc7a5:Kv1.2 interaction or acts by
some other mechanism. Data further investigating mutual
interactions of Kv1.2-Slc7a5-Slc3a2 is presented later.

We also investigated the presence of Slc7a5 in neurons. The
predominant focus of investigation of Slc7a5 in the brain has
been its role in vascular endothelium as a component of the
blood–brain barrier36. Early immunohistochemical studies
demonstrate enrichment of Slc7a5 protein in the blood–brain
barrier, although these studies remark on the presence of a small
amount of Slc7a5 throughout the brain and an enrichment in
certain regions including dentate gyrus37. This is consistent with
more recent RNA-seq approaches that detect high levels of
Slc7a5 mRNA in vascular endothelium, and lower levels Slc7a5
in single neurons or enriched populations of neurons, compar-
able to Kv1.2 and other prominent neuronal Kv1 channel
subunits, Kv1.1 and Kv1.438,39 (online resources including
https://web.stanford.edu/group/barres_lab/brain_rnaseq.html;
mousebrain.org; neuroseq.janelia.org). Consistent with these
reports, we detected Slc7a5 protein (Fig. 6d) and mRNA
(Fig. 6e) in cytosine arabinoside-enriched cultures of cortical
neurons. We also detected Slc7a5 and Kv1.2 by immunohis-
tochemistry in dissociated hippocampal or cortical neurons
(Fig. 6f, additional images with neuronal markers are in
Supplementary Figure 3).

Mutual interactions of Kv1.2 and Slc7a5 and Slc3a2. We further
investigated interactions between Kv1.2, Slc7a5, and Slc3a2, using
a flow cytometry approach to determine whether expression of
one protein might influence assembly of the other two. We used
complementation of split YFP fragments (YFPC or YFPN) fused
to two subunits as a crude assessment of protein interaction, and
tested whether the third subunit could influence YFP recon-
stitution40. For example, we tested whether YFP reconstitution
between Kv1.2-YFPC and Slc7a5-YFPN was altered by expression
of Slc3a2-LSS-mOrange (or LSS-mOrange alone as a control). For
all permutations tested, we found only modest effects of the LSS-
mOrange tagged subunit on reconstitution of YFP (Fig. 7a),
suggesting that none of the subunits dramatically prevent
assembly of the other two (Fig. 7a). For example, in the repre-
sentative flow cytometry experiment in Fig. 7b, cells with the
brightest LSS-mOrange fluorescence (from Slc3a2) also tended to
have the brightest YFP signal (from the assembly of Kv1.2-YFPC
and Slc7a5-YFPN), suggesting that Slc3a2 does not prevent
assembly of Slc7a5 and Kv1.2.

An important aspect of the flow cytometry experiments is that
split-YFP complementation can promote/stabilize the targeted
protein interaction. We investigated these constructs in greater
detail using patch clamp recordings of various combinations of
tagged Kv1.2, Slc7a5, and Slc3a2 (Fig. 5c–e) in order to test the
mutual regulation of these proteins when assembly of specific
pairs is biased by split-YFP assembly. For example, we tested
Slc3a2 effects when assembly of the Kv1.2:Slc7a5 complex was
enhanced using Kv1.2-YFPC and Slc7a5-YFPN constructs. In
these experiments, co-expression of Kv1.2-YFPC and Slc7a5-
YFPN mimicked the gating shift and current suppression
observed with WT constructs (Fig. 7c, d). Co-expression with
Slc3a2-LSS-mOrange generated a wide range of gating pheno-
types despite the irreversible fusion of Slc7a5 and Kv1.2,
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suggesting that Slc3a2 can alter the effects of Slc7a5 on Kv1.2
even when the channel and transporter are held in close
proximity (Fig. 7c, d). A similar experiment was done using
Slc7a5-YFPC and YFPN-Slc3a2, along with LSS-mOrange-Kv1.2,
suggesting that close association of Slc3a2 and Slc7a5 does not
prevent regulation of Kv1.2 (Fig. 7e). Interestingly, in this
instance, the YFP-stabilized association of Slc3a2 and Slc7a5 is
not very effective at rescuing the WT Kv1.2 V1/2 (most cells were
only poorly rescued, multiple gray lines in Fig. 7e represent GV
curves from individual cells). This observation may arise because
Slc3a2 association helps to stabilize Slc7a5 at the membrane
where it can influence Kv1.2. Also, in these experiments a 1:1:1
transfection ratio was used, possibly leading to a greater amount
of Slc7a5 relative to Kv1.2, and thus weaker rescue by Slc3a2 as
mentioned earlier. Overall, these experiments demonstrate
complex mutual regulation of Kv1.2, Slc7a5, and Slc3a2, that
persists even when strategies are taken to bias the interaction of
specific interacting pairs. This finding supports the proposal that
Kv1.2, Slc7a5, and Slc3a2 may form a complex, and that the
rescue effect of Slc3a2 does not require physical occlusion of the
Kv1.2:Slc7a5 interaction. However, the variability of channel
gating observed when all three proteins are co-expressed suggests
additional complexity that we cannot yet control.

Attenuated effects of disease-linked Slc7a5 mutants. Slc7a5
mutations that impair amino acid transport have been linked to
recessively inherited forms of autism spectrum disorder20. We
tested the effects of these disease-linked mutants on Kv1.2 gating
and expression. Slc7a5[A246V] had no measurable effect on
Kv1.2 gating, current density, or disinhibition at −120 mV
(Fig. 8a–c, dark blue). Co-expression of Slc7a5[P375L] had atte-
nuated gating effects relative to WT Slc7a5, and also some sup-
pression of current expression (Fig. 8a–c, light blue). Neither
Slc7a5 mutant generated a BRET signal above the Slc1a5 negative
control when co-expressed with Kv1.2-Nanoluc (Fig. 8b). We
regularly used western blots to confirm that these mutants are
expressed at comparable levels to WT Slc7a5 (all clones were
mCherry-tagged, Fig. 8d, so they run at a different molecular
weight than endogenous Slc7a5 in Fig. 6d). The Slc7a5 mutants
may have a variety of defects that account for their weak effects
on Kv1.2. Previous reports in a reconstituted liposome assay have
suggested that the mutations diminish transport activity20. We
have noticed that these mutations also have a localization defect.
Images from dissociated cortical neurons nucleofected with var-
ious Slc7a5 mutants demonstrate accumulation in intracellular
puncta, in contrast to the more uniform distribution of WT
Slc7a5 (Fig. 8e–g, additional images in Supplementary Figure 4).
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Disease-linked Kv1.2 mutants are hypersensitive to Slc7a5. We
tested the effect of Slc7a5 on two recently reported disease-linked
mutations in Kv1.2, Arg297Gln and Leu289Phe10. When
expressed alone, these mutations cause a gain-of-function invol-
ving a hyperpolarizing shift of the conductance-voltage relation-
ship relative to WT Kv1.2 (Fig. 9c–f), and modest or absent
disinhibition after hyperpolarization to −120mV (Fig. 9a, b).
However, both mutants are extremely susceptible to Slc7a5,
leading to dramatic current reduction, and hyperpolarizing shifts
of channel activation (Kv1.2[R297Q] V1/2=−143 ± 6 mV; Kv1.2

[L298F] V1/2 <−200 mV; Fig. 9a–f). This is especially evident in
the exemplar traces where current inhibition coupled with the
shift in activation can be better appreciated (Fig. 9c, d). The large
shift in voltage-dependent activation provides a rationale for the
low current density and very weak extent of disinhibition
observed at −120 mV (Fig. 9a, b). Since the activation curve of
the mutant channels is so dramatically shifted, significantly more
negative voltages may be required for disinhibition. Using wes-
tern blots, we demonstrated that expression of the mutant
channels was slightly reduced relative to WT Kv1.2 channels and
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decreased further by co-expression of Slc7a5 (Fig. 9g, h). Overall,
these disease-linked Kv1.2 mutants categorized as gain-of-
function appear to be strongly suppressed by Slc7a5 due to
diminished protein expression and hypersensitivity to the gating
effects of Slc7a5.

Interestingly, the enhanced gating effects of Slc7a5 provides
a more sensitive tool to probe the effects of Slc3a2. Based on
BRET spectra (Fig. 6c) and variable gating properties of split-
YFP tagged Kv1.2:Slc7a5:Slc3a2 complexes (Fig. 7), we had
speculated that attenuation of the gating effects of Slc7a5 may
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not require direct physical occlusion/competition of the
Kv1.2:Slc7a5 interaction by Slc3a2. In the case of the Kv1.2
R297Q or L298F mutants, it is clear that co-expression with
Slc3a2 leads to incomplete rescue of gating properties, and
wide variability of gating (Supplementary Figure 5a, c). This
wide variation is likely due to the vast dynamic range of gating
arising from the Slc7a5-mediated effects, together with cell-to-
cell variability of relative expression of Slc7a5 and Slc3a2. In
addition, we observed that co-expression with Slc3a2 led to
incomplete rescue of channel deactivation (Supplementary
Figure 5b, d). These findings support the idea that Slc3a2 and
Slc7a5 can co-assemble and influence the gating properties
Kv1.2.

Discussion
In this study, we demonstrate profound regulation of Kv1.2
gating and expression by Slc7a5, in addition to its canonical
function as an amino acid transporter41,42. Slc7a5 suppresses
Kv1.2 by diminishing expression (Fig. 2), and a combination of
gating effects that cause channels to accumulate in a non-
conducting state that requires much hyperpolarized voltages for
recovery to occur (Figs. 3–5). Recently reported Slc7a5 mutations
linked to autosomal recessive inherited neurodevelopmental
delay/autism spectrum disorder (A246V and P375L) have atte-
nuated effects on Kv1.2 gating and current density, possibly due
to a localization defect that prevents association with Kv1.2
(Fig. 8). In contrast, epileptic encephalopathy-linked mutations of
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Kv1.2 (R297Q and L298F) enhance susceptibility to the gating
effects of Slc7a5 (Fig. 9). Relative to other known accessory
subunits of Kv1 channels, these gating effects are unique and
large in magnitude, and reveal a previously unrecognized ion
channel regulatory mechanism12,15,16,43.

Kv1.2 was the first eukaryotic voltage-gated ion channel with a
reported atomic resolution structure, and has served as a valuable
template for understanding mechanisms of voltage-dependent

gating of ion channels4. In search of additional regulatory
mechanisms, we performed mass spectrometry of cross-linked
Kv1.2 complexes, followed by screening to identify proteins with
clear effects. We used cross-linking to maximize detection of
proteins that may have transient or lower affinity interactions
with the channel, or that are lost with detergent solubilization.
Our approach was less stringent at the immunoprecipitation
stage, at the expense of more laborious screening of candidate
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genes. A more stringent protocol (non-cross-linked, more
detergent washes, etc.) would likely yield less candidate genes, but
might also miss important transient or low affinity interactions.

The Slc7a5-mediated hyperpolarizing shift of channel activa-
tion, coupled with suppression of current, initially seemed to be

counteracting effects. However, these are related—the hyperpo-
larizing shift contributes to current suppression by making the
channels more prone to enter an inactivated (or other non-
canonical non-conducting) state. This effect of Slc7a5 is accom-
plished by the combination of opening at more negative voltages

C
ur

re
nt

 d
en

si
ty

 (
pA

/p
F

)

1000

Kv1.2[R297Q]

1

0.1

100

10

C
ur

re
nt

 d
en

si
ty

 (
pA

/p
F

)

1000

1

0.1

100

10

C
ur

re
nt

 d
en

si
ty

 (
pA

/p
F

)

1000

1

0.1

100

10

Kv1.2[R297Q]
+ Slc7a5

C
ur

re
nt

 d
en

si
ty

 (
pA

/p
F

)

1000

1

0.1

100

10

Kv1.2[L298F]
+ Slc7a5

Kv1.2[L298F]

1 nA

20 ms

Kv1.2[R297Q]

–100 0 50
0

0.8

N
or

m
al

iz
ed

 c
on

du
ct

an
ce

1.0

0.6

0.4

0.2

–150 –50

Kv1.2[R297Q]
+ Slc7a5

–200 –100 0 50
0

0.8

N
or

m
al

iz
ed

 c
on

du
ct

an
ce

1.0

0.6

0.4

0.2

–150 –50–200

a b

Voltage (mV) Voltage (mV)

1 nA

20 ms

1st pulse –120 mV
train

1st pulse –120 mV
train

1st pulse –120 mV
train

1st pulse –120 mV
train

1 nA

20 ms

1 nA

20 ms

Kv1.2[R297Q] Kv1.2[R297Q]
+ Slc7a5

Kv1.2[L298F]
+ Slc7a5

Kv1.2[L298F]

Kv1.2[L298F]

Kv1.2[L298F]
+ Slc7a5

dc

fe

Untr.+7a5–7a5

Kv1.2 Kv1.2[R297Q]

+7a5–7a5 +7a5–7a5

Kv1.2[L298F]

β Actin

95

70

62

51

42

Mature

Immature

Anti-Kv1.2

+7a5–7a5

Kv1.2 Kv1.2[R297Q]

+7a5–7a5 +7a5–7a5

Kv1.2[L298F]

0.8

T
ot

al
 e

xp
re

ss
io

n
(r

el
at

iv
e 

to
 K

v1
.2

)

1.0

0.6

0.4

0.2

0

hg

* * *
p < 0.001

p = 0.04 p = 0.01
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(stabilization of channel activation) and enhancing the inactiva-
tion rate (accentuated in the V381T mutant, Fig. 10a, b). In the
presence of Slc7a5, channel activation and inactivation are suffi-
ciently shifted (Fig. 10c, green lines) that some inactivation (or
other non-conducting mode) of Kv1.2 may occur even when cells
are at rest. In addition, extremely negative voltages are required to
allow for current recovery/disinhibition (Fig. 3a, holding potential
of −120 mV). In a physiological system where such extreme
voltages are never reached, this molecular complex would act as a
trap that could alter excitability by silencing channels. Although
the stoichiometry of the Kv1.2:Slc7a5 interaction is not yet
known, it is important to note that assembly with different
numbers of Slc7a5 subunits, or heteromeric channels with
Slc7a5 sensitive (e.g. Kv1.2) and insensitive (e.g. Kv1.5) subunits,
may lead to intermediate instances of the effects described. Our
findings likely represent an extreme case, and variable or regu-
lated assembly might temper these effects in native settings.
Further exploration of the entire Kv1 family, other Kv subtypes,
and the Slc7 family will likely reveal functional diversity of these
effects. In addition, a deeper investigation of the variable influ-
ence of Slc3a2 may provide important additional understanding
of this ion channel regulatory mechanism.

The silencing effect of Slc7a5 may be noteworthy in the context
of an apparent paradox in the characterization of epilepsy-
associated Kv1.2 mutations. Recent findings have reported similar
epileptic phenotypes for both gain- and loss-of-function Kv1.2
mutants9,10. In addition, an observation lacking a good expla-
nation has been that Kv1.2 mutants with powerful gain-of-
function (increased current magnitude and ~50mV hyperpolar-
izing gating shifts) lead to hyperexcitability, rather than

suppression of excitation44. Although many factors may con-
tribute to these outcomes, gain-of-function mutations of Kv1.2
are much more sensitive to the Slc7a5-mediated silencing, and
this could lead to a loss-of-function effect when co-expressed with
Slc7a5 (even in the presence of Slc3a2, Supplementary Figure 5).
The hypersensitivity of Kv1.2 gain-of-function mutations arises
from two main differences that we have observed. First, there is
an intrinsic gating shift of the mutant channels (Fig. 10d, black
lines), and for reasons that are not yet apparent, the Slc7a5-
mediated gating shift is even more extreme than seen with WT
Kv1.2 (Fig. 10d, green lines). Therefore, a greater fraction of
Kv1.2 channels would activate and become silenced/inactivated at
physiological resting voltages. Second, this extreme gating shift
induced by Slc7a5 causes the gain-of-function mutants to require
extreme hyperpolarized voltages for disinhibition. The unique
gating effects of Slc7a5 provide an interesting example of how the
outcome of a disease-linked ion channel mutant might be fun-
damentally altered by assembly with an accessory protein.

Slc7a5 is a multi-pass transmembrane protein36, a feature that
stands out from previously described accessory proteins of Kv1
channels, which are predominantly soluble cytoplasmic proteins,
and often associated with the cytoskeleton13,15,45. A prominent
area of investigation of Slc7a5 has been its expression in vascu-
lature where it transports amino acids, neurotransmitters and
small drugs across the blood–brain barrier31,37,46. While it is
enriched in the epithelial cells of blood vessels in the brain, it is
also expressed midbrain structures, cortex and hippocampus
where its function is less well characterized47. Pathological con-
sequences of Slc7a5 disruption (mutation or knockout) are pre-
dominantly attributed to its amino acid transport function. Our
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findings indicate that future consideration of a role of Slc7a5 in
ion channel regulation is also warranted, in terms of physiological
consequences of the Slc7a5:Kv1.2 interaction. However, further
investigation of this complex will be required to generate tools
that distinguish the amino acid transport function vs. ion channel
regulation. It will also be of interest to determine whether Kv1.2
exerts a reciprocal effect on Slc7a5 transport activity. The
assembly of ion channels with membrane proteins that have
pleiotropic functions is an emerging theme, as other transporter
subunits have recently been reported to influence ion channels.
One example is a functional interaction of the sodium chloride
cotransporter (NCC) pump and the endothelial sodium channel
(ENaC) at the distal convoluted tubule48. Also, the sodium-
coupled myoinositol transporter SMIT1 affects expression of
KCNQ1 and KCNQ2/3 potassium channels49,50. These findings
highlight the importance of continuing to investigate interactions
of Kv channels with accessory subunits, and how these shape
potassium currents in excitable cells and may influence the
functional outcome of disease-linked mutations.

Methods
Co-immunoprecipitation. We generated a bait construct (Kv1.2-1D4) in
pcDNA3.1(-) comprising the N-terminus of Kv1.5 (residues 1–121), and the
transmembrane domains and C-terminus of Kv1.2[S371T] to increase cell surface
and overall expression51. This hybrid channel construct also included a C-terminal
1D4 epitope tag52. Ten centimeter of dishes of HEK cells were transfected with
Kv1.2-1D4 and harvested after 72 h of growth in a 37 °C 5% CO2 incubator. Cells
were then either incubated in 1 mM DTT or ambient redox PBS (10 mM PO4

3−,
137 mM NaCl, and 2.7 mM KCl, pH 7.4) for 1 h. To harvest protein, cells were
washed with PBS, then incubated for 30 min in 250 µM ethylene glycol bis(succi-
nimidyl succinate), a 16 Å long bifunctional cross-linker to link nearby free amines,
diluted in PBS. Cells were lysed with 20 mM HEPES, 0.1 M NaCl, 2 mM MgCl2, 20
mM CHAPS, and protease inhibitor at 4 °C for 20 min. Lysates were centrifuged at
21,130×g for 5 min.

1D4 antibody-coated beads were prepared for affinity purification by incubating
CNBr activated sepharose 4B beads (GE Healthcare) with 1D4 monoclonal
antibody (Rho-1D4 purified monoclonal antibody, Flintbox) according to the
manufacturer’s instructions. Sixty microliters of beads was washed with 500 µL of
wash buffer (20 mM HEPES, 0.1 M NaCl, 2 mM MgCl2, 10 mM CHAPS).
Supernatant from cell lysates was added to the beads and incubated at 4 °C for 20
min. Beads were then washed with wash buffer six times. Proteins were then eluted
with 60 µL of elution buffer (wash buffer +2 mg/mL 1D4 peptide) at 10 °C for 10
min. All chemicals were purchased from Sigma-Aldrich or Fisher.

Mass spectrometry. Cross-linked protein samples were analyzed by mass spec-
trometry at the Proteomics Core Facility at the University of British Columbia
(Vancouver, Canada). Protein precipitates were boiled in SDS sample buffer and
run on a short 10% (wt/vol) SDS/PAGE gel. Proteins were visualized by colloidal
coomassie and in-gel digested. Post-tryptic peptides from three different conditions
(Kv1.2-1D4, Kv1.2-1D4 +1 mM DTT, untransfected) were labeled with stable
isotopic dimethyl labels for quantitation of relative peptide abundance in each
sample53. Samples were mixed and analyzed by a quadrupole–time of flight mass
spectrometer (Impact II; Bruker Daltonics) coupled to an Easy nano LC 1000
HPLC (Thermo Fisher Scientific)54. Analysis of mass spectrometry data was per-
formed using MaxQuant 1.5.3.30. The search was performed against a database
comprised of the protein sequences from Uniprot Homo sapiens sequence entries
plus common contaminants with variable modifications of methionine oxidation,
and N-acetylation of the proteins, in addition to the isotopes of dimethyl mod-
ifications for quantitation. Only those peptides exceeding the individually calcu-
lated 99% confidence limit (as opposed to the average limit for the whole
experiment) were considered as accurately identified54. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via the
PRIDE partner repository with the dataset identifier PXD01101055. The amount of
each protein was quantified relative to the others based on the relative abundance
of each protein tagged with the three different dimethyl tags. Candidate interacting
proteins were selected and prioritized manually based on abundance relative to
untransfected control samples, and screening against the CRAPome27. cDNAs for
candidate interactors were purchased from the DNASU plasmid repository, and
subcloned into pEGFP-C1 using PCR to introduce compatible restriction sites.

Cell culture and expression. cDNAs were expressed using the pcDNA3.1(-)
vector (Invitrogen), mEGFP-C1, a gift from Michael Davidson (Addgene plasmid
#54759) or pLSS-mOrange-C1, a gift from Vladislav Verkhusha (Addgene plasmid
#37131)56. Where indicated, fluorescent proteins were fused Slc7a5 and Slc3a2
using standard PCR and compatible restriction digestion and ligation. Constructs

were all verified by diagnostic restriction digestions and Sanger sequencing
(Genewiz, Inc.).

Mouse ltk- fibroblast cells (ATCC) were used for patch clamp experiments and
western blots, except in Fig. 4c–e, where HEK293 cells (ATCC) were used. Cells
were maintained in culture in a 5% CO2 incubator at 37 °C in DMEM
supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were split onto
sterile glass coverslips and transfected with cDNA using jetPRIME transfection
reagent (Polyplus). Fluorescent proteins were used to identify transfected cells for
electrophysiological recording. Recordings were done 24–48 h following
transfection.

Mutagenesis. Kv1.2 and Slc7a5 mutagenesis was done by overlap extension PCR
with two mutagenesis primers, one in the 5′ direction in addition to a standard SP6
3′ flanking primer, and another mutagenesis primer in the 3′ direction in addition
to a standard T7 5′ flanking primer57. Primers for each construct are listed in
Supplementary Table 1. All constructs were expressed using the pcDNA3.1(-)
vector (Invitrogen), and verified by diagnostic restriction digestions and Sanger
sequencing (Genewiz, Inc. or University of Alberta Applied Genomics Core).

Electrophysiology. Patch pipettes were manufactured from soda lime capillary
glass (Fisher), using a Sutter P-97 puller (Sutter Instrument). When filled with
standard recording solutions, pipettes had a tip resistance of 1–3MΩ. Recordings
were filtered at 5 kHz, sampled at 10 kHz, with manual capacitance compensation
and series resistance compensation between 70 and 90%, and stored directly on a
computer hard drive using Clampex 10 software (Molecular Devices). Bath solu-
tion had the following composition: 135 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM
MgCl2, 10 mM HEPES, and was adjusted to pH 7.3 with NaOH. Pipette solution
had the following composition: 135 mM KCl, 5 mM K-EGTA, 10 mM HEPES and
was adjusted to pH 7.2 using KOH. Chemicals were purchased from Sigma-Aldrich
or Fisher.

Electrophysiology data analysis. Throughout the text we have displayed data for
all individual cells collected, in addition to reporting mean ± SD or a box plot with
the median ± 95% CI. Conductance-voltage relationships were fit with a Boltzmann
equation (Equation 1), where I/Imax is the normalized current, V is the voltage
applied, V1/2 is the half-activation voltage, and k is a fitted value reflecting the
steepness of the curve.

I
Imax

¼ 1

1þ e�ðV�V1=2Þ=k : ð1Þ

Conductance-voltage relationships were fit for each individual cell, and the
extracted fit parameters were used for statistical calculations. Where shown, box
plots depict the median, 25th and 75th percentile (box), and 10th and 90th
percentile (whiskers).

Bioluminescence resonance energy transfer. Nanoluc was amplified from
pcDNA3.1-ccdB-Nanoluc (gift from Mikko Taipale, Addgene plasmid # 87067),
and fused to the Kv1.2 C-terminus in pcDNA3.1(-) using EcoRI and HindIII
restriction sites. Other cDNAs were tagged at the N-terminus with mEGFP using
standard subcloning methods. HEK cells were transiently transfected with cDNAs
encoding BRET donors and acceptors for 48 h, then replated onto white poly-
styrene 96-well plates (Thermo Fisher). After 24 h, cells were washed with PBS, and
incubated with Nano-Glo live cell assay reagent (Promega). Emission spectra were
measured between 400 and 700 nm in 2 or 5 nm increments, for 2 s at each interval,
with a Synergy H4 Hybrid Reader (BioTek). Spectra were normalized to the peak
nanoluc emission, and the normalized Kv1.2-nanoluc spectrum (measured in
parallel) was subtracted to obtain the mEGFP emission. Integrated mEGFP
emission (area under the curve) was normalized to the integrated mEGFP emission
from Kv1.2-nanoluc+mEGFP-Kv1.2 in each experiment.

Western blot. Cell lysates from transfected ltk- fibroblasts were collected in NP-40
lysis buffer (1% NP-40, 150 mM NaCl, 50 mM Tris-HCl) 3 days after transfection,
separated using 8% SDS-PAGE gels, and transferred to nitrocellulose membranes
using standard methods. Kv1.2 was detected using a mouse monoclonal Kv1.2
antibody (1:10,000 dilution, clone #K14/16 75–008; NeuroMab) and HRP-
conjugated goat anti-mouse antibody (1:30,000 dilution, SH023; Applied Biological
Materials). Slc7a5 was detected using a rabbit polyclonal Slc7a5 antibody (1:500
dilution, KE026; Trans Genic Inc.) and HRP-conjugated goat anti-rabbit antibody
(1:15,000 dilution, SH012; Applied Biological Materials). Chemiluminescence was
detected using SuperSignal West Femto Max Sensitivity Substrate (Thermo Fisher
Scientific) and a FluorChem SP gel imager (Alpha Innotech). Uncropped western
blot images used for figure preparation are included in Supplementary Figures 6–9.

RNA isolation and RT-PCR. Total RNA was extracted from enriched rat cortical
neuron cultures using TRIzol reagent (Life Techologies), and reverse transcription
was performed using the RETROscript reverse transcription kit (Ambion). cDNAs
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of interest were amplified using Phusion polymerase (Thermo Fisher). Slc7a5
cDNA was detected using the primers acctgcaccagaagttgtcc (forward) and
gtgaagtaggccaggttcg (reverse). Slc3a2 cDNA was detected using the primers
ccaagttcgggatgtgggaa (forward) and tgcatgctccccagtgaaaa (reverse).

Fluorescence-activated flow cytometry. HEK cells were transfected with the
indicated constructs for 72 h. Cells were washed with PBS, trypsinized for 5–10
min, resuspended in DMEM then spun down, resuspended in PBS and spun down
and finally resuspended in PBS+ 2% FBS+ 2 µM EDTA. Samples were measured
using an Attune NxT Flow Cytometer (Flow Cytometry Core Facility, University of
Alberta, Edmonton, Canada) and analyzed using the FlowJo program.

Neuron isolation and fixation. Hippocampi or cortices from postnatal day 0–2
Sprague Dawley rats were isolated and digested in 27 U/mL papain solution in
HEPES-buffered HBSS (10 mM HEPES, 1 mM sodium pyruvate, 1% penicillin/
streptomycin dissolved in calcium/magnesium-free HBSS) for 10 min in a 37 °C
water bath. DNase (0.15 mg/mL) was added to the digestion mixture and incubated
for 5 min in the 37 °C water bath. Ten percent FBS was then added and the mixture
was centrifuged at 200×g for 1 min. The supernatant was aspirated and the pellet
was resuspended in plating media (10% FBS, 1 mM sodium pyruvate, 2 mM glu-
tamine and 1% penicillin/streptomycin in MEM) and triturated. The mixture was
filtered with a 40 µM sterile cell strainer. The neurons were counted using a
hemocytometer and plated at a density of 800 cells/mm2. After 3 h, the plating
media were replaced with growth media (1X B27 supplement, 500 µM GlutaMAX-
1 and 1% penicillin/streptomycin in Neurobasal-A). Neurons were treated with
cytosine arabinoside (5 µM) for 24 h at 3 days in vitro. All reagents and materials
were purchased from Fisher, Sigma-Aldrich and Invitrogen.

Immunohistochemistry experiments were done at 7–9 d in vitro. Neurons were
fixed with 4% paraformaldehyde, permeabilized with 1% Triton X-100 and stained
with primary antibodies as follows: mouse monoclonal Kv1.2 antibody (1:500
dilution, clone #K14/16 75–008; NeuroMab), rabbit polyclonal Slc7a5 antibody
(1:50, KE026; Trans Genic Inc.), mouse or rabbit NF-200 antibody (1:500 dilution,
N4142 or N5389, Sigma-Aldrich). Neurons were then stained with secondary
antibodies as follows: anti-rabbit Alexa 680 (cat. A21109, Invitrogen), anti-mouse
Alexa 488 (cat. A21202, Invitrogen), and/or anti-mouse Alexa 555 (cat. A31570,
Invitrogen) each at a 1:500 dilution. Neuronal images were obtained on a Zeiss
Colibri microscope and analyzed using ImageJ software. All procedures on animals
were approved by the University of Alberta’s Animal Care and Use Committee and
were in accordance with the guidelines of the Canadian Council on Animal Care.

Data availability
Data supporting the findings of this manuscript are available from the corre-
sponding author upon reasonable request. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD011010. Plasmids and other non-
commercial reagents are available upon request.
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