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Gas-solid reaction based over one-micrometer
thick stable perovskite films for efficient solar cells
and modules
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Besides high efficiency, the stability and reproducibility of perovskite solar cells (PSCs) are

also key for their commercialization. Herein, we report a simple perovskite formation method

to fabricate perovskite films with thickness over 1 μm in ambient condition on the basis of the

fast gas−solid reaction of chlorine-incorporated hydrogen lead triiodide and methylamine

gas. The resultant thick and smooth chlorine-incorporated perovskite films exhibit full cov-

erage, improved crystallinity, low surface roughness and low thickness variation. The resul-

tant PSCs achieve an average power conversion efficiency of 19.1 ± 0.4% with good

reproducibility. Meanwhile, this method enables an active area efficiency of 15.3% for 5 cm ×

5 cm solar modules. The un-encapsulated PSCs exhibit an excellent T80 lifetime exceeding

1600 h under continuous operation conditions in dry nitrogen environment.
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Organic−inorganic lead halide perovskite solar cells (PSCs)
have drawn a great deal of attention in the photovoltaic
research community due to their high efficiency and

simple manufacturing process1–5. The power conversion effi-
ciency (PCE) of PSCs has reached over 22% 6. Similar to other
kinds of thin film photovoltaics, film qualities of perovskite layers
can heavily influence device performance of PSCs. Thus, a deli-
cate control of film quality of perovskite layers is key to achieving
both superior performance and high reproducibility. Many
solution processable perovskite formation methods have been
developed to fabricate high-quality perovskite films, such as one-
step method2,7–9 and two-step method10. These methods usually
involve a transformation of 2D lead halide inorganic framework
to the 3D perovskite structure. This structure transformation is
often accompanied with the formation of morphological defects
and crystallographic structure dislocation within the grain and at
grain boundaries, where defects are present as trap states causing
serious charge recombination and limiting the charge carrier
diffusion length (less than 1 μm)11,12. To ensure efficient charge
collection in the presence of defects, perovskite films are usually
made sufficiently thin. So far, high efficiency PSCs mainly adopt
perovskite films with thickness ranging from 400 to 800 nm
(Supplementary Table 1). The low thickness fluctuation tolerance
and morphological defects of thin perovskite films decrease
reproducibility of the fabrication process. Moreover, thin films
are prone to thickness variations and pinhole defects, which
increase significantly with the area.

It is obvious that thicker perovskite films are likely to reduce
the risk of forming voids and pinholes due to the larger thickness
fluctuation tolerance. A high-quality thick perovskite film is
desirable to achieve a high device yield and reproducibility in
making large-area solar modules. Besides, thicker perovskite films
can not only improve the light harvesting13,14, but also broaden
light response region by utilizing the below-band absorption15. As
such, it is advantageous to construct a high-quality thick per-
ovskite film with enough carrier diffusion length in PSCs to
endorse both higher efficiency and manufacturing viability.
However, thick perovskite films over 1 μm have been found to be
generally less efficient than thin-films devices due to the poor
mobility, limited carrier diffusion length and are seldom explored
(Supplementary Table 1). Moreover, conventional perovskite
formation methods are usually not suitable for fabricating large-
area high-quality thick perovskite films. Thus, improving the
quality of thick perovskite films is critical to balance the thickness
and efficiency. Also, the development of new perovskite forma-
tion techniques is desirable to construct high-quality and thick
perovskite films.

Recently, a perovskite formation process based on methylamine
(CH3NH2) gas−solid reaction has been developed to prepare high-
quality CH3NH3PbX3 (X= I, Br, Cl), mixed halides CH3NH3

+-
based perovskite and Cesium/CH3NH3

+ mixed cations perovskite
films16–18. This gas−solid reaction-based method introduces a
liquid intermediate, which leads to induced morphology recon-
struction, defects healing19,20. Meanwhile, CH3NH2 gas treatment
can help reduce the defect density in perovskite films19,20

and also elimination of I213. Besides, CH3NH2-induced δ-
NH2CH=NH2PbI3 in (CH3NH3)x(NH2CH=NH2)1−xPbI3 is also
reported to passivate trap states to improve device performance21.
Moreover, excess solvent is absent during this perovskite formation
process, which avoids the possible detrimental effect-related residue
solvent. Therefore, CH3NH2 gas-based processes are promising for
depositing high-quality perovskite films across large area for PSC
device fabrication22,23.

In terms of the synthetic techniques developed for perovskite,
using chloride containing raw materials to prepare perovskite is a
commonly used method3. Although the chlorine content in

resultant perovskite films is usually much lower than the nominal
ratio of chlorine added in the precursor solution and in
some cases the chorine content in fully annealed perovskite films
is below detection limit, both the optoelectronic properties and
morphology can be tuned by appropriate chlorine
incorporation24,25. The resultant carrier diffusion length
improvement11,12, defects density reduction26, optimization of
film growth27–29, and charge tranport30,31 make this method
effective in obtaining high-quality perovskite films. In particular,
CH3NH3PbI3−xClx (i.e., CH3NH3PbI3 incorporated with a small
amount of Cl) has been reported to exhibit a longer carrier dif-
fusion length over 1 μm compared with pure CH3NH3PbI3, and
as a result device performance improved dramatically11,12.

These earlier works have inspired us to combine the CH3NH2

gas-based perovskite formation method and partial substitution
of iodine ions by chorine ions to fabricate high quality over 1-μm-
thick perovskite films with a sufficient charge diffusion length,
which is not only beneficial for better light absorbing but also
desirable for fabricating large-area solar modules with high yield
and reproducibility via low-cost printing techniques13,32.

Here we report a simple perovskite formation method to fab-
ricate over 1-μm-thick perovskite films based on the fast gas
−solid reaction of chlorine-incorporated hydrogen lead triiodide
(HPbI3(Cl)) and CH3NH2 gas. The comprehensive characteriza-
tion results reveal that with the synergistic effect of CH3NH2 gas
and partial substitution of iodine ions by chorine ions, the
resultant CH3NH3PbI3(Cl) (MAPbI3(Cl)) films with a thickness
over 1 μm and low thickness variation exhibit excellent film
quality. The resultant PSCs gave an average PCE of 19.1% and
low PCE standard deviation (±0.4%), which indicates the excel-
lent reproducibility of this method. Meanwhile, this method
enables an active area PCE of 15.3% for 5 cm × 5 cm solar mod-
ules. Besides, the un-encapsulated PSCs exhibit an excellent T80

lifetime exceeding 1600 h under continuous operation conditions
in dry N2 environment. Our film stability study also offers the in-
depth understanding for the underlying mechanisms responsible
for device stability improvement.

Results
Perovskite formation. Conventional perovskite formation
methods are usually not suitable for fabricating high-quality thick
perovskite thin films (Supplementary Fig. 1). Here, we developed
a fast gas−solid reaction of HPbI3(Cl) and CH3NH2 gas to pre-
pare high-quality thick perovskite films. In this method, hydrogen
lead triiodide (HPbI3) was used as the starting material aiming at
taking advantage of its fully coordinated [PbI3]− structure to
reduce iodide-vacancy and improve film quality (Supplementary
Figs. 2, 3)33,34. Firstly, we tuned the thickness of perovskite films
based on the HPbI3–CH3NH2 reaction20 by varying the substrate
temperature (Supplementary Figs. 4, 5, 6, Supplementary Table 2
and Supplementary Note 1). As a result, perovskite films with
thickness about 1.1 μm are used as our benchmark for further
studies. Partial substitution of iodine ions by chorine ions step
depicted in Fig. 1a was achieved by reacting CH3NH3Cl (MACl)
with HPbI3 to form HPbI3(Cl). Considering that MACl exists in
the solid state at room temperature but sublimes at elevated
temperatures (higher than 100 °C), the introduction of MACl can
not only achieve a small amount of substitution of iodine ions by
chorine ions, but also tune the morphology of HPbI3(Cl)
films27,35. Top set in Fig. 1b shows the top-view scanning electron
microscope (SEM) images of HPbI3(Cl) films prepared using
HPbI3/MACl precursor solution with different MACl contents. It
is found that upon increasing the MACl content, the size of voids
between islands-like crystals in the HPbI3(Cl) films gradually
decreases, and the crystals gradually turn from the hexagonal
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shape to the square shape and then to crystals with round edges
(Supplementary Fig. 7). The enhanced coverage of HPbI3(Cl)
films is expected to be beneficial for the subsequent CH3NH2 gas-
based perovskite formation process.

To further investigate the incorporation of chlorine into the
HPbI3, we used X-ray diffraction (XRD) spectroscopy to
characterize the obtained HPbI3(Cl) films. It is reported that
the HPbI3 films show a hexagonal structure20,34,36. Upon
increasing MACl content from 0 to 0.20, the low-angle peak
around 11.7° shifts to a higher two theta value and the peak
intensity increases significantly (Supplementary Fig. 8). This
result suggests that the substitution of I– ion with smaller Cl– ion
can shrink the crystal lattice, and HPbI3(Cl) still preserves the
pseudo-hexagonal phase in the case of MACl content lower than
0.4. When the MACl content is increased to 0.40, the XRD peak
intensity of the HPbI3(Cl) film at around 11.7° reduced
substantially. This observation suggests that when the MACl
content is too high, the crystal structure of HPbI3(Cl) cannot
maintain the previous structure, which is also supported by the
observed shape difference of crystal islands by SEM (Supplemen-
tary Fig. 7). This is because the large difference between the ionic
radii of I– and Cl– makes the crystal structure unstable when the
content of chlorine is too high. Such a phenomenon has also been
observed in MAPbI3−xClx. When a small amount of Cl was
incorporated, MAPbI3−xClx can still maintain the pseudo-cubic
phase11,12. However, a continuous solid phase of MAPbI3−xClx
theoretically cannot form at a high chlorine content due to the
large size mismatch between chloride and iodide30. Besides, a
slight splitting of the XRD peaks around 11.7° and the formation
of MAPbI3 are observed for high MACl content of 0.70 and 1.00
cases. The former observation may be due to the incomplete
removal of MACl or phase separation of HPbI3(Cl), and the latter
observation suggests that the reaction of MACl with HPbI3 can
form MAPbI3. The nonvisible perovskite peaks in HPbI3(Cl)

films at low MACl content from 0.05 to 0.40 may be due to the
low amount of MAPbI3 seeds and detection limit of XRD. Here,
we can deduce that the possible reaction for the formation of
HPbI3(Cl) at low MACl content up to 0.40 is as follows:

HPbI3 þ x þ yð ÞMACl ! H1�xPb1�xI3�4xClx
þxMAPbI3 þ xHI gð Þ þ yMACl gð Þ ; ð1Þ

where the chlorine-incorporated HPbI3, i.e., H1−xPb1−xI3−4xClx is
termed as HPbI3(Cl) hereafter; for MACl, x+ y represents the
initial amount of MACl in the HPbI3/MACl precusor solution, x
represents the amount of MACl used for chlorine incorporation,
y represents the amount of MACl that sublimes during thermal
annealing.

The as-prepared HPbI3(Cl) films were then exposed to
CH3NH2 gas atmosphere to form perovskite via the reaction,
CH3NH2+H+ → CH3NH3

+ 20. As shown in Fig. 1b bottom set,
the apparent grain size of the MAPbI3(Cl) films gradually
increases upon the increase of MACl content. However, too much
MACl is found to cause significant deterioration of the film
morphology, especially for the MACl content of 1.00 case
(Supplementary Fig. 9). The structural properties of MAPbI3(Cl)
films were further examined by XRD (Fig. 2a, b and Supplemen-
tary Fig. 10). All the samples show a preferred orientation along
the (110) crystallographic plane, and the corresponding peak
intensity becomes stronger with consecutive substitution of
iodine ions by chorine ions. This preferable (110) crystal
orientation is induced by the CH3NH2-based perovskite forma-
tion process19,37. The gradually increased peak intensity is
ascribed to the effect of chlorine on perovskite film growth27,35.
Furthermore, it was found that the low-angle XRD peak around
14.1° shifts to a higher two theta value and the peak intensity also
increases upon increasing the MACl content. The same as the
aforementioned discussion about the HPbI3(Cl), substitution of I–

CH3NH2

C

H

N

Pb

I

Cl

Cl

50 μm 50 μm

a

b
H

P
bI

3(
C

l)

HPbI3(Cl)

C
H

3N
H

3P
bI

3(
C

l)

CH3NH3PbI3(Cl)HPbI3

50 μm

5 μm5 μm5 μm

0

0

0.10

0.10 0.40

0.40
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by smaller-size Cl– can also lead to the shrinkage of the crystal
lattice of perovskite, which is consistent with the cell parameters
variation (Supplementary Fig. 11). A slight splitting of the XRD
peaks is also observed in the case of the MACl content of 1.00,
in which the large size mismatch between chloride and
iodide precludes the formation of a continuous solid phase of
MAPbI3−xClx, and results in phase segregation and large cell
parameter variation (Fig. 2b and Supplementary Fig. 11). The
observed additional peak around 28.2 ° is likely associated with
the hydrate phase of perovskite38.

Although MACl is introduced into precursor with nominal
ratios of MACl/HPbI3 from 0.1 to 1, the remaining contents of
chlorine in HPbI3(Cl) and MAPbI3(Cl) can be significantly lower
than the nominal content of chlorine in precursor solution. This
is due to the fact that MACl tends to sublime at elevated
temperatures. Furthermore, chlorine tends to form volatile
chlorine-containing species, which also tends to gradually diffuse
and sublimate from the film, especially in the presence of
water25,27. Thus, after thermal annealing in open air (relative
humidity of about 40−60%) the remaining chlorine content in
the resultant MAPbI3(Cl) films is much lower than the chlorine
content in the precursor solution. The low content of chlorine in
the MAPbI3(Cl) films is proven by the tiny change in absorption
edge (Fig. 2c)39. It should be noted that the fluctuation of
absorption for the case of MACl content of 0.70 and 1.00 may be
due to the observed slight phase segregation and large roughness
(Supplementary Fig. 12)25,27,35,39. Similar to chorine inclusion,
phase segregation is also observed in the bromine inclusion case
with high content, i.e., (MAPb(IxBr1−x)3) (0.1 < x < 0.8)40, in
which perovskite undergo phase separation into iodide-rich and
bromide-rich regions under light illumination41. In the case of
bromine inclusion with low content, the existence of bromine is

found to assist grain growth, improve stability, and device
performance40–42.

To further confirm the existence of chorine in MAPbI3(Cl)
films, we employed secondary-ion mass spectrometry (SIMS) to
characterize the depth profile of chlorine in the perovskite film
with MACl content of 0.1 (which gives the best device
performance as discussed in the device performance section).
As shown in Fig. 2d, the Cl depth profile exhibits a continuous
and gradual increase, and then shows a significant spatial overlap
on the Ti profile. This observation is consistent with other reports
revealing that the distribution of chlorine within MAPbI3(Cl) is
often inhomogeneous25,43–45. One possible cause responsible for
the inhomogeneous distribution of chlorine is due to the
tendency of chlorine to form volatile chlorine-containing species
gradually diffusing and sublimating from the top surface of the
film, especially in ambient air, resulting in a gradient increase of
the Cl content from the film surface to bottom25. Although the
XRD results of the MAPbI3(Cl) films do not show obvious peaks
of PbCl2 or MAPbCl3, it is worth noting that in addition to
incorporation into perovskite, the chlorine may form some
chloride compounds that are nondetectable by XRD due to the
detection limit or the amorphous nature of these compounds.
Here, we can complete the second step of MAPbI3(Cl) formation
reaction depicted in Fig. 1a as follows:

H1�xPb1�xI3�4xClx þ xMAPbI3
þ 1� xð ÞCH3NH2 ! MAPbI3�xClx;

ð2Þ

where the chlorine-incorporated perovskite, i.e., MAPbI3−xClx is
termed as MAPbI3(Cl) hereafter.

Device performance. To study the device performance, we
implemented our smooth 1.1-μm-thick MAPbI3(Cl) films in the
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device configuration of fluorine-doped tin oxide (FTO) /compact
TiO2/meso-TiO2/perovskite/spiro-OMeTAD/Au. Supplementary
Fig. 13 and Supplementary Table 3 show the device performance
results. The MACl content of 0.10 case delivers the best device
performance (Supplementary Note 2) with an average current
density (JSC) of 22.2 ± 0.3 mA cm−2, open-circuit voltage (VOC) of
1.09 ± 0.02 V, fill factor (FF) of 0.793 ± 0.015, and PCE of 19.1 ±
0.4%. As shown in Fig. 3a, a best PCE of 20.0% was achieved. The
integrated JSC from external quantum efficiency (EQE) is in
excellent agreement with current density–voltage (J−V) mea-
surements, with a discrepancy below 2% (Fig. 3b). The repre-
sentative J–V curves under different scan directions indicate the
negligible hysteresis effect (Supplementary Fig. 14). In addition, a
stabilized PCE approaching 19% for device (with efficiency of
19.2% from J−V measurements) is also achieved by holding the
voltage at the maximum power point for 500 s (Fig. 3c), which
further confirms the negligible hysteresis effect. When compared
with reports listed in Supplementary Table 1, the MAPbI3(Cl)-
based devices in this work can also deliver a comparable high
efficiency with perovskite film thickness over 1.1 μm as shown in
Fig. 3d. This suggests that at least the 1.1-μm-thick MAPbI3(Cl)
layer deposited here does not show a detrimental effect in carrier
transport. To further inspect the devices, we performed the cross-
sectional-view SEM (Fig. 4a). It is found that the grains extend
across the entire absorber layer minimizing grain boundaries and
providing facile pathways for efficient charge transport. All these
results prove that we obtained high-quality thick perovskite films,
and high efficiency PSCs can be fabricated based on these films.

Reproducibility is crucial for mass production of low-cost
optoelectronic device applications. When compared with PSCs
based on perovskite films fabricated using the antisolvent method,

our 1.1-μm-thick MAPbI3(Cl) film-based devices show signifi-
cantly improved reproducibility represented by a much smaller
PCE standard deviation (decreasing from ±1.2% to ±0.4%,
Supplementary Fig. 15 and Supplementary Table 4). The high
reproducibility of device performance is attributed to the high
reproducibility of 1.1-μm-thick MAPbI3(Cl) films. To confirm
this point, we measured the thickness and roughness of
16 samples of the 1.1-μm-thick MAPbI3(Cl) films (Fig. 4b, c
and Supplementary Figs. 16, 17). The average thickness and
roughness together with their standard deviations are determined
to be 1.13 ± 0.03 μm and 5.4 ± 0.4 nm, respectively. In addition,
the device performance of 1.1-μm-thick MAPbI3(Cl) devices is
higher than that of the devices based on 450-nm-thick perovskite
film deposited by the antisolvent method. The higher efficiency
for the former case is mainly due to the improved JSC and FF,
which is also supported by the EQE results in Supplementary
Fig. 15. This improvement is not only due to the thicker film but
also its improved film quality. Moreover, a slightly wider spectral
response is observed for the 1.1-μm-thick MAPbI3(Cl) film-based
devices. These results suggest that high-quality, thick perovskite
films can benefit the enhancement of light harvesting capability,
especially at the near-infrared region, towards better device
performance.

Development of scalable fabrication processes is key to further
industrialization of the PSC technology. We demonstrate that our
new perovskite formation method is scalable and can be used to
fabricate large-area solar modules. Figure 4d shows the optical
photograph of 1.1-μm-thick MAPbI3(Cl) film on 5 cm × 5 cm
substrates with the mirror-like smooth surface. It is also found
that the film is much more uniform over the entire 5 cm × 5 cm
substrate than that of antisolvent case (Supplementary Figs. 18,
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19). We then fabricated six-cell modules (active area= 12.0 cm2,
geometric fill factor= 48%) as shown in Fig. 4e. A best active area
PCE of 15.3% under reverse scan was achieved with a JSC of 3.66
mA cm−2, VOC of 6.65 V, and FF of 0.630 (Fig. 4f), which is
among the top PCE values obtained for perovskite solar modules
with an active area greater than 10 cm2 35,46–56. Furthermore, our
new method shows good reproducibility in the large-area device
fabrication with an average module PCE and standard deviation
of 13.6 ± 0.8% (Supplementary Table 5), which is much better
than that of the antisolvent case (8.6 ± 1.6%, Supplementary
Fig. 20 and Supplementary Table 6). These results further confirm
the excellent reproducibility of our 1.1-μm-thick MAPbI3(Cl)
films on large scale, which is a key advantage for manufacturing
in the realistic industrial large-scale setting. Note that small J–V
hysteresis was observed for solar modules (Supplementary
Fig. 21).

Charge carrier transport behavior. As shown in Fig. 3d, we
obtained high efficiencies with 1.1-μm-thick perovskite films. The

promising device performance inspired us to conduct systema-
tical investigations of charge transport properties of our PSC
devices to find out what factors lead to the high device perfor-
mance. We first performed conductive atomic force microscopy
(c-AFM) measurements on the 1.1-μm-thick MAPbI3(Cl) film
and perovskite film prepared by the antisolvent method (denoted
as MAPbI3(AS)). It was found that the former shows lower
roughness (Supplementary Note 3) and rounded large grains with
almost four times larger grain size, and its corresponding fewer
grain boundaries are expected to reduce the defects density
(Supplementary Fig. 22). Moreover, the 1.1-μm-thick MAP-
bI3(Cl) film also shows nearly an order of magnitude higher light-
induced current (Fig. 5a), which indicates its good electrical
conductivity. This observation can be ascribed to the improved
crystallinity of the MAPbI3(Cl) films with preferential (110)
orientation (Fig. 5b), as a result of synergistic effect of CH3NH2

gas19,57 and partial substitution of I− by Cl−11,12.
In addition to the improvement in terms of the film

morphology and conductivity, the defect nature in perovskite
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films may also play a role in influencing charge carrier transport
properties58. To investigate radiative and nonradiative charge
carrier recombination channels within perovskite films, we
carried out time-resolved photoluminescence (TRPL) measure-
ments on glass/perovskite/polymethyl methacrylate (PMMA)
samples (Supplementary Fig. 23). Figure 5c shows the TRPL
decay curves obtained from both the glass side and PMMA side
for the 1.1-μm-thick perovskite films with (MAPbI3(Cl)) and
without (denoted as MAPbI3) chlorine incorporation. Consider-
ing the limited penetration depth (tens of nanometers) of the light
source, the PL emission signal only contains the charge carrier
information on the surface layer that is facing the light source59.
The time constants (τ) are calculated to be 54 ns for the MAPbI3
film no matter whether the laser light incidents from the PMMA
side or the glass side, which indicates that perovskite on the
bottom and top of film has nearly the same charge carrier
properties. In the MAPbI3(Cl) case, the PL lifetime obtained from
the glass side is longer than that obtained from the PMMA side.
This observation suggests that perovskite on the bottom has
better charge carrier properties than the perovskite on the top in
MAPbI3(Cl) film. This observation may be correlated with the

inhomogeneous distribution of chlorine within MAPbI3(Cl) film,
where chlorine within a certain range of concentrations can
benefit charge carrier properties. Besides, the MAPbI3(Cl) film
shows longer PL lifetimes than that of the MAPbI3 film. This
improvement can be ascribed to the better crystallinity and a
lower defect density of the MAPbI3(Cl) film60.

To quantitatively evaluate the defect density, we fabricated
sandwich devices by inserting the perovskite films between FTO
and gold, and characterized the evolution of the space-charge-
limited current (SCLC) for different biases, as shown in Fig. 5d−i.
In general, the presence of mobile species in perovskite can lead
to complication in interpreting the SCLC measurement results,
and often precludes a robust quantitative analysis based on such
measurements. On the other hand, we observed low hysteresis on
the basis of J–V measurements, which indicates a negligible effect
of mobile species. Thus, in this case we can safely deduce defects
density (Nt) within perovskite films based on the SCLC
measurements according to the equation13,61:

Nt ¼
2εε0VTFL
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where ε and ε0 are the dielectric constants of perovskite and the
vacuum permittivity, respectively, VTFL is trap-filled limit voltage,
L is the thickness of the perovskite films, and e is the elementary
charge. We estimated the defect density to be 2.13×1015 and
2.51×1015 cm−3 for the 1.1-μm-thick MAPbI3(Cl) film and
MAPbI3 film, respectively, prepared by the HPbI3(Cl)/CH3NH2

method (Table 1). These defect density values are significantly
lower than antisolvent case (1.48×1017 cm−3). The similar
magnitude in terms of defects densities derived from the SCLC
measurements in contrast with the clear difference in terms of
lifetime derived from PL measurements is possibly due to the fact
that the former measurement gives the defect information in the
entire films, and the latter measurements only provides the defect
information for perovskite on the top or bottom of the film.
When the bias voltage further increases in the SCLC curves,

the current shows a linear relationship with the square of
the voltage, where we can deduce the mobility (μ) from the Mott
−Gurney law61:

JD ¼ 9εε0μV
2

8L3
;

The mobility are estimated to be 1.12 and 0.83 cm2 V−1 s−1 for
the 1.1-μm-thick MAPbI3(Cl) film and MAPbI3 film, respectively.
The much higher carrier conductivity is consistent with the
higher device performance of the MAPbI3(Cl) case, which again
verifies the positive effect of small content chlorine incorporation
on the optoelectronic properties of perovskite films. In addition,
these mobility values around 1 cm2 V−1 s−1 are two orders of
magnitude higher than that in antisolvent case (0.014 cm2V−1 s−1),
which further confirms the excellent charge carrier transport
properties of CH3NH2 gas-based perovskite films. The improved
carrier properties of the 1.1-μm-thick MAPbI3(Cl) films
when implemented into PSCs is also verified by impedance
spectroscopy characterization of devices under light illumination
(Table 1 Supplementary Fig. 24 and Supplementary Note 4).

Device stability and perovskite film stability. Operational sta-
bility is another key aspect of PSCs. We studied the stability of the
small size devices under the operation conditions (Fig. 6a). It was
found that the 1.1-μm-thick MAPbI3(Cl)-based devices showed
much better stability than the MAPbI3(AS) devices. Especially,
the MAPbI3(Cl) devices maintained over 90% of their initial
performance for 800 h under continuous light illumination with
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Table 1 The SCLC results for FTO/perovskite/Au devices
based on 1.1-μm-thick MAPbI3(Cl) and MAPbI3 films
prepared by HPbI3(Cl)/CH3NH2 method, and MAPbI3(AS)
film prepared by the antisolvent method

Samples Thickness
(μm)

VFTL (V) Nt (cm−3) μ (cm2 V−1 s−1)

MAPbI3(Cl) 1.1 0.73 2.13×1015 1.12
MAPbI3 1.1 0.86 2.51×1015 0.83
MAPbI3 (AS) 0.45 0.85 1.48×1017 0.014

VFTL, trap-filled limit voltage; Nt, defect density; μ, mobility

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06317-8

8 NATURE COMMUNICATIONS |  (2018) 9:3880 | DOI: 10.1038/s41467-018-06317-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


maximum power point tracking (MPPT). While the PCEs of the
MAPbI3(AS) devices decreased to 90% of their initial perfor-
mance after approximately 300 h. An initial increase of PCEs for
both samples is observed in the first 20 h of the stability test. A
similar phenomenon was also observed previously55,62, and was
ascribed to the effects such as elevated temperature (approxi-
mately 46 °C), light or field induced ion movement, light-induced
traps formation, interfacial charge accumulation55, or spiro-
OMeTAD conductivity variation63. In addition, both devices
showed a fast, exponential decay region after reaching the highest
performance points, which is followed by a slower linear decay64.
By fitting the linear region, the MAPbI3(Cl) devices exhibit a
linear slope of −0.0014% h−1, which is 30% slower than the
antisolvent case with a linear slope of −0.0020% h−1. Using these
slope values, it is expected to take 1660 and 870 h of operation to
reach the T80 points for MAPbI3(Cl) devices and the MAPbI3(AS)
devices, respectively. The nearly doubled T80 parameters for the
MAPbI3(Cl) devices suggests the excellent long-term stability of
the cells based on our Cl-incorporated thick films. Note that the
stability measurements in this study were conducted under
operation conditions, i.e., continuous illumination, MPPT, dry N2

gas environment simulating the case of encapsulation, and
therefore the results obtained here can be used as a realistic
indicator of the device operation lifetime of our PSCs. It should
be noted that all of the components in PSCs play an important
role in device stability. Considering that MAPbI3(Cl) devices and
MAPbI3(AS) devices are assembled using the same device con-
figuration, the impact of charge selective layers and electrode on
device stability can be excluded out. Hence, the significant sta-
bility difference between MAPbI3(Cl) devices and MAPbI3(AS)
devices is most likely caused by the quality of the perovskite films
such as crystallinity, grain size and/or defects, etc. 13,22,34.

To reveal the underlying mechanism responsible for the
improved stability, we prepared four kinds of films, i.e., film A:
1.1 μm MAPbI3(Cl) film prepared by the HPbI3(Cl)/CH3NH2

method; film B: 1.1 μm MAPbI3 film by the HPbI3/CH3NH2

method; film C: 0.5 μm MAPbI3(Cl) films prepared by the
HPbI3(Cl)/CH3NH2 method; film D: 0.45 μm MAPbI3(AS) films
prepared by the antisolvent method. We tested the stability of
these films under light illumination, a high relative humidity of
about 100% and gentle thermal environment of 50 °C (denoted as
LHT) as shown in Supplementary Fig. 25. It is found that that the
stability of these four films is in the order film A > film B > film C
> film D (Supplementary Figs. 25 to 28). The improved stability of
film A is firstly attributed to its improved grain crystallinity and
larger grain size, which can be clearly seen by comparing the XRD
peak intensity and full width half maximum of fresh film A with
fresh film D (Supplementary Fig. 28b, c and Supplementary
Note 5). This is because the ions in highly crystalline perovskite
films have higher chemical binding energies to prevent them-
selves from migrating, which benefits light and thermal
stability65. This is confirmed by SEM results shown in
Supplementary Fig. 29. We found that the decomposition of
perovskite mainly started from grain boundaries for all films after
1 h of LTH testing, where H2O and O2 can easily react with
perovskite films due to the facts that (1) chemical binding at grain
boundaries with low crystallinity is much weaker than that within
crystals and (2) the severe ion migration in low crystallinity
region especially at grain boundaries facilitates degradation
(Fig. 6b)65. When further comparing film A with film B, film A
shows better crystallinity, larger grain size, and also better
stability (Supplementary Figs. 26 to 30). In addition, better
stability of films A and B than thinner films C and D also verifies
that thicker films are more advantageous in achieving better
stability because the extra top layer of the compact high-quality
film in the thicker films naturally helps as a protection layer to

protect the film underlying the top layer. Besides, previous reports
have demonstrated that often a tiny amount of I2 existing in
perovskite films can cause severe degradation of perovskite13,66.
While, CH3NH2 used here provides an alkaline condition to
suppress the formation of I2 during the perovskite formation
process and/or reduce the I2 amount during the initial
degradation of iodine containing perovskite films (Fig. 6b and
Supplementary Fig. 28f), which may contribute to the better
stability of films A, B and C than film D13,66.

Discussion
A simple perovskite formation method based on fast reaction of
chlorine-incorporated HPbI3 and CH3NH2 has been developed to
fabricate high-quality, over 1 μm thick and stable
CH3NH3PbI3(Cl) perovskite films in ambient condition. The
resultant films can not only enable high efficiencies of 19.1 ± 0.4%
(champion PCE= 20.0%) for small size PSCs and 13.6 ± 0.8%
(champion active area PCE= 15.3%) for 5 cm × 5 cm perovskite
solar modules, but also deliver excellent device reproducibility. In
addition, the resultant un-encapsulated small size PSCs exhibit an
excellent T80 lifetime exceeding 1600 h under continuous light
illumination with MPPT in dry N2 environment. The excellent
device stability is mainly a result of the excellent films stability.
Our study not only provides a highly reproducible method to
fabricate PSCs and modules with enhanced efficiency and stabi-
lity, but also offers the in-depth understanding for the underlying
mechanisms responsible for device stability improvement. The
encouraging device performance and excellent stability in this
work points out to a promising direction, i.e., use of thick
absorber films to realize PSCs and modules with high efficiency,
reproducibility, and stability.

Methods
Materials. All reagents were used as received without further purification, including
PbI2 (99.99%, TCI), hydroiodic acid (57 wt% in H2O, distilled, stabilized, 99.95%,
Sigma-Aldrich), chlorobenzene (99.8%, Wako), methylamine (40% in methanol,
TCI), 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-
OMeTAD, Merck), N,N-dimethylformamide (DMF, 99.99%, Sigma-Aldrich),
methylammonium chloride (Wako), ethanol (Wako), HI (57%, Alfa Aesar), 4-tert-
butylpyridine (99.9%, Sigma-Aldrich), acetonitrile (99.9%, Sigma-Aldrich), titanium
diisopropoxide bis(acetylacetonate) (75 wt% in isopropanol, Sigma-Aldrich), n-butyl
alcohol (Sigma-Aldrich), FTO glasses (7−8 Ω sq−1, Opvtech.), TiO2 (DyeSol, 30
NR-D).

Synthesis of HPbI3: The HPbI3 crystals were prepared using an antisolvent
vapor-assisted crystallization method as shown in Supplementary Fig. 2. Briefly,
11 g PbI2 and 7 g of HI were mixed and dissolved in 17 g of DMF to form an HPbI3
solution. The HPbI3 solution was heated at 100 °C in chlorobenzene vapor
environment for 24 h. During this heat-treatment, chlorobenzene diffuses into the
HPbI3/DMF solution and reduces the solubility of HPbI3. Light yellow needle-like
HPbI3 crystals were formed, which were collected and washed with chlorobenzene/
DMF (volume ratio= 3:1) for three times and then washed with ethanol for three
times. Finally, the HPbI3 crystals were dried at 60 °C for 24 h under vacuum.

Fabrication of perovskite films and solar cells. To study the dependence of the
film thickness on preparation conditions, the HPbI3 films are obtained by spin-
coating HPbI3 precursor (60 wt% HPbI3 in DMF) at 5000 rpm for 30 s on sub-
strates under different temperatures (room temperature, 60, 70, 80, 90, 100 °C) in
ambient air condition. For chlorine-incorporated perovskite deposition, the pre-
cursor solutions containing different molar ratios of MACl/HPbI3 (0, 0.05, 0.10,
0.15, 0.20, 0.40, 0.70, 1.00) are deposited on substrates preheated at 90 °C at 5000
rpm for 30 s. After thermal annealing at 100 °C for 5 min to remove the solvent,
part of the MACl and also part or all of the formed HI during this process, the
obtained films react with CH3NH2 gas to form perovskite20,22. Then the obtained
perovskite films are annealed at 100 °C for 5 min in ambient air condition before
device fabrication or other characterization. A 30 μL of spiro-OMeTAD was spin
coated on the perovskite film at 3000 rpm for 30 s, where a spiro-OMeTAD/
chlorobenzene (72.3 mg mL−1) solution was employed with the addition of 17.5 μL
Li-TFSI/acetonitrile (520 mgmL−1), and 28.8 μL 4-tert-butylpyridine. Finally, a
gold layer with a thickness of 100 nm was deposited as the counter electrode on the
top of spiro-OMeTAD layer through shadow masks via thermal evaporation under
high vacuum (5×10−5 Torr).
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Characterization. Current–voltage (J–V) characteristics of PSCs are measured
under one sun illumination (AM 1.5 G, 100 mW cm−2, calibrated using a Newport
reference Si-cell, Oriel Instruments Model Number 90026564, 2 × 2 cm2) using a
solar simulator (Newport Oriel Sol 1A, Xenon-lamp, USHIO, UXL-150SO) and a
Keithley 2400 source meter in ambient air at about 25 oC and a relative humidity of
about 40−60%. The small size PSCs were measured using a 0.1 cm2 metal mask.
No mask is used for measurement of perovskite modules. The active area of per-
ovskite modules is 12.0 cm2, determined by the overlap areas of top and bottom
electrodes described in our previous publication46. All the J−V curves are mea-
sured under reverse scan with a scan rate of 0.25 V s−1 without preconditioning
unless otherwise specified. For stability measurements, the cells were subsequently
loaded in our home-designed environmental chamber coupled with a solar
simulator (Peccell PEC-L01, AM1.5G) and source meter (Keithley 2401) controlled
by a LabView program allowing automatic sequential measurements on the devices
with adjustable acquisition time intervals. To simulate continuous solar cell
operation an active bias voltage was applied to the cells maintaining the solar cell
operation at the maximum power point. The devices were kept at the maximum
power output voltage during the intervals between consecutive measurements. No
UV-filters were used, i.e., the UV component is included in illumination. The
stability measurement was performed under nitrogen box with a relative humidity
below 5%. EQE measurements were performed on an Oriel IQE 200 in DC mode.

SEM measurements was carried out in scanning electron microscope (Helios
NanoLab G3 UC, FEI). XRD measurements were carried out in a Bruker D8
Discover instrument (Bruker AXS GmbH, Karlsruhe, Germany) equipped with Cu
wavelength λ= 1.54 Å X-ray source operated at 1600W and Goebel mirror. Data
were collected from 5 to 60 two theta degrees with a 0.02 degrees step.
Experimental data were fitted to obtain unit cell phase parameters using the Profex/
BGMN software (v.3.12.0, http://profex.doebelin.org/). TRPL was acquired using
the time-correlated, single-photon counting technique (Hamamatsu, C10627), and
excitation was provided by a femtosecond mode-locked Ti:sapphire laser (Spectra-
Physics, MAITAI XF-IMW) at 450 nm with an average power at 8 MHz of 0.74
mW. In TRPL, perovskite films were covered with PMMA on the top of the
perovskite layer to exclude/minimize the influence of ambient air (especially the
influence from H2O and O2)67–70. SIMS (Kratos Axis ULTRA) equipped with
quadrupole mass spectrometer (HAL 7, Hiden Analytical) was used to collect the
elemental signal in positive ion detection mode (PID). For sputtering in SIMS, 3
keV Ar+ primary beam with a 10 mA current and diameter of 100 µm were
utilized. The beam was set at an angle of 45° with respect to the sample surface
normal. The spectrometer was operated at a pressure of 10−8 Torr. The c-AFM
measurement of the films was performed in contact-mode (MFP-3D series, Asylum
Research) in ambient conditions (35% RH, 22 °C). Top side illumination was
generated with a halogen lamp. Chromium/platinum-coated cantilevers with a
nominal spring constant of 0.2 Nm−1 were used to collect the photo-generated
currents. The SCLC data were collected with a semiconductor characterization
system in N2 (4200-SCS, Keithley). Absorbance was measured using a UV−Vis
spectrometer (JASCO Inc., V-670). Impedance Spectroscopy measurements had
been recorded with an Autolab PGSTAT204 potentiostat equipped with a
frequency response analyzer module FRA32, AC perturbation was set to 10 mV
and frequency ranged between 1MHz to 0.5 Hz. The measurements were done in
N2 environment with less than 0.1% relative humidity, and Oriel VeraSol-2class
AAALED light source simulating AM 1.5 spectra.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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