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Herein we introduce a high-throughput method, INTERFACE, to reveal the capacity of con-

tiguous RNA nucleotides to establish in vivo intermolecular RNA interactions for the purpose

of functional characterization of intracellular RNA. INTERFACE enables simultaneous

accessibility interrogation of an unlimited number of regions by coupling regional hybridi-

zation detection to transcription elongation outputs measurable by RNA-seq. We profile over

900 RNA interfaces in 71 validated, but largely mechanistically under-characterized,

Escherichia coli sRNAs in the presence and absence of a global regulator, Hfq, and find that

two-thirds of tested sRNAs feature Hfq-dependent regions. Further, we identify in vivo

hybridization patterns that hallmark functional regions to uncover mRNA targets. In this way,

we biochemically validate 25 mRNA targets, many of which are not captured by typically

tested, top-ranked computational predictions. We additionally discover direct mRNA binding

activity within the GlmY terminator, highlighting the information value of high-throughput

RNA accessibility data.
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Bacterial small regulatory RNAs (sRNAs) constitute a dis-
tinctive class of RNAs that possess intrinsic roles in cellular
regulation1,2. To respond to environmental stress, sRNAs

tune metabolic and regulatory pathways, typically by altering
messenger RNA (mRNA) translation or stability via direct
association3,4. To date, a relatively small proportion of confirmed
sRNAs (e.g., >100 in E. coli5,6, >70 in M. tuberculosis7, >40 in the
non-pathogenic M. smegmatis7,8) have been mechanistically
characterized (e.g., <20 in E. coli)5. The challenges of functional
sRNA characterization can be partly attributed to specific char-
acteristics such as: regulation of targets in trans, regulation of
multiple targets per sRNA, and relatively small regulatory
regions2 (10–25 nt9 with 8–9 nt10 of imperfect complementary).
sRNA interactions are initiated via seed sequences of pairing
regions that canonically reside in single-stranded (unstructured)
sequences or in hairpin apical loops, typically located in the first
2/3 of sRNA sequences1. In recent years, computational target
prediction programs have incorporated various facets of sRNA
regulation, including seed parameters11, to offer thousands of
putative bacterial sRNA:mRNA pairs; however, only a small set
has been successfully validated in vivo2. This can be attributed to
true targets (energetically) ranking well into the hundreds of
predicted targets in popular algorithms12 coupled with the
demanding nature of traditional partner validation assays (i.e.,
each potential sRNA:mRNA interaction is tested one at a time).

Another confounding factor hindering sRNA characterization
is the regulatory impact of the Hfq chaperone, an Sm-protein
known to affect sRNA:mRNA interactions. The extent to which
Hfq globally impacts the ability of all sRNAs to establish inter-
actions with cognate mRNA targets is a fundamental question
concerning intracellular proteins’ effects on sRNA networks.
Because its intracellular quantity is limited, sRNAs are in constant
competition for Hfq and are likely cycled off of Hfq once they
have established stable base pairing with an mRNA target13,14.
Many mechanistic details of the Hfq-binding RNA sequence have
been well-studied, uncovering characteristic binding motifs and
interaction mechanisms, such as its ability to recognize a number
of sRNA Rho-independent terminators13,15. However, the
mechanistic necessity of Hfq for proper RNA interactions
remains elusive due to a combination of factors, such as under-
realized insights into the hierarchy of Hfq-sRNA regulation15,
cross-regulation of sRNAs by other putative chaperones, such as
ProQ16, absence or limited function of Hfq homologues within
GC-rich Gram-positive bacteria17, and variable roles of Hfq on
different sRNA:mRNA pairs14,15. Thus far, it has been proposed
that sRNAs rely on Hfq to increase local concentrations of sRNA
and respective target mRNA18,19, stabilize interaction partners,
facilitate base pairing catalysis by structural rearrangement13,15 or
present some combination thereof, depending on the target
mRNA3.

In recognition of the need for high-throughput mechanistic
sRNA insights in vivo, recent efforts have unveiled large sets of
RNA:protein and RNA:RNA interactions and even corresponding
interacting regions20–24. However, these methods are somewhat
limited by requisite targeting toward a single protein binding
partner of interest24,25, as well as by difficulties sensing interac-
tions involving low-abundance non-coding RNAs23. To this end,
efforts have recently been made to complement computational
predictions with in vivo insights to enhance prediction reliability.
For example, in vivo chemical and enzymatic probing methods
gauge the level of “protection” or reactivity of individual bases/
backbones within a region of interest, and have recently been
adapted for high-throughput use26,27. As these local nucleotide
availabilities do not always correlate with regional-level accessi-
bility that more accurately mimics RNA:RNA interactions of
regulatory interfaces28, efforts have also been placed on methods

to quantify regional in vivo RNA hybridization. Corresponding
datasets have yielded useful predictions of regions capable of
establishing RNA:RNA interactions28. Nonetheless, acquisition of
these data is typically limited by low-throughput experiments28,29

and reliance on sRNA overexpression that disturbs native tran-
script or protein stoichiometry30. As such, there remains a need
for high-throughput methods to identify characteristic features of
RNA regions that are likely to engage in regulatory interactions
with respective mRNA targets.

To obtain molecular insight concerning global RNA function
in vivo, we developed INTERFACE, in vivo transcriptional elon-
gation analyzed by RNA-seq for functional accessibility character-
ization in a single experiment. INTERFACE is a high-throughput
method capable of surveying the regional accessibility of a large
collection of RNAs simultaneously by mimicking in vivo antisense
hybridization. In vivo antisense hybridization has previously been
shown to be sensitive to sites involved in intermolecular interactions
and to capture transient configurations often relevant to
regulation28,31. INTERFACE is an engineered RNA system that
exploits conserved bacterial mechanisms of translational stalling
and Rho-dependent transcription termination mechanisms to
quantify RNA hybridization via a transcriptional elongation
response. In this work, we apply machine learning to design over
900 antisense oligonucleotide probes to interrogate the accessibility
of regions fully covering a library of 71 experimentally validated
sRNAs in E. coli in their native environment. These sRNAs
represent two distinct subclasses: mechanistically characterized
sRNAs, meaning that exact binding sites corresponding to at least
one mRNA target have been confirmed (27 total sRNAs, of which
16 are used as a training set and the remaining 11 are probed
blindly), and mechanistically uncharacterized sRNAs (44 total)
(Supplementary Data 1). To demonstrate the ability of INTER-
FACE to capture global impacts of relevant intracellular factors on
sRNA accessibility landscapes, we assess sRNA accessibility profiles
both in wild-type E. coli BW25113 and in an isogenic strain in
which the well-characterized Hfq chaperone is knocked out32. In
this way, we propose hybridization dependency or independency
for 14 sRNAs whose relationship with Hfq is not characterized in
the literature. We also identify a global pattern of either “extreme”
low or high likelihood for antisense RNA (asRNA) hybridization in
regions harboring mapped mRNA-binding sites in 16 well-
characterized sRNAs that comprise our training set. This infor-
mation enables identification of likely functional sites in other
sRNAs to serve as “in vivo filters” of computational predictions11 to
identify true mRNA targets in vivo. Upon benchmarking the value
of these “INTERFACE-informed” computational predictions
against typically tested, top-ranked predictions via in vitro binding
assays, we confirm thirteen novel mRNA targets for three
uncharacterized sRNAs (SroE, SroG, Tpke70). Of these validated
targets, six correspond exclusively to INTERFACE-informed com-
putational predictions, one exclusively to top-ranked computational
predictions, and six are shared by both approaches. We additionally
confirm twelve INTERFACE-informed targets in six sRNAs that
represent both uncharacterized and characterized sRNAs (SroH/
Tpke11/SroA, and CyaR/GcvB/GlmY, respectively), of which half
fall below the top-20 in computation prediction ranking. Finally, we
showcase a trans antisense regulatory potential within the GlmY
terminator as suggested by INTERFACE accessibility data; to our
knowledge, GlmY has only been implicated in indirect mRNA
regulation via RapZ protein sequestration33.

Results
Enabling high-throughput RNA accessibility characterization.
Assessment of hybridization potential has proven informative in
identifying RNA interfaces accessible to RNA:RNA interactions
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but has previously been limited to low-throughput
approaches28,31. To allow large-scale identification of accessible
RNA interfaces via next generation sequencing (NGS), we con-
structed a system that harnesses transcriptional regulation by
coupling in vivo asRNA:RNA hybridization to transcription
elongation control. In short, this approach allows sensing of
molecular interactions between an asRNA toehold-switch “probe”
(encoded by a plasmid-based expression system) and a com-
plementary region in a target RNA (taRNA) by virtue of
hybridization-activated transcription anti-termination (described
below). The anti-termination output was inspired by trp operon
attenuation34 that was previously used to synthetically convert
translational to transcriptional control in bacteria35. In this
engineered system, differential transcriptional elongation, quan-
tified via RNA-seq, is a direct function of the propensity for a
taRNA region to interact with a corresponding asRNA probe.
Short and long transcripts indicate low and high asRNA probe
hybridization in a targeted region, respectively.

The inducible system is composed of five main elements that
together enable transcription elongation in response to asRNA
probe:taRNA hybridization (Fig. 1a). (i) The asRNA probe is a
variable length sequence (9–26 nt) complementary to a region of
interest within the taRNA. Downstream of the asRNA probe is
(ii) the ribosomal binding site sequestration element (RSE) and
(iii) a strong ribosomal binding site (RBS). These three elements
can form a structure reminiscent of a toehold-switched hairpin
loop36, in which the asRNA probe is the toehold and the RSE and
RBS form the hairpin. This is followed by (iv) the elongation
switch (ES), which consists of a tnaC (trp attenuator) leader
peptide nucleotide sequence followed by a Rho utilization (rut)
transcription termination site. Finally, located directly down-
stream is (v) the RNA elongation reporter (RER), consisting of a
truncated GFP coding sequence that supports maximum possible
transcript lengths. If a taRNA region is accessible to the asRNA
probe, elongated transcripts are generated. This output is
stimulated by successful binding of the probe to its target region,
which disrupts the hairpin loop structure and enables translation
of the tnaC leader peptide preceding the rut site (Fig. 1b, left). In
the presence of tryptophan, the tnaC leader peptide induces
nascent polypeptide-mediated ribosome stalling which occludes
the rut37. Due to rut occlusion, the Rho protein cannot efficiently
terminate transcription and allows extended transcriptional
elongation into the RER. Conversely, if asRNA probe hybridiza-
tion with its target region is not established due to inaccessibility
of the taRNA region, truncated, or partial transcripts are
produced. This occurs because the toehold hairpin is not
switched open and tnaC translation is not initiated (Fig. 1b,
right); thus, the rut site remains available to the Rho factor and
routine transcription termination occurs. Because a unique probe
sequence (corresponding to a unique taRNA region) is incorpo-
rated within each INTERFACE transcript, NGS results not only
contain information pertaining to transcript length, indicative of
taRNA region accessibility, but also a unique sequence identifier
of the corresponding target region. Although this sequence
identifier is reminiscent of barcoding approaches that have been
used in genome-wide RNA structure probing methods, this
system yields specific, “bar-coded” outputs for each interrogated
taRNA region, rather than variable RNA-specific fragment
outputs26. In this way, INTERFACE supports the simultaneous
characterization of regional accessibility profiles within any
number of RNAs.

As shown in Fig. 1c, the implementation of INTERFACE in
RNA characterization consists of seven main steps: (i) plasmid
library preparation and generation, (ii) library transformation,
(iii) polyclonal culture growth and INTERFACE plasmid
induction, (iv) total RNA extraction (v) cDNA library generation,

(vi) RNA-seq, and (vii) downstream data analysis. Specifically, a
library of asRNA probes—each of which is an 9–26 nt long
asRNA oligonucleotide complementary to a specific taRNA
region is individually inserted into the desired INTERFACE
plasmid (Supplementary Fig. 1). The pool of plasmids is
transformed as a library into the relevant bacterial strain (in this
case E. coli) and the system induced in early log growth. Once a
user-specified growth phase is reached, total RNA is extracted
from the library culture, and a cDNA library is generated for deep
sequence analysis. Importantly, fragmentation of RNA is omitted
to preserve the ability to correctly assign a 3′-end to the
corresponding 5′-end of each transcript and reliably identify the
extent of transcriptional elongation for each transcript (based on
the taRNA to which the distinct asRNA probe hybridized).
Following cDNA purification, samples are sequenced using a
standard paired-end Illumina-platform protocol. Finally, corre-
sponding forward and reverse RNA-seq reads are paired and
filtered for INTERFACE transcripts corresponding to distinct
asRNA probes; asRNA probe-specific transcriptional elongation
can then be correlated with the accessibility of respective taRNA
regions.

Validating molecular features that enable INTERFACE. Three
basic mechanistic premises enable INTERFACE to capture
regional accessibility: (1) asRNA probe binding to a corre-
sponding taRNA region disrupts the stem loop to expose the RBS,
(2) RBS exposure governs transcriptional elongation of the
INTERFACE RNA system, and (3) elongation patterns are
dependent on the elongation switch and are reliable indicators of
regional accessibility. First, asRNA probe hybridization to its
taRNA region has been previously verified to expose the RBS
using a low-throughput, fluorescence-based asRNA hybridization
assay31. Second, we confirmed that RBS exposure governs tran-
scriptional elongation by designing two control INTERFACE
constructs to represent the extremes within the spectrum of RBS
exposure: (i) a permanently sequestered RBS (RSE stably
sequesters RBS due to enhanced complementarity) and (ii) a
permanently opened RBS (RSE is mutated to expose the RBS).
Both constructs contained identical, random asRNA probes
predicted to have limited interaction with the transcriptome.
From NGS data, we observed three major transcript length peaks
present at different loci of the INTERFACE transcript (Fig. 2a):
(i) ~80 nt, terminating within the ES sequence (specifically tnaC),
(ii) ~140 nt, terminating at the end of the rut terminator and (iii)
~200 nt, terminating at an RER position that denotes the full
extent of transcriptional elongation. Consistent with expectations,
the sequestered RBS and the open RBS controls exhibited partial
(terminating at tnaC) and full (terminating in RER) transcript
lengths, respectively (Fig. 2a).

Third, to test the dependency of differential transcriptional
elongation on the elongation switch, we assayed the hybridization
capacity of well-characterized regions31 along the model Tetra-
hymena group I (gI) intron taRNA in vivo using an INTERFACE
plasmid that supports taRNA overexpression (O-INTERFACE,
Supplementary Fig. 1A). Figure 2b shows representative INTER-
FACE probing results for two regions within this model RNA,
one highly inaccessible and one highly accessible (nucleotides
361-375 and 399-414, respectively), as previously reported using a
low-throughput assay31. Importantly, we observed the expected
shift toward longer transcripts for the taRNA region of the gI
intron most accessible to its corresponding asRNA probe, but
only in the presence of both the ES and the taRNA (Fig. 2b).
Moreover, this bias toward larger transcript sizes was absent from
transcriptomic data when probing the highly inaccessible region
(Fig. 2b, compare upper and lower right panels).
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To evaluate the expected high-throughput potential of this
approach, we fully characterized the gI intron in a single in vivo
experiment via transcriptomics analysis of an O-INTERFACE
plasmid library targeting 30 unique regions within the gI intron
(in a combination of 10-mer and 16-mer probe sequences for
100% coverage) (Fig. 2c, Supplementary Fig. 2). The regional
accessibility results from these 30 asRNA probes are consistent

with evidence from previous studies31, validating the ability of
this method to assess hybridization accessibilities in a high-
throughput manner via NGS.

Functional regions of a native sRNA ensemble revealed. To
assess universal molecular features of sRNAs that contribute to
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accessible surfaces for in vivo interactions, we designed a large-
scale INTERFACE experiment to collectively characterize acces-
sible interfaces within a native library of 71 experimentally vali-
dated sRNAs5,6. taRNA region sequences were selected for in vivo
accessibility probing by coupling an established biophysical

model of asRNA:RNA hybridization28 to a machine-learning
algorithm (Fig. 3a). This approach simultaneously minimizes
experimental effort and maximizes information recovery
regarding sRNA interfaces likely to form intermolecular interac-
tions (assumed as highly accessible regions)28,31. Briefly, the

RNA accessibility
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Fig. 2 INTERFACE supports high-throughput characterization of hybridization landscapes. a RBS exposure influences transcriptional elongation. The
sequestered RBS control, expected to prevent initiation of tnaC translation and allow Rho-dependent transcription termination (top left), shows shorter
transcriptional elongation (gray) than the free RBS control (black), expected to allow tnaC translation to cause ribosomal stalling and prevent Rho
termination (bottom left). Traces depict the weighted average of the length per read calculated from RNA-seq results. Landmarks of the INTERFACE
transcript are indicated. b The inclusion of the Elongation Switch (ES) enables accessibility-correlated differential transcriptional elongation. Two previously
characterized probes, one inaccessible and one accessible31, were tested in the presence and absence of the group I intron (black and gray, respectively),
without and with the ES (left and right, respectively). c INTERFACE is capable of fully characterizing accessibility of an ensemble of RNA regions in a single
experiment. Probes targeting gI intron regions alternating between 10 and 16 nucleotides were designed and tested. The level of accessibility per region is
indicated according to the color scale below. It is interesting to note that, in contrast to chemical footprinting data typical of gI introns77, complementary
sides of stem-loops can exhibit accessibility differences (cf. region 9 and 13). Although discrepancies between accessibility and footprinting methods have
been previously recognized31, this observation supports a heightened sensitivity of accessibility probes to spatial arrangement of the taRNA

Fig. 1 Elements, utility, and complete protocol of INTERFACE. a Moving from 5′ to 3′, each INTERFACE is composed of a unique asRNA probe, followed by
the RSE, then the ES, comprised of tnaC and the rut site, and then the RER (a truncated gfp gene). INTERFACE can adopt two distinct RNA conformations
depending on asRNA probe:taRNA region binding that determines the exposure of the RBS upstream of the ES: (i) a structured hairpin in which the RBS is
occluded and (ii) an unstructured domain in which the RBS is exposed. bWhen targeting an accessible region (left panel), the INTERFACE asRNA probe ‘X’
binds strongly, releasing the RBS for tnaC translation. Translation of tnaC causes ribosomal stalling near the rut. The stalled ribosome physically occludes
the Rho factor from the rut site which enables transcriptional elongation. In contrast, INTERFACE targeting of an inaccessible RNA region with asRNA probe
‘Y’ (right panel) generates a truncated transcript. Specifically, the absence of tnaC expression due to lack of binding between the asRNA probe and the
taRNA enables rut site availability for Rho-dependent transcriptional termination. c (i) A library of asRNA probes is inserted into either of two parent
plasmids (Supplementary Fig. 1). (ii) The library is transformed into the relevant experimental strain as described in Methods section. (iii) The INTERFACE
system is induced and the library of asRNA probes interact with corresponding taRNA regions in vivo to varying degrees, generating a spectrum of
transcript lengths bar-coded with the probe sequence at the 5′-end. (iv) Total RNA, including transcripts of interest containing corresponding probes
(green and orange 5′-ends circled in red), is extracted. (v) A cDNA library for Illumina-platform RNA-seq is generated, in which INTERFACE RNA is among
the pool of adapter-ligated RNA and consequently in the final cDNA library (red). (vi) RNA-seq is performed per standard procedures in a paired-end 75 ×
2 run in the Illumina platform. (vii) Mapping against synthetic INTERFACE library is performed to exclude non-INTERFACE transcripts and associate
corresponding 3′-ends (R2) to 5′-ends (R1) to determine the length of each region-specific INTERFACE transcript
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predicted accessibilities of ~70,000 randomly selected potential
target regions (9–16 nt in length) along the 71 chosen sRNAs
(Supplementary Data 1) were evaluated using an adapted version
of a previously developed biophysical model (Methods)28. Pre-
dictions were fed to an algorithm known as sparse knowledge

gradient (SpKG)38,39 that is capable of delivering experimental
suggestions based on value-of-information analysis40. Ultimately,
the top 1.5% of SpKG-ranked regions (~970 sequences across all
71 RNAs), fulfilling the constraints of minimal overlap and full
coverage, were chosen for INTERFACE accessibility probing to
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Fig. 3 INTERFACE investigation supports identification of binding site features in an ensemble of native sRNAs. aWorkflow for machine-learning algorithm
to select for accessible interfaces. Machine-learning methodologies modified for batch use were coupled to a biophysical model to select for potentially
accessible regions, a consideration previously shown important to successful interactions12, 28, in a large ensemble of E. coli sRNAs. Given RNA sequence
only, the biophysical model predicts the accessibility of all possible regions. Regions of interest are selected via the machine learning algorithm, based on
value of information analysis, to minimize experimental effort and meet specified optimization constraints. b The accessibility of all regions evaluated via
INTERFACE, both chosen by the machine learning algorithm and deliberately designed to target previously mapped exact binding sites, are shown with
respect to sRNA location for the pool of 16 well-characterized sRNAs within the ensemble (length and known stress response are indicated in the title).
“-E” is listed following regions corresponding to exact mapped mRNA-binding sites that make up our exact binding site training set. The names of target
mRNAs are listed beside regions that are fully contained within known binding sites (and, in the case of multiple targets, numbers corresponding to the
number of mRNAs known to establish base pairs with said region). Exact binding site mRNA labels are followed by “..” if the region is also fully contained
within other experimentally confirmed interactions (Supplementary Data 1). Interestingly, exact mapped binding sites tend toward the extreme thirds of
accessibility and tend away from extreme 3′ positions—interactions past the first 80% of the sequence are only seen in sRNAs GlmZ, RprA, and McaS.
Colors indicate the highest experimental validation (ranked as: mutational analysis, reporter assay, sRNA deletion). Shapes indicate the mechanism of
sRNA regulation of mRNA expression. In the case that a region contains binding segments for multiple mRNAs, the mechanism corresponding to an exact
mapped binding site is listed (“-E” in legend)
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obtain accessibility landscapes of the sRNA ensemble (Supple-
mentary Data 2, Supplementary Fig. 3). Simulated comparisons
showed that the combination of the biophysical model with SpKG
reduced our experimental INTERFACE profiling efforts (Sup-
plementary Fig. 4).

To apply INTERFACE to describe accessibility patterns of
functional sRNA regions, we also deliberately selected ~40
regions previously mapped to sRNA:mRNA interactions in our
training set of 16 well-characterized sRNAs for INTERFACE
probing. These regions, termed “exact binding regions” are
contiguous nucleotides previously confirmed to host interactions
with specific mRNA targets (Supplementary Data 1). We
hypothesized that these previously mapped binding sites would
either be actively bound by a cellular target (appearing lowly
accessible to INTERFACE asRNA probing) or unoccupied by a
target and thus highly available for binding (appearing highly
accessible to INTERFACE asRNA probing). Upon performing
and analyzing results of the INTERFACE experiment, a
comparison of proportions test confirmed that exact binding
regions (38) (Fig. 3b) exhibited a significantly increased
proportion in top 25% accessibility “extremities” (<0.125 or
>0.875 on a 0–1 scale) compared to regions of these same sRNAs
selected for INTERFACE probing by the machine learning
algorithm only (179 regions) (P-value <0.1, N-1 χ2-test) (Fig. 3b).
Furthermore, as expected based on prior observations41, most of
these experimentally validated sRNA sites within our training set
host mRNA interactions towards their 5′-end (Fig. 3b). The
exclusion of 3′-sRNA interactions may reflect the role of the Hfq
chaperone Sm-protein in binding near the 3′-end (Rho-
independent terminator and poly-U tail)42, a model of regulation
recently supported by ligation and sequencing approaches (RIL-
seq)25.

INTERFACE data informs computational target mRNA pre-
diction. Based on trends in accessibility and position observed for
known functional sRNA interfaces in the 16 well-characterized
sRNAs (Fig. 3b), we anticipated that high-throughput INTER-
FACE data could support identification of functionally relevant
regions within mechanistically uncharacterized sRNAs. As a
proof of concept, we also identified regions exhibiting extreme
accessibility in the 5′-end of well-characterized sRNAs that were
excluded from our training set (e.g., IstR, MicL/RyeF, and RydC).
Notably, many of the selected regions align with confirmed
mRNA binding sites (Supplementary Data 1, Supplementary
Fig. 3). We therefore hypothesized that experimentally deter-
mined regional accessibility by INTERFACE could be coupled to
computational sRNA:mRNA predictions to identify mRNA tar-
gets that are most relevant to in vivo functionality. This approach
is motivated by the inability of even the best-performing com-
putational thermodynamic prediction algorithms, such as
CopraRNA and IntaRNA, to account for the intracellular envir-
onment; this shortcoming often leads to low ranking of true
targets (below hundreds of predicted pairings) as well as high
rankings (i.e., those within the top 10 predictions) that do not
correspond to any experimentally confirmed targets12. To aid
identification of most-likely true targets, we propose a pipeline
that begins with the identification of likely functional RNA
regions from INTERFACE accessibility data (Fig. 4a), based on
extreme (high or low) accessibility and location in the RNA.
These functional regions can then be used as guides to filter
results of computational sRNA target predictions, to obtain a
reduced list of computational targets (Fig. 4a, left of table).
Importantly, the filtered list includes targets of any computed
energy rank, as long as their predicted sRNA binding region was
found to exhibit extreme accessibility in vivo by INTERFACE.

To benchmark this approach, we first considered three
representative uncharacterized sRNAs (SroE43, SroG43, and
Tpke7044) for interaction validation by in vitro electrophoretic
mobility shift assays (EMSAs) (Supplementary Data 3). These
sRNAs exemplify a variety of length, hybridization profiles, and
reported Hfq dependencies (Supplementary Data 1). Taking
extreme accessibility and position (5′ and 3′ ends) as a signature
of functional sRNA interfaces, up to three representative likely
functional regions were identified for each sRNA (Methods)
(Fig. 4b). Notably, we considered functional regions in the 3′
position to include sRNAs whose characterization has likely been
limited by an inability to co-immunoprecipitate with Hfq (ie.
Tpke7045). In cases in which an sRNA region’s likelihood of being
a functional interface was ambiguous based on accessibilities, we
paired the accessibility signature with the YUNR motif previously
identified as characteristic of asRNA:RNA recognition46 (Meth-
ods). INTERFACE-informed mRNA targets were then selected as
those within the top 100 IntaRNA mRNA target predictions11

whose predicted interaction relied on at least five nucleotides of
the likely functional sRNA region (Methods). IntaRNA11 was
selected for computational predictions as it offers high accuracy
without requiring homology information12. We benchmarked
INTERFACE-informed predictions against conventional methods
of putative target selection for validation (e.g., selection of the
top-ranked computational targets) (Fig. 4a) (Supplementary
Data 3). All mRNA targets considered for experimental validation
were additionally subject to in vivo expression constraints
(Methods) in which we excluded mRNA candidates whose
predicted sRNA binding site was not expressed in previously
performed transcriptomics studies47.

Upon biochemical experimentation (EMSA) of predicted
targets, we found that positive predictive values (PPVs) of
INTERFACE-informed and top-ranked computational predic-
tions for each sRNA are comparable, but positive mRNA targets
added by INTERFACE-informed predictions are often low-
ranking in IntaRNA predictions, and thus have low chances of
being further considered as true targets in the absence of other
experimental data (Fig. 4c, rank indicated by dotted lines). The
ability of the INTERFACE-informed approach to capture
computationally lowly ranked true mRNA targets is best
exemplified in the case of SroG sRNA (Fig. 4c, Table 1).
Specifically, in addition to the top-ranked targets suggested by
IntaRNA, INTERFACE-informed selections also capture true
mRNA targets ranking as low as 64/100, 75/100, and 76/100
(Fig. 4C, Table 1). Positive binding EMSAs and predicted
interactions of all validated sRNA:mRNA pairs for these sRNAs
are illustrated in Fig. 5. We also tested the use of INTERFACE-
informed predictions to identify targets for three other under-
characterized sRNAs, SroA, SroH, and Tpke11, confirming rhtA
and rplK for SroA, kbl for SroH and three targets (pgsA, prlC,
yehU) for Tpke11 (Supplementary Data 3 and Supplementary
Fig. 5). Finally, we evaluated whether INTERFACE could
identify new targets in well-characterized sRNAs by suggesting
regions of extreme accessibility not already implicated in
known target binding. As an example, we observed extreme
accessibility in CyaR and GcvB (CyaR-13 and GcvB-21,
respectively, Supplementary Data 2, Supplementary Fig. 3),
which are outside of previously characterized binding regions
(Supplementary Data 1). Importantly, using these regions to
inform computational predictions (Methods), we confirmed
additional targets zapC for CyaR and thrL (previously validated
as an in vivo target of the Salmonella GcvB homologue48) and
gadX for GcvB (Supplementary Fig. 5, Supplementary Data 3).
Interestingly, both gadX and GcvB are known contributors to
acid resistance but their function has not previously been
coupled in vivo49.
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INTERFACE uncovers regulation at the GlmY terminator.
Upon analysis of sRNA profiles, we noticed a unique pattern in
GlmY, in which accessibility drastically increases in the termi-
nator region (Fig. 6a). In light of the possibility of these regions
being regulatory, we collected top 100 IntaRNA predictions
corresponding to the full sRNA sequence based on overlap with
the accessible terminator regions. We additionally evaluated
predictions obtained by inputting the accessible portion of the
terminator region alone as the query RNA, given our suspicion
that predicted interactions involving the terminator would not be
well-represented given strong terminator structures. Of seven
total in vitro-tested targets, we observed strong binding of GlmY
to two zinc-binding mRNAs, add and yphC50 (Fig. 6b); of these,
one was computationally predicted using the entire GlmY
sequence as the query input. Importantly, we confirmed
terminator-dependent binding of these confirmed targets (Fig. 6c)
via EMSAs in the presence and absence of the terminator region
(Fig. 6c, Supplementary Data 3). Given that GlmY has only been
implicated in sequestration of the RapZ protein33, this is the first
report of GlmY engaging in direct RNA:RNA interaction.

Notably, regulatory sRNA:mRNA base-pairing involving sRNA
terminators has been observed51,52, but remains an uncommon
mechanism in the literature. It is worth noting that we did not
find any dependence on the presence of the terminator region for
target binding in the cases of CyaR and GcvB, despite the fact that
these newly uncovered targets were also predicted to bind ter-
minator regions (Supplementary Fig. 5).

Hfq selectively impacts sRNA accessibility landscapes. The
INTERFACE accessibility of all regions within the 71 sRNAs was
additionally evaluated in an isogenic BW25113 Hfq-knockout
strain (JW4130-132) to evaluate the global impact of Hfq on
regional hybridization within a library of sRNAs in their native
intracellular context (Supplementary Data 2). These results were
analyzed relative to the accessibility profiles of these sRNAs in the
wild type strain (in the presence of Hfq). Based on earlier lit-
erature reports, the 71 sRNAs represent 39 Hfq-dependent RNAs
(with less than half mechanistically well-understood), and 13
Hfq-independent RNAs, with the remainder of the sRNAs
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regions are chosen as those that exhibit accessibility values within extremes chosen for benchmarking (>0.75 or <0.25), 5′- or 3′-end position, and, in rare
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mRNA target interactions within top 100 computational predictions that involve the likely functional regions are listed beside the corresponding region.
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informed v. top-ranked). For SroE, one mRNA target from the INTERFACE-informed group (ranking 46/100 in IntaRNA predictions) was confirmed via
EMSA, although none of the top-ranked IntaRNA predicted targets tested (within top 12/100) exhibit sRNA binding (Supplementary Fig. 5). For SroG,
INTERFACE correctly pinpoints a region implicated in many of the top predictions (Fig. 3b), further giving confidence to these as true partners, and also
pinpoints lowly ranked targets via the two proposed functional regions at the 5′-end (Fig. 3b). Finally, considerable overlap between INTERFACE-informed
predictions and top-ranked tested IntaRNA predictions (within top 14/100 rank) of Tpke70 led to the confirmation of mcrA as a target (Table 1).
Importantly, IntaRNA correctly predicts a confirmed weak target (agaS) to interact with a region not captured by the INTERFACE-informed group
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uncharacterized in terms of functional Hfq dependency (Sup-
plementary Data 4). When comparing INTERFACE datasets
derived from the hfq-null and hfq+ strains, we anticipated
strongly altered sRNA regional accessibilities for sRNAs that
highly depend on Hfq for target regulation. Consistent with
previous reports, perturbations of accessibility (P-value <0.1,
paired two-tailed t-test) were observed in distinct regions of the
well-established Hfq-dependent sRNA Spot 42 (Fig. 7a) but were
not seen in RybA (MntS) sRNA, which was shown not to co-
immunoprecipitate with Hfq in a prior study (Fig. 7b)53.

In light of the observed sensitivity of INTERFACE to Hfq-
associated accessibility landscape changes, we propose a binary
INTERFACE-derived Hfq dependency for all sRNAs under
investigation, classifying 46 as Hfq-dependent due to significant
variation in their ability to hybridize with cognate asRNA probes,
P-value <0.05 for paired two-tailed t-test, in at least one region in
the absence of Hfq. Within this group (106 regions), there was a
clear positive skew of hybridization changes in the hfq+ strain
relative to the hfq-null mutant (~2-fold) (Fig. 7c), supporting the
previously proposed structure-relaxing Hfq RNA chaperone
mechanism54–56. It is likely that INTERFACE is sensitive to
structural rearrangements that can be attributed to the presence
of Hfq in vivo. Furthermore, as seen within native RNA:RNA
interactions, some INTERFACE asRNA:target interactions may
also be facilitated by Hfq. For example, absent Hfq, it is
interesting to note a significant decrease of accessibility in GlmY
terminator (GlmY-17, Supplementary Data 2), suggesting Hfq
may facilitate terminator-involving GlmY:mRNA interactions
in vivo, both with the INTERFACE probe and the actual mRNA
target. Although many sRNAs probed in this work exhibit Hfq-

dependent hybridization patterns, many others show no hybri-
dization landscape changes due to Hfq absence, suggesting that
their RNA-binding activity is independent from Hfq under tested
conditions. Supplementary Data 4 combines our INTERACE-
inferred Hfq dependencies with corresponding experimental
confirmations reported in the literature and also includes
other information related to Hfq dependency, e.g., sRNA class
(I or II)57, ProQ protein associations16, etc. Notably,
INTERFACE-based classification is consistent with 31 of
52 sRNAs whose Hfq association (or lack thereof) has been
previously experimentally characterized (Supplementary Data 4).

Discussion
In this work, we detail the design and validation of INTERFACE,
a synthetic transcription elongation-based reporter system that
supports simultaneous in vivo sensing of accessible interfaces
within an ensemble of user-defined RNA regions via RNA-seq.
INTERFACE enables determination of the “accessosome” which,
in contrast to the “interactome”23–25 and “structurome,”26 is a
measure of the functionality, i.e., the capacity to interact, of a
large number of regions in the transcriptome (Fig. 8).

Overall, we demonstrate that INTERFACE can support further
mechanistic understanding of regulatory RNA networks by: (i)
capturing hybridization-based dependencies on intracellular
regulatory factors, (ii) pinpointing sites capable of creating RNA:
RNA interactions, and (iii) identifying regions that can be
involved in mRNA targeting for uncharacterized (and even well-
characterized RNAs) to propose novel RNA regulatory potential.
Collectively, these findings demonstrate the advantage of
obtaining large-scale in vivo accessibility data to complement
computational prediction algorithms that aim at uncovering
in vivo RNA:RNA interactions. This approach is a viable high-
throughput alternative to effective but lower throughput experi-
mentation that is typically necessary to inform computational
predictions (e.g., co-immunoprecipitation approaches)58 for
groups of sRNAs that cannot be analyzed via recently developed
high-throughput techniques (RIL-seq25, CLASH24, or modified
CLASH23) due to low expression or functional independence
from chaperone or degradation proteins.

Interestingly, the target repertoire of some of the studied
sRNAs suggests that they may have important roles in stress
responses such as metal ion binding and transport (SroG targets
yncD, mepM, and fecE), and DNA ligation (SroE target ligB)50.
These results suggest that INTERFACE may be valuable in
revealing new stress-responsive sRNA networks. The ability of
INTERFACE in revealing novel regulation is further exemplified
in GlmY, whose high-terminator accessibility prompted the
in vitro validation of two novel mRNA binding partners (RNAs
coding for Zn-binding proteins:50 add and yphC) that depend on
the terminator sequence of GlmY for interactions. To date, sRNA
terminator activity has been seen only in rare instances; for
example, chb mRNA antagonizes the ChiX:chiP sRNA:mRNA
interaction by pairing with the ChiX terminator, decreasing ChiX
levels and activity52. Furthermore, rare RprA regulation of csgD
relies on three distinct regions, one of which is in the terminator;
however, mutation to the terminator region alone does not affect
in vivo target repression51. It is not clear whether these antisense
GlmY-TER:mRNA interactions detected by INTERFACE repre-
sent an mRNA feedback, or whether the terminators, like other
RNA stem-loops, are capable of initiating antisense pairing and
regulation.

INTERFACE may also offer insights into sRNA:mRNA bind-
ing initiation, as supported by its sensitivity to very subtle shifts in
the target region window. Specifically, regions contained within
previously mapped mRNA-binding sites sometimes have vastly

Table 1 Rank, name, and in vitro binding results for three
representative uncharacterized sRNAs

Rank mRNA INTERFACE-informed or top-
ranked?

In vitro
binding?

SroE
3 yieH Top-ranked No
5 yeaG Top-ranked No
9 yahN Top-ranked No
10 mdtA Top-ranked No
12 creA Top-ranked No
18 arcC INTERFACE No
32 pdxY INTERFACE No
38 marC INTERFACE No
46 ligB INTERFACE Yes (weak)
61 fadH INTERFACE No
SroG
4 cdsA Both Yes
5 cysJ Both Yes
7 yfbR Both Yes
10 yncD Both Yes
12 mepM Both Yes
64 potA INTERFACE Yes
65 dosP INTERFACE No
75 pgl INTERFACE Yes
76 fecE INTERFACE Yes (weak)
Tpke70
3 agaS Top-ranked Yes (weak)
6 dkgB Both No
7 mcrA Both Yes
12 mdoB Both No
13 dbpA Both No
14 degS Both No
19 torT INTERFACE Yes
29 glnK INTERFACE Yes
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different accessibilities than regions with slightly different indices;
for example, the DsrA:rpoS mapped binding site (23 nt) has
relatively high-normalized accessibility (>0.9, region 3) compared
to a 16 nt stretch completely contained within this mapped site
(zero accessibility, region 4) (Fig. 3b, Supplementary Fig. 3). As
the contained region lacks five nucleotides within the 5′ loop of
the mapped site, it appears that INTERFACE may be sensitive to
structural features of binding sites such as native toeholds, or seed
regions that support RNA unfolding when targeted11,36. Another
example of this phenomenon is seen with the csgD binding site
within RprA (Fig. 3b, cf. regions 5 and 6) (Supplementary Fig. 3).
These observations speak to the importance of probing the full
length of mapped binding sites, or, if such sites are unknown,
increasing the sample space by interrogating overlapping or
partially redundant stretches with representative lengths (e.g., the
average length of known sRNA:mRNA interaction sites, or guided
by free energy considerations).

Further, approximately two-thirds of all sRNAs analyzed
herein by INTERFACE show a pattern of Hfq-dependence for
hybridization, including a handful reported as Hfq-independent
or previously uncharacterized (18 sRNAs) (Supplementary
Data 4). Within this subset of sRNAs, our results support prior
mechanistic observations of Hfq acting as a chaperone to selec-
tively rearrange the RNA to increase favorability of some sRNA:
mRNA interactions (Fig. 7c), likely via unfolding15. Interestingly,
no consistent magnitude or direction of accessibility shifts
between the hfq-null and hfq+ strains was observed within dis-
tinct sRNA regions known to establish direct interaction with Hfq
sites (Supplementary Data 1). These data are further consistent
with the aforementioned model in which Hfq binds sRNAs at a
few characteristic short motifs without occluding the base-pairing
surface42. Furthermore, and contrary to general acceptance3,
many cis-encoded sRNAs (ten) also have accessibility landscapes
that are affected by Hfq deletion (Supp. Table 4), suggesting
either that they are affected indirectly or that Hfq has a less
discriminatory scope of regulation, as has been suggested of the
ProQ chaperone59. In contrast, several sRNAs were shown to be
completely functionally independent of Hfq (23 sRNAs, Supple-
mentary Data 4). For some of these sRNAs, this independence

may be attributed to the environmental conditions under which
probing was performed, as Hfq availability is limited13,14. For
others, it is possible that they are regulated via other chaperone
proteins besides Hfq, such as FinO domain-containing or cold
shock proteins14. To this end, investigating protein associations of
sRNAs that appear unaffected by Hfq may prove informative.

We anticipate the utility of INTERFACE in characterizing
unique hybridization behaviors of other distinct classes of RNAs
(tRNAs, mRNAs, etc.) as well as investigating hybridization
changes in response to various environmental conditions to
support identification of stress responsive regulatory RNAs and
associated functional regions. More broadly, given that INTER-
FACE mostly exploits formation and disruption of Watson-Crick
base pairing, we foresee that INTERFACE will support investi-
gation of RNA function in other organisms in vivo, pending
appropriate replacement of the anti-termination (AT) mechan-
ism. Importantly, TnaC peptides have been identified in species of
many pathogenically relevant bacterial genera (e.g., Vibrio, Yer-
sinia, Shigella)60, suggesting that they share similar ribosomal
stalling-based AT mechanisms with E. coli. Furthermore, as
eukaryotic RNA polymerases have been shown sensitive to
hairpin terminators in vitro61,62, an adaptation in which the
stability of the hairpin structure is determined by the extent of
asRNA binding to its target region could be viable for use in
higher organisms. Combining high-throughput information
about regulatory RNA regions, intracellular factor dependency,
and environment-associated activity within a multitude of RNAs
may be key to the design of synthetic antisense RNA or other
regulatory molecules.

Methods
Plasmids and strains. Three different E. coli strains were used in this work: K-12
MG1655 for the experiments performed via overexpression of the gI intron to
establish the technique, BW25113 (Keio collection parent strain32) and the Hfq-
deficient isogenic strain (JW4130-1Δhfq from the Keio collection32) for experi-
ments performed to characterize accessible interfaces in native RNAs. The Hfq-
deficient strain was cured of a kanamycin resistance gene cassette following a FLP
recombination protocol32 and the resistance deletion was confirmed via genomic
PCR. Two main plasmids were constructed from iRS3GG and modified iRS3GG
(modified for targeting native RNAs) plasmids, published previously28, for this
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work: Overexpression-INTERFACE (O-INTERFACE, for overexpressed taRNAs)
and INTERFACE (for native taRNAs), respectively (plasmid maps in Supple-
mentary Fig. 1A and 1B; annotated plasmid sequences in Supplementary Data 5
and 6, respectively). These plasmid constructs mainly differ from their corre-
sponding parent plasmids in containing (1) an adaptor, containing tnaC and a rut
site, and (2) a truncated version of a (GFP) reporter gene in which start and stop
codons have been preserved to allow for transcript size characterizations.

Estimation of binding potential using a biophysical model. In order to effi-
ciently design asRNA probes for 71 sRNAs, we employed, in combination with a
machine learning algorithm (described below), an un-optimized version of a model
previously reported28 to explain hybridization efficacy, ν, as follows:

υ ¼ �θ ΔGtf � ΔGasTð Þ þ ΔGasF: ð1Þ

In this model, the ΔG terms represent the free energies which must be
considered for the interaction of the target region with the reporter probe, in which
subscripts “tf,” “asT,” and “asF” represent target unfolding, binding between the
asRNA and target, and the asRNA reporter probe unfolding, respectively. This
model also includes a pseudo-frequency factor (�θ) to account for the global
ensemble of structures within the target region. This term is evaluated at a regional
level and is thus calculated as the summation of each nucleotide’s local unpaired
probability over the length of the target region, as estimated by base-pairing
probabilities, using the “AllSub” subroutine in the RNA-structure webserver63–65.

Machine learning algorithm. To optimally select for accessible regions in 71
experimentally confirmed bacterial small RNAs in E. coli, we adapted a machine-
learning algorithm called sparse knowledge gradient (SpKG)38,39 to a weighted set
cover problem. The SpKG algorithm is developed to solve the sequential ranking
and selection problem, in which, at each iteration, one or several experimental
suggestions are provided based on value-of-information analysis by taking into
account the new observations (biophysical model predictions). SpKG can be used
to adaptively select the targeted regions within a large molecule to identify which
regions are more amenable to establish interactions with other molecules66. By
adapting the SpKG algorithm to a weighted set cover problem, we attempt to
maximize the value of information of all suggested probes under the constraints of
(i) full taRNA regional coverage of each sRNA molecule and (ii) minimum overlap
between suggested probes. In this way, this work is the first demonstration of
applying SpKG in a batch setting (as opposed to a sequential setting).

In the following, we provide the mathematical formulation of the problem. For
any RNA molecule with length L, suppose there are n potential taRNA regions with
the length specification (9–16 nucleotides). Let [i1,j1],[i2,j2],…,[i1n,jn] be intervals
on [1,L] that denote these n potential target regions. Let x1,x2,…,xn∈{0.1} be binary
variables that denote either the kth target region is selected or not. We use
vk, k = 1,…,n to represent the knowledge gradient value of the kth target region.
These values can be computed via the SpKG algorithm38. Our optimization
problem can be written as

max
Xn

k¼1
vkxk � λ

Xn

k¼1
xk

 !
: ð2Þ

s:t: ∪
k:xk¼1f g

ik; jk½ � ¼ 1; L½ �:
xk 2 0; 1f gfor all k ¼ 1; ¼ ; n:

Here λ is a tunable parameter that penalizes the number of target regions
selected to minimize overlapping. As described, this optimization problem is a
weighted set cover problem, contained within Karp’s 21 NP–complete problems67,
and cannot be solved in polynomial time. In order to solve it efficiently, we use a
Greedy algorithm68 to approximate a solution.

Algorithm:

1. C  ;; I ;: (Here C is the set of nucleotides covered so far; I is the set of
index for the selected targeting regions.)

2. While C≠ 1; L½ � do

a. for all k ∉ I, let αk ¼ λ�vk
ik ;jk½ ��Cj j

b. choose k� ¼ argmin αk
c. update C← C ∪ [ik,jk], I← I∪{k*}.

3. Output.

Computational simulations to test for algorithm performance. To quantify the
performance of this algorithm in synthetic simulations, we compare it with two
comparatively naive algorithms for designing aRNA probes—exploration and
exploitation. The exploration (uniform) algorithm selects random taRNA regions
with a uniform length of 12 nt for each RNA molecule. The exploitation algorithm
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Fig. 7 INTERFACE can distinguish sRNA accessibility changes attributed to
presence of a pleiotrophic RNA regulator. a INTERFACE is sensitive to Hfq
dependency, as shown by changes in accessibility landscapes in a strongly
Hfq-dependent sRNA (Supplementary Data 4) Spot 42 between the parent
strain (+Hfq) and an isogenic Δhfq strain (−Hfq). Accessibility differences
significant to P-value <0.1 in a paired two-tailed t-test are indicated by
asterisks. b In contrast, no significant changes are observed for RybA, an
sRNA believed to be Hfq-independent due to its inability to co-
immunoprecipitate with Hfq in prior studies (Supplementary Data 4). The
level of accessibility per region is indicated according to color (blue= low,
gray=mid, red= high). c INTERFACE supports an accessibility-increasing
role of Hfq in sRNAs, indicated by the skew of accessibility difference upon
presence of Hfq relative to the absence of Hfq (parent – Δhfq) to the right
for all significant differences (P-value <0.05, two-tailed t-test) within the
entire sRNA ensemble (106 regions)
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selects target regions using the aforementioned biophysical model with identical
coverage and overlap constraints as the SpKG algorithm, but without any machine
learning optimization. In these controlled synthetic simulations, we sample the
“true” accessibility coefficients from a stochastic process. Taking into account
simulated noise of each experiment, we then normally sample the observations
from the three sets of target regions generated using the SpKG, exploration (uni-
form), and exploitation algorithms. For each set of suggested target regions, we
consider a metric called experimental effort to estimate “how close” we are in terms
of identifying the most accessible target region in a given number of simulation
iterations (Supplementary Fig. 4). In this case, the metric considers, for each sRNA,
the difference between the observed maximum accessibility and the “true” acces-
sibility of the optimal region (expected to exhibit the highest accessibility in the
molecule) chosen by each respective algorithm. The experimental effort for each
algorithm is rescaled from zero to one.

Synthesis of constructs. All probes were inserted into one of two INTERFACE
plasmids for hybridization evaluation of regions within an overexpressed gI intron
taRNA (O-INTERFACE) or a native taRNA (INTERFACE), via golden gate (GG)
cloning28. Specifically, 30 designed probes targeting the gI intron were cloned into
the O-INTERFACE plasmid. Additionally, five previously designed31 probes
(original-4, 6, 7, 9, and 10) were introduced into both the O-INTERFACE plasmid
and a corresponding modified plasmid lacking the elongation switch completely
(Fig. 3b). For the synthesis of the >900-probe library (sRtar) targeting 71 sRNAs in
E. coli, a high-throughput version of GG cloning was employed, in which up to
10 sets of separately annealed primers were combined for cloning into the
INTERFACE plasmid. Cloning for INTERFACE plasmid libraries targeting regions
within DsrA or RyhB was done separately, similarly in high-throughput fashion. A
“no interaction” probe (a randomized 15-mer tested for minimum com-
plementarity to genome in E. coli) was incorporated into both INTERFACE con-
structs to generate the sequestered RBS control69. For the free RBS control only, a
randomized RSE was introduced to the sequestered RBS control via Gibson
assembly to prevent formation of the stem-loop that serves to block the RBS69.

All INTERFACE constructs, including ~100 sRtar DNA library pools, were
transformed initially into E. coli electro-competent cells (Turbo, NEB) and, upon
plasmid extraction, into the appropriate experimental strain. Each LB-agar plate
containing the sRtar library (~100 plates) was supplemented with small LB
volumes and thoroughly scraped using cell spreaders. The resulting combined cell
mass was recovered for 1.5 h at 37 °C and stored at −80 °C upon supplementation
with 30% (v/v) glycerol for a final 15% (v/v) glycerolized culture. INTERFACE
strain libraries containing DsrA and RyhB-specific asRNA probes were stored
separately.

For strain confirmation, each O-INTERFACE or control INTERFACE plasmid
was individually sequenced upon plasmid extraction from the relevant
experimental strain (K-12 MG1655). For the sRtar library, strain diversity was
confirmed by sequencing randomly selected subsets of colonies per plate (>60
total). sRtar library diversity was further supported by RNA-seq analysis, allowing
confirmation of >95 and >98% of clones for parent and Δhfq strains, respectively.
The inability to confirm a small percentage of clones was likely due to limited
sequencing depth. All synthesized constructs with their corresponding probe
sequence, taRNA, and primers used are listed in Supplementary Data 7.

INTERFACE experiments. INTERFACE experiments were performed following a
previously reported protocol for a related low-throughput regional hybridization
quantifying system, in which GFP fluorescence is the system output31,69. For the
experiments using the O-INTERFACE plasmid to validate the system, we prepared
individual overnight cultures (biologically independent samples) for each con-
struct. Equal parts of each resulting culture were combined and seeded into 40 mL
of LB to comprise 1% of total volume. Cell cultures were grown in triplicate under
four different induction conditions (N= 12): (1) no anhydrotetracycline (aTc), no

arabinose (ara); (2) 20 μL of aTc (final concentration: 100 ng/μL), no ara; (3) no
aTc, 800 μL of 20% ara (final concentration: 0.8%) and (4) 20 μL aTc, 800 μL 20%
ara.

For the experiment intended to characterize native taRNAs (INTERFACE
plasmid), 100 mL of LB were seeded with 600 μL of the sRtar library directly from
gradually thawed freezer stocks in triplicates. Control probes were seeded into these
triplicates cultures separately as follows (1) 400 μL free RBS (from an overnight
culture), (2) 400 μL sequestered RBS (from an overnight culture), and (3) 400 μL
each of the libraries of probes targeting DsrA and RyhB (from individually stored
freezer stocks). Kanamycin was added to all cultures to obtain a final concentration
of 50 μg/mL. Samples were grown in triplicate under two induction conditions (no
ara and 2 mL of 20% ara), and in two separate strains (parent and Δhfq) for a total
of twelve samples. Samples were induced 1–1.5 h post seeding (OD ~0.2–0.3),
recovered 5 h post induction (OD ~0.5–0.7), and immediately processed for total
RNA extraction.

Total RNA extraction. RNA extractions were performed according to established
techniques (see Supplementary Materials and Methods).

Synthesis of DNA libraries for next generation sequencing. Following RNA
extraction, and in preparation for RNA-seq, we used the NEBNext Multiplex Small
RNA Library Prep set for Illumina (NEB E7330) to prepare the DNA libraries. The
RNA Fragmentation step was omitted to guarantee that each 5′-read and 3′-read
from RNA-seq could be reliably assumed as the true starts and ends, respectively,
of the corresponding transcripts. The protocol provided for preparation of DNA
libraries by the supplier (NEB) was followed with a few adaptions. Briefly, a 1:2
dilution of the 3′ SR adaptor for Illumina was ligated overnight (18 h at 16 °C)
using between 0.5 μg and 1 μg of non-fragmented RNA as the starting material.
Next, the SR RT Primer for Illumina was annealed to the 3′ adaptor ligated RNA
samples and then the 5′ SR adaptor for Illumina was ligated (1 h at 25 °C). Sub-
sequently, a reverse transcription reaction was performed (60 min at 50 °C) to
obtain cDNA, which was immediately enriched via a standard PCR amplification
as recommended by the supplier with a modified extension time of 1 min per cycle
instead of 15 s for a total of 15 cycles. The resulting DNA was purified using the
AMPure Bead XP system and a magnetic rack in at least two wash cycles with
freshly prepared 80% ethanol.

Illumina sequencing of DNA libraries. DNA libraries were submitted to the
GSAF core facility (UT Austin) for sequencing. The samples were analyzed for
their size distribution using a bioanalyzer (Agilent). To enrich for the transcripts of
interest (INTERFACE plasmid transcripts), in the case of the sRNA experiment,
and enhance mapping depth of every single probe, the GSAF facilities performed a
Pippin Prep (Sage Science) preferentially selecting for transcript sizes between 120
(exact length of tnaC sequence) and 310 nt (observed maximum size). Finally,
DNA libraries were prepared for RNA-seq using standard Illumina kits and were
run using a NextSeq equipment in a 75 × 2 paired-end scheme.

Computational processing pipeline of sequencing results. The computational
pipeline used to process the RNA-seq results includes the following steps: (1)
performing a quality check on base sequencing quality using fastqc, a program
offering analysis on attainment of passing quality scores http://www.bioinformatics.
babraham.ac.uk/projects/fastqc, (2) using CUTADAPT70 to trim adaptor sequences
despite low adaptor contamination (<0.5%), (3) creating a reference genome for
unique samples of interest. For the gI intron experiments, the reference genome
consisted of 30 O-INTERFACE transcripts corresponding to target regions outlined
in Fig. 2 (plTetO-asRNA probe-RSE-RBS-ES-RER), 10 O-INTERFACE transcripts
corresponding to 5 previously investigated gI intron regions31 (with and without the
adaptor sequence), as well as 2 control O-INTERFACE sequences corresponding to
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Fig. 8 INTERFACE sits at the core of the structure–function relationship. By sensing functional hybridization differences attributed to both in vivo
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the sequestered- and free-RBS controls (plTetO-asRNA random asRNA-RSE or
mutated RSE, respectively,-RBS-ES-RER). For the sRNA accessibility experiment,
the reference genome was comprised of INTERFACE transcripts targeting all sRNA
regions in Supplementary Data 2 and 45 regions targeting CsrB and glutamate
tRNA (pBAD-asRNA probe-RSE-RBS-ES-RER) (Supplementary Data 7), the
sequence of each taRNA and Hfq, as well as sequestered- and free-RBS controls
(pBAD-random asRNA-RSE or mutated RSE, respectively,-RBS-ES-RER) as the
“reference genome.” Step (4) consisted of mapping the RNA-seq reads using BWA
MEM for paired-end sequences and, importantly, for the sRNA probing library,
excluding all “chimeric” (SA tag) and multi-mapped reads (XA tag). In step (5),
resulting sam files were converted to bam using SAMtools71 and subsequently to a
more manageable bed file using BEDTools72. The next step (6) exploited awk to
develop a script to filter for the R1 reads that contained at least 7 nucleotides of the
asRNA probe sequence, and, in the last step, (7), R2 reads corresponding to R1
reads were obtained using their unique identifier (contingent on R1 and R2 reads
mapping to the same INTERFACE sequence) and the Linux command “join.”

Calculation of relative accessibility. A Python code was used to generate a file
containing a summary of the number of reads per end position within each unique
INTERFACE sequence provided for mapping. The transcript length with respect to
each target region was calculated as the number of nucleotides between the
observed transcription start site (TSS) for each promoter (consistent with the TSS
reported in the literature for pBAD73 and plTetO74) and the transcription end site,
both obtained from the RNA-seq results processed following the procedure
described above. To calculate relative accessibility, Python was used to calculate the
weighted averages of the read length per probe. In the case of experiments probing
the gI intron, a baseline (85 nt) was calculated as the minimum O-INTERFACE
transcript size and subtracted from each transcript length weighted average. Next,
relative accessibility per probe was estimated as the ratio of the adjusted weighted
average in the presence of the taRNA (double induction: aTc and ara) to the
adjusted weighted average of the transcript length in the absence of any induction.
In contrast, for the sRNA experiment, the relative accessibility was calculated
utilizing only the weighted average of the transcript length in the presence of the
INTERFACE transcript, as the taRNA is natively present. This weighted average of
the transcript length was similarly adjusted by a baseline (164 nt) then linearly
normalized between 0 and 1 within each sRNA molecule for each replicate to
obtain a “raw accessibility” per region and replicate. This was done to discern the
hybridization landscape while controlling for transcript abundance and other
inconsistencies between strains. Reported accessibilities are average raw accessi-
bility values, linearly normalized within each sRNA for production of figures and
tables.

Proposing Hfq-dependency class from accessibility changes. The differences in
relative accessibility between parent and Hfq-deficient strains were calculated for
every region targeted in this study. sRNAs that exhibited any significant differences
(P-value <0.05, paired-sample two-tailed t-test) in normalized accessibility repli-
cates between the two strains were categorized as Hfq-dependent.

Statistical analyses. Reported accessibility values were calculated as detailed in
“Calculation of relative accessibility.” Standard errors (listed in Supplementary
Data 2) were calculated for raw accessibilities and propagated through the second
normalization (n= 3 except when limited by sequencing depth, as indicated in
Supplementary Data 2). Accessibility comparisons of sRNA regions between parent
and Hfq-deficient strains were performed via paired-sample two-tailed t-test (DOF
= 2 except when limited by sequencing depth, as indicated in Supplementary
Data 2) on normalized accessibility replicates, with stated P-values. Comparison of
proportions test was performed using an N-1 χ2-test on all reported accessibilities
within “extremes” (>0.875, <0.125) (mapped, DOF= 38, v. unmapped binding
sites, DOF= 187) to significance of P-value <0.1.

Proposing novel regulatory regions in sRNA. Molecular features of regulatory
regions within well-characterized sRNAs, specifically (i) location and (ii) average
normalized accessibility (>0.75, <0.25) were used as criteria to identify potential
regulatory regions in five under-characterized sRNA based on aforementioned
observed features in mapped binding sites. Specifically, for the three unchar-
acterized sRNAs whose predicted mRNA targets were benchmarked, up to three
representative likely functional regions were selected for their (i) position within 5′-
or 3′-end windows (each encompassing 20% of the total length of the sRNA) and
(ii) for “most extreme” high or low accessibility. If regions contained within an
sRNA’s 5′ and 3′ windows exhibited mid-accessibility clustering (i.e., no regions
stood out in terms of accessibility, e.g., Tpke70), the YUNR RNA:RNA recognition
motif46 was used to narrow the functional region selection. Specifically, of all
regions in the 5′ half with extreme accessibility (>0.75, <0.25), a representative
functional region was chosen as the 5′-most region with containing a significant
YUNR motif (P-value <0.05). Motif scanning was performed using the FIMO tool
within the MEME suite75.

Due to the accessibility profile of SroH (i.e., no regions in the 3′-end window
meeting accessibility extreme criteria listed above), the allowable position range for
likely functional region search was extended from 20 to 40% of total sRNA length

from the 5′-end. For the 5′-end of Tpke11 (see Selection of Representative mRNA
and sRNA Sequence for EMSAs) that was probed in this work, two regions were
believed “likely functional” due to associated absolute transcript lengths within top
and bottom ~30% (Tpke11 -1, 3, respectively) of the entire sRNA region library,
despite generally poor representation of INTERFACE transcripts targeting other
regions in this sRNA.

Identifying INTERFACE-informed targets from IntaRNA predictions. Predicted
mRNA targets of all sRNAs represented with likely regulatory regions were
obtained by IntaRNA11. Specifically, the query ncRNA input was the sequence of
each represented sRNA (Supplementary Data 1) and viable mRNA target sequence
space was delimited as sequences 200 nt upstream and 100 nt downstream of start
codons within the annotated NZ_CP009273 genome. Pre-set output and seed
parameters were used. Folding window size and maximum basepair distance were
set to 150 and 100, respectively, for both target and query RNAs. The top 100
ranked predictions corresponding to each representative sRNA sequence were
compiled. Next, predicted interactions were filtered by alignment with proposed
regulatory regions. Specifically, predicted mRNAs were only considered viable
targets if the sRNA region predicted to bind to the mRNA had at least five over-
lapping nucleotides with a proposed regulatory region within the sRNA.

For each benchmarked sRNA, the top 5–7 mRNA candidates corresponding to
top-ranked or INTERFACE-informed computational prediction group were
chosen for experimental validation, if expression profiles permitted (see Selection
of Representative mRNA and sRNA Sequence for EMSAs). Importantly, because
the top 5 top-ranked and INTERFACE-informed predictions for SroG were
identical (due to the identified 3′ functional region aligning with >80% of the top
100 computational predictions), we additionally chose to validate all INTERFACE-
informed predicted targets that corresponded to the other proposed SroG
functional regions (Fig. 4b). For SroA and Tpke11, up to 5 viable targets were
tested (see Selection of Representative mRNA and sRNA Sequence for EMSAs).
For SroH, the single lowest-energy top-ranked and INTERFACE-informed
predictions (given that experimentation was viable, see Selection of Representative
mRNA and sRNA Sequence for EMSAs) were tested.

For the subset of sRNAs with highly accessible regions in the 3′-end chosen for
biochemical validation (CyaR, GcvB, and GlmY), all viable targets within the top
100 (see Selection of Representative mRNA and sRNA Sequence for EMSAs)
adhering to the aforementioned overlap criteria were chosen for experimental
verification. Furthermore, to account for strong structure in these terminator
regions (presumably the reason for which no CyaR predictions in the top 100 were
predicted to utilize the accessible 3′ region for interaction), IntaRNA predictions
were additionally run for the sequences corresponding to the accessible 3′ regions
only (starting at the first nucleotide of the accessible sequence and continuing to
the 3′-end of the sRNA). Between 1 and 3 functionally interesting targets with the
top-10 were ultimately chosen for experimental validation (after viability
constraints, see Selection of Representative mRNA and sRNA Sequence for
EMSAs). All computational and sequence details of mRNAs tested (and to which
likely functional sRNA region they correspond) can be found in Supplementary
Data 3.

Selection of representative mRNA and sRNA sequence for EMSAs. Experi-
mental logistics of sRNA and mRNA sequences for heterologous expression were
aided by transcriptomic data from E. coli K-12 MG1655 chromosomally modified
to encode a CsrA-FLAG fusion (CML377) in which RNA was extracted in expo-
nential growth phase (OD ~0.6)47. Specifically, candidates were deemed unviable if
the mRNA expression profile did not include the predicted interaction region of
the mRNA, as evaluated by visualizing mapped reads in Integrative Genomics
Viewer 2.3 (IGV)76 (however, candidates without detectable mRNA expression
under the aforementioned experimental conditions were not ruled out). Further-
more, candidates were considered unviable if the predicted interaction region
within the −200 to +100 mRNA sequence was contained within an upstream
coding sequence or if they were annotated as hypothetical proteins in the BW25113
genome.

5′-UTR transcription starts for IVT were chosen to represent those identified by
visualizing mapped reads in IGV in an attempt to most accurately mimic in vivo
mRNA length and structure. For mRNAs (i) known to be co-transcribed and (ii)
showing no obvious transcription start, a pseudo 5′-UTR start was chosen as first
nucleotide following the stop codon of the preceding gene. At least 18 nt of the
mRNA coding sequence (including start codon) was added following the 5′-UTR to
make up the experimentally tested mRNA fragment (Supplementary Data 3). sRNA
sequences were chosen based on their reported sequences (Supplementary Data 1)
with one exception; in the case of one sRNA selected for experimental validation
(Tpke11), the sequence for heterologous expression was extended in order to match
previously published Northern blot results (Supplementary Data 3)44.

PCR amplification and in vitro transcription (IVT) for EMSA. PCR amplifica-
tions and IVTs for EMSA were performed according to established techniques (see
Supplementary Materials and Methods).
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Verification of sRNA:mRNA pairs by EMSA. Internally labeled sRNAs and
respective mRNAs were mixed in 1:10 molar ratios (ranging between 4:40 and
70:700, to normalize for radioactivity signal of sRNAs) in 12–15 µL reactions
containing 1X binding buffer (20 mM Tris-HCl at pH 8.0, 1 mM MgCl2, 20 mM
KCl, 10 mM Na2HPO4-NaH2PO4 at pH 8.0, 10% glycerol). The reactions were
denatured for 5 min at 70 °C, then incubated at 37 °C for 1.5 h. Samples were run
for 4 h at 25–35 mA in a 5% non-denaturing polyacrylamide gel with 0.5X TBE
running buffer. The gel was dried at 80 °C for 1.5 h (Gel Dryer 583 BioRad) and
phospho-imaged using Typhoon FLA 700 (GE Health Life Science).

Code availability. All codes used for “Calculation of relative accessibility” can be
accessed at https://github.com/mihailom/INTERFACE-pipeline-tools. Scripts per-
taining to the SpKG algorithm are available upon request.

Data availability
Raw RNA-seq data and processed files according to “Computational processing pipeline
of sequencing results” section can be accessed at the GEO under accession code
GSE117939. All other data are available upon reasonable request.
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