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Genome-scale metabolic reconstructions of
multiple Salmonella strains reveal serovar-specific
metabolic traits
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Salmonella strains are traditionally classified into serovars based on their surface antigens.
While increasing availability of whole-genome sequences has allowed for more detailed
subtyping of strains, links between genotype, serovar, and host remain elusive. Here we
reconstruct genome-scale metabolic models for 410 Salmonella strains spanning 64 serovars.
Model-predicted growth capabilities in over 530 different environments demonstrate that: (1)
the Salmonella accessory metabolic network includes alternative carbon metabolism, and cell
wall biosynthesis; (2) metabolic capabilities correspond to each strain’s serovar and isolation
host; (3) growth predictions agree with 83.1% of experimental outcomes for 12 strains (690
out of 858); (4) 27 strains are auxotrophic for at least one compound, including L-tryptophan,
niacin, L-histidine, L-cysteine, and p-aminobenzoate; and (5) the catabolic pathways that are
important for fitness in the gastrointestinal environment are lost amongst extraintestinal
serovars. Our results reveal growth differences that may reflect adaptation to particular
colonization sites.
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ARTICLE

he genus Salmonella encompasses a variety of gram-

negative, rod-shaped flagellated bacteria responsible for an

estimated 115 million human infections and 370,000
deaths per year!=>. To date, most strains of Salmonella have been
classified into serovars based on the unique combination of their
surface antigens®. Taken together, serovars of Salmonella can
infect a wide range of hosts, including humans and other warm-
blooded animals, cold-blooded animals, and plants. Most Sal-
monella serovars colonize a broad range of hosts (e.g., S. enterica
serovars Typhimurium, and Enteritidis); herein referred to as
generalists, while relatively few Salmonella serovars have adapted
to unique hosts (e.g. S. enterica serovar Typhi, which only infects
humans); herein referred to as specialists’8. Beyond host speci-
ficity, serovars of Salmonella have also been shown to differ in
their antimicrobial resistance profiles” and virulence pheno-
types'?. Salmonella serovars are commonly classified into
typhoidal and non-typhoidal serovars based on whether they can
cause systemic illness or localized gastroenteritis, respectively.

This diversity of lifestyles and host-types is reflected in the
different Salmonella genotypes. Previously, signature genes,
metabolic capabilities and nutrient auxotrophies (inability of an
isolate to synthesize a nutrient that is essential for its growth) have
been exploited to develop assays for classifying and identifying
Salmonella strains from other bacteria. However, metabolic cap-
abilities between Salmonella isolates have not yet been compared
systematically based on whole-genome sequences and predicted
metabolic capabilities. Strain-specific metabolic network recon-
structions have proven to be powerful tools to probe the effect of
genomic diversity between strains of E. coli and S. aureus'>12. A
curated genome-scale reconstruction of S. Typhimurium str. LT2
exists!® and has been widely used and expanded to successfully
predict virulence phenotypes in infected mouse tissue!.

Here we built strain-specific metabolic reconstructions for the
species and subspecies of the Salmonella genus using strains with
defined serovars and fully sequenced genomes. We selected 410 high-
quality, closed-genome sequences of Salmonella'>!%, spanning both
species, three subspecies and 64 different serovars. Choosing genomes
that provide a diverse variety of subspecies, serovars, and hosts
allowed for a comprehensive comparison of genomic features and
metabolic capabilities across the Salmonella genus. Using this set of
strain-specific information, we reveal the basis for serovar-specific
and host-associated metabolic traits.

Results

Characterizing the Salmonella core and pan-genomes. Our first
goal was to characterize the core (genes shared among all strains)
and pan (the totality of all genes found across all strains) genomes
of the Salmonella genus. We analyzed 410 gapless genomic
sequences of Salmonella strains representing both subspecies,
22 serogroups and 64 total serovars (see Methods, Supplementary
Fig. 1 and Supplementary Data 1). All genomes were
re-annotated to avoid differential gene calling. We found an
average number of coding regions of 4441 per genome. For
consistency, plasmids were excluded from the study and all
annotated genes were assumed to be functional. We subsequently
constructed the Salmonella pan-genome (Methods), which con-
tains a total of 21,377 gene families, 1705 of which constitute the
core genome. We constructed core and pan-genome curves for a
randomly sampled subset of strains focused on up to 10 strains
from each serovar (Fig. la, Supplementary Data 2). In a pre-
viously constructed pan-genome of Salmonella, 11,443 gene
families were identified across 29 genomes, of which 3211 were
conserved!”. The pan-genome curve is shaped by the number of
novel gene family additions with each additional genome
sequence. Conversely, the core genome curve represents the

number of gene families that were consistently observed for each
addition of a genomic sequence for a new strain.

The pan and core genome curves demonstrated that more
genomic content is shared within strains of a serovar. The large
increases in the slope of the pan-genome curve occurred when the
genome being added originates from a serovar that was not
represented by any of the previously included genomic sequences.
In fact, the largest slopes occurred when genomic sequences of
different subspecies were introduced. On average, two genomes of
the same serovar shared 365 more genes than two genomes of
different serovars (unpaired t-test, p <0.05). These observations
imply that: (1) in addition to the genes encoding antigen
biosynthesis!® (used for serological determination and identifica-
tion), each serovar has a defined repertoire of protein families that
could be reflective of its respective lifestyle; and (2) the number of
shared gene families between two Salmonella isolates decreases as
the phylogenetic distance between them increases. We demon-
strated this second observation empirically by computing
phylogenetic distances between strains using the concatenation
of 7 Salmonella housekeeping genes. We calculated the number of
gene families that are not shared between pairs of strains (which
we used as a second measure of phylogenetic distance) and
plotted these distances against the corresponding pairwise
phylogenetic distances calculated in the previous step. Applying
a linear regression algorithm, we found that the two measures of
phylogenetic distances were highly correlated with an R2-value of
0.851 (p-value < 0.01). (Supplementary Fig. 2)

Strains of a serovar illustrate unique pan-genome features.
Having determined that the core and pan-genome curves are
descriptive properties of a serovar, we next asked whether these
properties are reflective of its host range. To answer this question,
we examined the pan and core genome curves for three serovars
of S. enterica subsp. enterica for which we had a sufficient number
(>40) of high-quality genomes: S. Paratyphi A (specialist; n = 41),
S. Enteritidis (generalist; n =159), and S. Typhimurium (gen-
eralist; n =46) (Fig. 1b, Supplementary Data 2, Supplementary
Table 1). For each curve, we compared the mean and standard
deviation of the number of gene families at the 20th genomic
addition (20 was selected because it represented a halfway point
in the pan-genome curve, Methods). We found that a serovar with
a larger range of hosts does not necessarily have a larger pan-
genome. S. Paratyphi A and S. Enteritidis have a similar number of
gene families in the pan-genome at addition 20 (p(20) = 4527 + 43
and p(20) = 4606 + 75, respectively). Additionally we found that
the S. Typhimurium pan-genome is as large as the Salmonella
pan-genome  (p(20) =6559+273 and p(20) =7676 £ 711,
respectively), suggesting that strains of this serovar are a major
source of Salmonella gene content variation. Thus, the number of
gene families in a serovar’s pan-genome does not necessarily
reflect the number of hosts it can colonize.

The serovar-specific pan-genome content reveals that there is
an underlying repertoire of gene families that are conserved
among strains of a serovar, some of which are unique to the
serovar. A cluster map (Fig. 1c) of gene families contained in the
accessory genome (obtained by subtracting the core genome from
the pan-genome) of our three selected serovars demonstrates that
each serovar is differentiated by a set of conserved gene families
(framed in red). Interestingly, while some genes are classified as
accessory in the pan-genome of the Salmonella genus, they appear
in the core genome of a given serovar (Fig. 1d, Supplementary
Data 2). Genes involved in metabolic functions were part of these
unique serovar-specific core genomes, which motivated us to
characterize the differences in metabolic networks of different
serovars.
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Fig. 1 Core and pan-genomes of Salmonella serovars. a The Salmonella pan-genome was constructed for 104 out of 410 genomic sequences of Salmonella,
including 2 species; S. enterica and S. bongori, 3 subspecies; S. enterica spp. enterica, S. enterica spp. llIA, S. enterica spp. llIB. For purposes of clarity, the
serovars of S. enterica spp. enterica are represented in black when 3 or more corresponding genomes are available with a maximum of 10 randomly sampled
genomes per serovar. See Supplementary Fig. 3 for the full Salmonella pan-genome. Note that branch widths do not correspond to phylogenetic distances.
b Serovar-specific core and pan-genome curves for 41 genomic sequences of Salmonella enterica spp. enterica: Typhimurium (broad host range), Paratyphi A
(host-restricted) and Enteritidis (broad host range) in comparison with 41 genomic sequences of randomly sampled Salmonella genomes. We show the
average and standard deviation of the number of gene families at the 20th genomic addition (p(20)). ¢ Cluster map of the accessory genome of
Typhimurium, Paratyphi A, and Enteritidis. The gene families that are unique to a serovar and conserved across strains in that serovar are framed in red.
d We identified the serovar-specific core gene families for serovars Paratyphi A, Typhimurium, and Enteritidis and plotted a venn diagram to represent the
shared content. Paratyphi A has the highest number of core gene families, of which 1,014 are not part of the Typhimurium nor the Enteritidis core genome

Characteristics of the Salmonella core and pan reactome. To
analyze the metabolic content of the accessory genome, we gen-
erated genome-scale network reconstructions (GEMs) of meta-
bolism for each of the selected 410 Salmonella strains!>1¢ (see
Methods, Supplementary Data 3). Metabolic genes, metabolic
reactions, and metabolites were compared across the strain-
specific networks. We found that 1913 metabolic reactions are
shared across all 410 strains (constituting the ‘core metabolic
reactome of Salmonella’), and 433 are present in some but not all
strains (forming the ‘accessory metabolic reactome’) (Fig. 2,
Supplementary Table 2).

The contents of the accessory reactome reveal that differences
among Salmonella strains lie in part with their capability to

uptake and catabolize various nutrient sources. Metabolic
processes involved in carbohydrate metabolism and inner
membrane transport comprise a large percentage of the accessory
reactome, 62 (14.3%) and 72 (16.6%) metabolic reactions and
processes, respectively. These functional categories include
alternate carbon metabolism, the glyoxylate cycle, periplasmic
transport, and several catabolic pathways. Cell wall/membrane
metabolism is also one of the least conserved subsystems and
contributes to 14.7% of the total accessory metabolic reactome; a
phenomenon that can be explained by the high O-antigen
structural diversity across the 22 serogroups of Salmonella
included in our dataset. The most highly conserved subsystems
contained housekeeping functions that are common to all
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Fig. 2 Salmonella pan reactome. a Reaction distribution per functional category in the 410 genome-scale models (GEMs) of Salmonella strains. The
functional categories are defined by the clusters of orthologous groups ontology®* and classify the metabolic reactions per subsystem. The reactome
distribution across metabolic subsystems shows that inner membrane transport, carbohydrate and lipid metabolism constitute the largest portion of the
pan reactome. The percentages shown represent the percentage of conserved metabolic processes in each functional category. b Number of core genes,
reactions, and metabolites in 410 GEMs of Salmonella. A reaction, gene or metabolite is considered to be part of the core if present in all Salmonella GEMs

Salmonella strains. For example, 89.0% of the reactions and
processes in lipid metabolism were part of the core metabolic
reactome. Similarly, energy production and conversion (88.2%),
nucleotide metabolism (86.7%), and amino acid metabolism
(85.3%) were highly conserved.

GEM-predicted growth capabilities differentiate serovars.
Because alternate carbon metabolism made up a large percentage
of the accessory reactome (Fig. 2a), we hypothesized that these
capabilities may reflect functional differences among strains in
their capability to thrive in different nutrient environments. The
conversion of metabolic network reconstructions into a mathe-
matical framework allows for the computation of metabolic
phenotypes based on the content of each reconstruction!*20.

We leverage this functionality to simulate growth capabilities
across all 410 Salmonella strain models on minimal media with
531 different growth-supporting carbon, nitrogen, phosphorous,
and sulfur sources in aerobic and anaerobic conditions (see
Methods, Supplementary Data 4). Major differences were
observed in the predicted ability of different strains to catabolize
myo-inositol (77.3% of strains incapable), p-Tagatose (69% of
strains incapable) and p-Galactonate (20% of strains incapable)
(Supplementary note 1, Supplementary Fig. 5). For example, all
strains of serovars Typhi (n=6), Paratyphi A (g=41), Agona
(n=4), and Infantis (n =5) were predicted to be incapable of
utilizing p-galactonate as a sole carbon source while 98% of the
strains of Typhimurium (n = 46) and all strains of Agona (n = 4),
Infantis (1 =5), Thompson (n=5), and Weltevreden (n=6)
could grow on myo-inositol as the sole carbon source.
Additionally, while the full myo-inositol utilization operon is
lost in 77.3% of strains, we observed partial gene loss across the
tagatose utilization operon and the galactonate utilization operon.
The genes of the tagatose operon involved in galactitol utilization
were generally more conserved (Supplementary Note 2). Lactose
is a major part of many human diets and galactitol is a byproduct
of lactose catabolism (via glucose and galactose) suggesting that
galactitol utilization could contribute to fitness of Salmonella
strains.

We sought to examine catabolic capabilities that group strains
of a serovar together and distinguish them from other strains. As
a first step toward establishing such a classification schema, we
compared predicted growth capabilities across the 8 serovars of

Salmonella that are represented with more than 5 GEMs each
(Fig. 3a). We found that 5 out of the 8 serovars can be
distinguished by their predicted capability to utilize various
nutrient sources. For example, Paratyphi A strains are distin-
guished by their inability to utilize xanthosine 5'-phosphate while
Weltevreden strains can utilize myo-inositol but cannot grow on
D-tagatose or 2-aminoethylphosphonate as a sole carbon source.
Similarly, 87% of Typhimurium strains can grow on D-tagatose,
xanthosine 5’-phosphate, and myo-inositol as sole carbon
sources. Trends were also observed across other serovars. For
example, the four Montevideo strains were predicted to be
incapable of utilizing allantoin and 2,3-diaminopropionate as the
sole nitrogen and carbon source, and 3 out of 4 Saintpaul strains
could not utilize 2,3-diaminopropionate as a sole nitrogen source.
The prevalence of these losses suggests that they may have an
effect on each serovar’s preferred environmental niche.

Catabolic capabilities reflect the host range of a strain. We
investigated whether we could use the computational character-
ization of bacterial metabolic networks to shed light on the
content of an isolate’s preferred ecological niche(s). We first
subdivided the serovars into two groups: (1) the serovars that
have been reported to thrive in a small subset of hosts (specia-
lists); and (2) the serovars that are either known to colonize a
variety of hosts or whose host specificity has not been explicitly
demonstrated (generalists) (see Supplementary Data 1). There
were 11 serovars that fell under the category of specialists, and
53 serovars that were classified as generalists. We hypothesized
that if there are any links between the catabolic capabilities of a
serovar and the host that it colonizes, those links would be more
pronounced across the group of specialists.

We first constructed a cluster map from the computed growth
phenotypes across all generalists. For clarity, we restricted our
dataset to only show up to one GEM per serovar and its most
variable catabolic capabilities across 19 media conditions (Fig. 3b).
The full simulation outcomes can be found in Supplementary
Data 4. We found that generalists mostly differ in their capability
to utilize p-tagatose, myo-inositol, 2,3-diaminopropionate, allan-
toin, D-galactonate, and 2-aminoethylphosphonate.

Next, we constructed a decision tree to identify nutrient
environments that could differentiate generalists versus specia-
lists. We found that there was a general trend for host-restricted
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Fig. 3 GEM-predicted catabolic capabilities across 53 non-host-specific serovars. a Eight serovars of S. enterica subsp. enterica can be classified based on
their ability to catabolize six nutrients: p-tagatose, Xanthosine 5’-phosphate, Myo-inositol, p-glyceraldehyde (anaerobically) and Aminoethylphosphonate
(AEP). For purposes of clarity, serovars were included in this classification when there were more than 5 strains in the dataset that represented it. The
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utilization was removed from the features used to build the decision tree (see Supplementary File 1). b The catabolic capabilities of the 410 GEMs across
323 nutrient sources in 532 media conditions were computed. Here the catabolic capabilities for 53 generalists across 19 simulated nutrient environments
are shown (see Supplementary Fig. 4 for a detailed list). Each strain is randomly chosen as a representative of a serovar. Growth of a particular strain in a
particular medium condition (represented by a dark blue color) demonstrates a positive GEM predicted nutrient utilization capability. The full dataset for
catabolic capability predictions across all strains is found in Supplementary Data 4. Serovar names are listed along with an arrow pointing to the row it

corresponds to in the cluster map

serovars to lose the capability to catabolize nutrients (Fig. 4a). In
particular, strains of S. Enteritidis were predicted to be capable of
catabolizing 4 more medium components than strains of S.
Paratyphi A, namely formaldehyde, p-galactonate, xanthosine,
and xanthosine-5-phosphate. Since S. Enteritidis is known to
colonize a larger range of ecological niches, we hypothesize that
strains of S. Enteritidis strains have more catabolic capabilities as
a result of their lifestyle.

We next investigated whether catabolic capabilities can further
serve to classify specialists by their specific niche (Fig. 4b). We
found that host-restricted serovars known to colonize the same host
lose similar catabolic capabilities. For example, the inability to grow
in 15 nutrient environments (including r-asparagine, L-aspartate,
L-malate, L-xylulose, and 1-tartrate) distinguished serovars adapted
to cold-blooded hosts from other specialists. Cold-blooded animal
specialists (e.g., S. bongori, S. enterica subsp. arizonae and S. enterica
subsp. diarizonae) shared the least number of metabolic capabilities,
with successful growth for only an average of 485 out of 531 media
conditions per strain. The extraintestinal human-restricted serovars
(including S. Paratyphi A and S. Typhi, but not S. Paratyphi C) were
the only specialists unable to degrade formaldehyde to formate and
D-glyceraldehyde to glycerol.

All 41 Paratyphi A strains were additionally predicted to
predominantly lack the metabolic capability to utilize xanthine or
xanthosine-5'-phosphate as a sole carbon source (due to the
absence of xapAB) with a total of 24 different nutrient conditions
predicted to not support growth for at least one Paratyphi A

strain. In contrast, all 6 Typhi strains could not utilize L-idonate
or 5-dehydro-p-gluconate as a sole carbon source (due to the
absence of the four genes, including idnDOTK). Overall, there
were a total of 24 different no-growth nutrient conditions
predicted for at least one Paratyphi A strain. Choleraesuis strains
are known to be swine-adapted and cause swine paratyphoid.
They were found to lose the capability to utilize L-arginine as a
sole carbon source under anaerobic conditions due to the absence
of the succinylglutamic semialdehyde dehydrogenase (astD) and
L-xylulose in both aerobic and anaerobic conditions due to the
absence of three genes (yiaMNO). L-xylose is an upstream
precursor of L-xylulose and is abundant in the hemicellulose walls
of the cereals fed to pigs?!. It was shown to be excreted in high
proportions in the urine indicating very low levels of xylose
absorption?!. The loss of yiaMNO may have occurred because 1-
xylulose is not available in the swine extraintestinal environment.

Nutrient utilization predictions demonstrate high-model
accuracy. We used an ensemble of 7 known metabolic traits to
validate the reconstructed networks, including: growth on
M9 minimal medium, fermentation of 11 carbon sources, pro-
duction of hydrogen sulfide, growth on citrate as the sole carbon
and energy source (with the exception of Typhi strains), cap-
ability to decarboxylate 1-lysine, incapability to utilize lactose, and
the presence of catalase. These tests constituted the basis for the
exclusion of three genomic sequences from any subsequent
analysis (PATRIC accession numbers 1412544.3, 1454644.3 and
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54388.108) as well as the identification of nutrient auxotrophies
(see the next section, Methods).

We proceeded to validate the predicted strain-specific catabolic
capabilities. We searched the literature for known catabolic
capabilities of Salmonella strains and evaluated; (1) a dataset for 9
S. Typhi strains tested on a total of 190 carbon sources from Chai
et al.?2 and (2) biolog phenotypic characterizations of 6 strains of
Salmonella spanning 6 serovars (Typhimurium, Newport, Dublin,
Heidelberg, Schwarzengrund, and Agona) on 59 different carbon
sources from Fricke et al.?3 (Supplementary Data 5).

While the six strains of S. Typhi for which we have genomic
sequences did not exactly match the nine strains tested in the first
study, we assumed that the catabolic capabilities common across
all experimentally tested strains would also be common among
the strains used in this study. We first mapped 84 of the 190
carbon sources to their known catabolic pathways. Our GEMs
correctly predicted 38 viable growth phenotypes and 19 no
growth phenotypes across six strains (68%, fisher p <0.05), but
incorrectly predicted 27 no-growth phenotypes. We noticed that
there are reports of hypothetically disrupted genes in S. Typhi
known to be involved in the catabolic pathways for 7 of the 27
falsely predicted growth-supporting carbon sources, namely:
citrate, L-glutamine, L-rhamnose, 1,2-propanediol, D-tagatose,
ethanolamine and 4-hydroxyphenylacetic acid?4. Pseudogene
accumulation has been widely observed amongst Typhi strains®”
as well as other host-restricted strains of Salmonella®*26. We
hypothesize that there could be additional disrupted genes
involved in the utilization of some of the 20 remaining carbon
sources. However, the identification of pseudogenes is beyond the
scope of this paper. False positives may also indicate that the

pathways needed for growth under these conditions could be
alternatively regulated®4?”.

The Fricke study also included matching genomic sequences
for six strains that were tested for their capability to utilize a set of
59 carbon sources. Our corresponding GEMs correctly predicted
341 growth phenotypes, and 8 no growth phenotypes (98%, fisher
p <0.05). However, there were 5 failure cases across 3 strains in
total (discussed in Supplementary Note 3). Overall these results
demonstrate that the GEMs are of high-quality and that the
predicted strain-specific metabolic traits can be used to generate
hypotheses related to adaptation to specific hosts.

GEMs enable investigation into the genetic basis of serovar-
specific auxotrophies. In addition to investigating growth-
supporting nutrients, GEMs can also be used to examine the
genetic basis of strain-specific auxotrophies. We found that GEMs
for 32 out of 410 strains were unable to simulate the generation of
at least one essential biomass constituent from glucose+M9
minimal medium without the addition of growth-supporting
compounds to the in silico medium (Supplementary Data 6).
We algorithmically filled these gaps in the metabolic network
to examine the genetic basis for these potential auxotrophies
(Fig. 5).

Based on this analysis, we found that 15 of the 159S. Enteritidis
strains exhibited an auxotrophy for tryptophan in silico. This
observation is consistent with literature indicating that there are
frequent occurrences of natural tryptophan auxotrophs across
Salmonella serovars and other human pathogens?3-30. A multiple
sequence alignment of the frp operons across all genomes
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Fig. 5 GEM-predicted auxotrophies and potential alternative metabolic pathways Serovars of S. enterica spp. enterica are highlighted: S. Paratyphi A,

S. Anatum, S. Newport, and S. Cubana. a Nutrient auxotrophies are listed across serovars with the name of the missing gene that was found to cause the
auxotrophy and the number of GEMs of that serovar affected. b Missing essential genes whose functions are likely carried out by an alternative unknown
pathway in a serovar. g represents the total number of strains representing a serovar. For example there are 159 Enteritidis strains that were analyzed for
auxotrophies. See Supplementary Fig. 7 for a multiple sequence alignment of the trpC locus

revealed a gap of 52 nucleotides or more at the trpC locus across
the 15 predicted auxotrophs, which could indicate poor
sequencing/assembly quality in this region (Supplementary
Information). Beyond tryptophan, another predicted nutrient
auxotrophy was found in seven of the 41 S. Paratyphi A GEMs
that were predicted to be auxotrophic for nicotinate due to the
absence of quinolinate synthase A (encoded for by nadA). Serovar
Dublin isolates have been documented as being natural
auxotrophs for niacin due to a missense mutation in nadA?831,
We observed that there was a trend for isolates of a serovar to be
consistently associated with one or more auxotrophies (Fig. 5a).
The majority of in silico-predicted auxotrophies were amino acid-
based: L-tryptophan (15 strains), cysteine (1 strains), L-histidine
(3 strains), L-threonine (1 strain) and beta-alanine (1 strain).
There is ample literature evidence of amino acid auxotrophies
among Salmonella isolates and several genera of bacteria!432, and
it has been shown that these amino acids can be scavenged from
the environment and used as a main carbon source?3.

Our dataset also included two GEMs for S. enterica spp.
arizonae I11a. There were two metabolic capabilities essential in S.
Typhimurium GEMs that could not be extrapolated to these
GEMs solely based on sequence homology: dihydrofolate
synthesis (deletion in folC) and heptose transfer IV involved in
lipid A core oligosaccharide biosynthesis (deletion in rfaK). S.
enterica spp. arizonae is known to express a different core
oligosaccharide structure with a glucose residue at the terminal
end instead of N-acetyl-glucosamine®* (Fig. 5b). Interestingly,
both GEMs were missing genes involved in the metabolic
pathway for de novo folate biosynthesis—a function that is
essential for survival and a target of antifolate antibiotics3>—and
were thus p-aminobenzoate auxotrophs. Alternative pathways
may exist to compensate for this metabolic requirement

Catabolic capabilities impact fitness across hosts. We next
sought to determine which nutrient utilization pathways affect
the fitness of Salmonella strains in their natural microenviron-
ments and host ranges. In previous studies, 10,000 Tn5 mutants
of S. Typhimurium strain SL1344 were tested for fitness in
intravenous infection of BALB/c mice’®, and 9792 Tn5 mutants
of S. Typhimurium strain ST4/74 were tested for fitness in oral
infection of pigs, cattle, and chickens®’. Using these datasets, we
set out to identify which catabolic pathways uniquely lost by some
serovars conferred an advantage in one environment but not the
other. To link genes in the reconstructed Salmonella pan-
reactome to the conferred catabolic capabilities, we searched
for gene essentiality in all simulated nutrient environments.
Here we defined conditionally essential genes (CEG) as those

genes found to be essential in one of the nutrient conditions
but not in aerobic M9+glucose minimal medium. Of the 531
nutrient environments, 242 were anaerobic and 289 were aerobic.
We identified a total of 242 predicted CEGs, of which 195 and
217 were essential in at least one aerobic and at least one anae-
robic nutrient condition, respectively, with some genes being
essential in both (Fig. 6a, Supplementary Note 4, Supplementary
Data 7).

Of the 242 predicted CEGs, several were shown to contribute
to fitness in colonizing the mouse spleen (23 CEGs), as well as the
intestine of cattle (53 CEGs), pigs (40 CEGs), and chickens (42
CEGs). Only nine CEGs contributed to fitness in all hosts,
whereas 30 CEGs contributed to fitness in cattle, pigs, and
chickens (Fig. 6b). The nine CEGs shared across hosts included
genes that were essential in many of the in silico environments
(mCEGs) such as atpAD (two subunits of ATP synthase), galE
(UDP-glucose 4-epimerase), gor (glutathione oxidoreductase),
and ptsI (a subunit of the phosphoenolpyruvate-protein phos-
photransferase involved in non-specific carbon transport).
However, CEGs specific to single in silico environments (sCEGs)
were also essential across all hosts, including mt[D (mannose-6-
phosphate isomerase), sucC (succinyl-CoA synthetase), yiaN
(subunit of the i-xylulose transport complex), and manA
(mannose-6-phosphate isomerase). The sCEGs represent genes
required for growth on specific carbon substrates, for example:
manA is essential when p-mannose or p-mannose-6-phosphate
serves as the sole carbon source; mtD is essential when b-
mannitol is the sole carbon source; and yiaN is essential when -
xylulose serves as the only source of carbon.

Of the 30 CEGs with unique contributions to fitness across the
intestinal infection of pigs, chickens, and cattle, 21 do not
contribute to fitness during splenic infection of mice (Table 1),
including 17 sCEGs and four mCEGs. In this set, 13 of the
17 sCEGs are conditionally essential for the utilization of
D-tagatose, allantoin, deoxy-D-ribose, L-tartrate, D-xylose, D-
xylulose, 1-idonate, allantoin, r-arginine, 2,3-diaminopropionate,
p-glyceraldehyde, and formaldehyde, all of which were predicted
to be incapable of supporting growth of at least one host-
associated strain.

Our predictions indicate that the serovars adapted to cold-
blooded hosts could not grow in seven of these media conditions,
including: D-tagatose, D-xylose, deoxy-D-ribose, L-xylulose, L-
tartrate, 2,3-diaminopropionate and 4-aminobutanoate. For
example, all three S. bongori strains were missing deoP
and deoK, both of which are essential for the utilization of
deoxy-p-ribose, and both of which were also shown to contribute
to fitness in cattle, chickens, and pigs, but not in mice (Fig. 6¢).
A possible explanation for these altered growth characteristics
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Fig. 6 Conditionally essential genes (CEGs) and corresponding mutant fitness in diverse hosts. a We searched for CEGs across 531 nutrient environment
conditions and found a total of 20 involved in central metabolism. Of the 531 nutrient environments, 242 were anaerobic and 289 were aerobic. We plot
here the 10 most frequent CEGs in aerobic and anaerobic conditions. b We selected for CEGs whose corresponding mutant was found to contribute to
fitness in at least one host. We then plotted a venn diagram of CEGs that were observed to be important for fitness in intraintestinal versus extraintestinal
hosts. We subdivided CEGs into those that were predicted to be essential in 5 or more nutrient environments (mCEGs) and those predicted to be essential
in less than 5 nutrient environments (sCEGs). ¢ We identified the occurrence of sCEGs that were seen to contribute to fitness across strains of Salmonella.
We highlight here three catabolic pathways featuring the selected sCEGs and the number of Salmonella strains that do not carry the CEGs in their genome.
The genes are placed next to the metabolic process that they are involved in. The fitness contributions of an sCEG to hosts are highlighted (ovals indicate
that a significantly affected fitness was measured in this host)

Locus tag

Table. 1 Conditionally essential genes observed to affect fitness in cattle, chicken, and pig but not mouse spleen, and their
calculated TRADIS fitness score

Encoded reactions

Nutrient conditions

STM1002

STM4484 (idnD)
STMO0042 (xylP)
STM3354

STM3255 (tagT)
STM3792 (deoP)
STM3793 (deoK)
STM4467

STM2793 (gabP)
STM1627

STMO0522 (allP)
STMO0974 (focA)
STM3671 (yiaM)
STM2282 (glpQ)
STM2037 (pduF)
STM1620

STMO154 (IpdA)

2,3-diaminopropionate ammonia lyase

L-idonate 5-dehydrogenase

p-xylose transport in via proton symport

L(+)-tartrate dehydratase

p Tagatose transport via PEPPyr PTS

Deoxy D ribose transport via proton symport

Ribokinase and deoxyribokinase

Arginine deiminase

4-aminobutyrate transport in via proton symport
Formaldehyde dehydrogenase and Glycerol dehydrogenase
Allantoin transport in via proton symport

Formate transport via proton symport

L-xylulose transport in via proton symport
Glycerophosphodiester phosphodiesterase
(R)-Propane-1,2-diol facilitated transport

Glycolate oxidase

Pyruvate dehydrogenase and 2-Oxogluterate dehydrogenase

(N-O2+/—, C-02+) 2,3-diaminopropionate
(C-02+/—) L-ldonate

(C-02+/-) p-Xylose

(C-02+/-) L-tartrate

(C-02+/-) b Tagatose

(C-02+/—) Deoxy D Ribose

(C-02+/—) Deoxy D Ribose

(C-02-) 1-Arginine

(C-02+, N-0O2+/—) 4-Aminobutanoate

(C-02+) Formaldehyde and (C-O2-) p-Glyceraldehyde
(N-O2+/—, C-02+/-) allantoin

(C-02+) Formate AND (C-0O2-) formaldehyde
(C-02+/—-) -Xylulose

(C-02+/—, P-O2+/-) Sn-Glycero-3-phosphocholine
(C-02+) (R)-Propane-1,2-diol

(C-02+) Glycolate

(C-02-) DCMP and Deoxyuridine and DUMP and Deoxycytidine

(46 no-growth media conditions on average) is that the
microenvironments where these cold-blooded host-associated
strains normally reside markedly differs from the intestinal
environment of farm animals. Similarly, all strains of Typhi were
predicted to lack the capability to utilize r-idonate due to the
absence of idnD and idnO, which correlates with Typhi’s inability
to grow on L-idonate as a sole carbon source??. These genes
demonstrated fitness defects during intestinal infection of
the farm animals assayed, but not in spleen of infected mice.

L-ascorbate (vitamin C) is an essential nutrient in the human diet,
and l-idonate is an intermediate product of r-ascorbate
catabolism which has been shown to decay spontaneously
in vitro3®3%. Taken together, these findings suggest that 1-idonate
is an available nutrient source in the gut3®3°. The fact that S.
Typhi is known to colonize the extraintestinal environment and is
specific to humans suggests that the loss of this capability comes
as an adaptation event in which genes that do not contribute to
fitness have been lost.
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Discussion

In this study, we built serovar-specific pan-genomes and recon-
structed strain-specific genome-scale metabolic models from the
genomes of 410 Salmonella strains. Using the strain-specific
GEMs, we: (1) compared and contrasted core and pan metabolic
capabilities within the Salmonella genus; (2) determined differ-
ences among serovars in growth phenotypes on over 530 different
media; (3) explored the genetic basis of underlying strain-specific
auxotrophies; (4) identified candidate catabolic pathways that
contribute to the fitness of Salmonella strains in diverse micro-
environments; and (5) examined the occurrence of those catabolic
pathways across different Salmonella strains.

The pan-genome analyses revealed that the three main Sal-
monella serovars have pan-genome sizes that do not seem to
reflect their host range. The total number of gene families in a
random sample of 20 genomes of Enteritidis (a generalist) was
similar to that of Paratyphi A (a specialist) but much lower than
that of Typhimurium (a generalist). Since the ability to colonize
multiple niches does not seem to affect the pan-genome size?, we
asked whether specific classes of genes in the pan-genome
reflected this ability. A comparison of the gene family content
across three serovars revealed that a specific repertoire char-
acterizes each serovar, and that while certain gene families were
part of the Salmonella accessory genome, they appear in a given
serovar’s core genome.

While pan-genome analyses provide useful insights into the
genetic variability amongst strains and serovars, strain-specific
genome-scale models allow for explicit prediction of phenotypes.
GEMs are mathematically structured knowledge bases that have
been validated against experimental data and have demonstrated
high accuracy for growth phenotype predictions!"!2. The
majority of Salmonella’s core reactome consisted of lipid meta-
bolism as well as energy production and conversion. By contrast,
the pan-reactome revealed that differentiating features across
strains lay in their cell wall composition and their unique cap-
abilities to transport and catabolize specific nutrients. The cell
wall composition is a trait that has been exploited for the char-
acterization of serovars. Therefore, we asked whether catabolic
capabilities can also serve to differentiate serovars.

To date, relatively few metabolic traits have been identified that
distinguish Salmonella serovars. For instance, S. Typhi can be
distinguished from other Salmonella isolates, in part because it is
citrate negative’®, whereas L-tartrate utilization distinguishes
extraintestinal and gastrointestinal strains of S. Paratyphi B*l. We
set out to identify additional differentiating catabolic capabilities
using the reconstructed strain-specific GEMs. Model-simulated
growth on different nutrient sources demonstrated that strains of
each serovar clustered together. Leveraging this finding, we then
built a decision tree that distinguished 5 serovars based on their
model-predicted catabolic capabilities. There was a tendency
among host specialists to lose catabolic capabilities, while serovars
specific to the same niche tended to share similar catabolic pro-
files. When we compared a total of 858 predicted growth phe-
notypes with experimental observations, we obtained an overall
83.1% agreement, demonstrating high-model accuracy. The dis-
crepancies likely indicate the presence of pseudogenes.

We proceeded to ask whether the observed gene losses across
specialists are a result of the composition of their micro-
environment. We first identified candidate nutrient catabolic
pathways that contribute to the fitness of Salmonella strains
across hosts. We mapped nutrient conditions to the corre-
sponding predicted conditionally essential genes (CEGs), and
found that the fitness of 9 Salmonella mutants (including mutants
in gor, glutathione oxidoreductase) were shown to be affected in
all four hosts. Glutathione oxidoreductase was predicted to be
conditionally essential for the utilization of trithionate, thiosulfate

or tetrathionate as the sole sulfur source*?, and tetrathionate is

known to confer an advantage to Salmonella strains which utilize
it as a terminal electron acceptor in the inflamed gut*.

We then asked whether the differential fitness conferred by
catabolic genes revealed important variations in the nutrient
composition across hosts. Indeed, a total of 21 catabolic pathways
uniquely contributed to Salmonella fitness during intestinal
infection of pigs, cattle, and chickens, including those for the
utilization of p-tagatose, L-xylulose, D-xylose, deoxy-p-ribose, L-
idonate, D-glyceraldehyde, and allantoin. These metabolites form
part of the host’s diet and/or have been observed in the intestinal
environment?!4445, Additionally, we observed that the corre-
sponding catabolic capabilities were missing across strains
adapted to either cold-blooded hosts, to swine, or to humans,
providing evidence of an isolate’s genotype being influenced by
the environment it evolves in. For example, Typhi strains lost the
capability to utilize r-idonate. Indeed, the differential fitness
conferred by genes involved in catabolic pathways across hosts
possibly reflect compositional differences in the intestinal versus
extraintestinal milieu and may also reflect differences in
pathogenicity4°.

In addition to identifying unique growth capabilities, the GEMs
also predicted strain and serovar-specific auxotrophies. Auxo-
trophies can indicate cases of directed evolution to a new host,
where ancestral traits that interfere with virulence are lost. The
ability of GEMs to predict serovar-specific auxotrophies makes
them a powerful tool to elucidate the evolutionary trajectory of
various serovars. Using the GEMs we identified two predominant
auxotrophies, including a niacin auxotrophy in seven of the S.
Paratyphi A strains. Intriguingly, this auxotrophy has been shown
to enhance the virulence of Shigella flexneri strains in humans*’.

Altogether, our study demonstrates that strain-specific models
of Salmonella metabolism can be used to systematically identify a
serovar’s unique metabolic capabilities. These capabilities may
affect host range and the preferred environmental niche of a given
serovar. Moreover, these results represent a step toward the
definition of a bacterial serovar based on GEM-predicted meta-
bolic capabilities. In addition to this fundamental advance,
nutrient utilization characteristics provide a basis for under-
standing strain and serovar-specific pathogenesis. Ultimately, this
understanding could be leveraged to formulate strain- and
serovar-specific drug development and therapeutic approaches.

Methods

Salmonella genome sequence selection. A collection of 439 closed genomic
sequences were downloaded from public databases!>1°. These genomes were
selected when they were annotated as “complete” on PATRIC and “chromosome”
or “complete genome” on NCBI*3. None of the records contained contigs, i.e., the
sequence was continuous. While some genomic sequences were complemented by
the respective plasmid(s), others were not. Thus, in order to normalize the data, all
plasmidic sequences were excluded from further analyses. Draft genome-scale
models were initially built for all sequences. In silico validation tests, described in
the section titled GEMs validations resulted in the exclusion of 29 genomic
sequences and the identification of an additional threshold for the quality of an
assembly in the context of constraint-based modeling. In short, a genomic
sequence was excluded when it contained more than 70 regions of 30 contiguous
unassigned nucleotide bases (Supplementary Data 1). We observed that such
regions resulted in ORF disruption and erroneous ORF calling. A total of 410
genomic sequences passed that threshold of which 72 were drawn from the NCBI
database!® and 338 were drawn from the PATRIC database!®. To remove any
inconsistencies in ORF calling 210tations cross annotation platforms, all 410
genomic sequences were re-annotated using Prokka. Pseudogenes were not
manually annotated beyond this point to avoid increasing the false positive rate of
gene absence.

Salmonella pan-genome construction. Sequence homology was used to cluster
genes into gene families using a clustering tool namely, CD-Hit>’. Genes from all
genomes were extracted and fed into CD-Hit. The sequence identity threshold was
set at 0.9 and the word length was set to the default of 5. A gene family ID was then
assigned for each gene. The pan-genome consisted of the collection of all gene
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families. Gene family IDs were used to identify the shared gene families across
genomes.

Multi-locus sequence alignment housekeeping genes. We downloaded a
database containing variants of Salmonella housekeeping genes®!, including aroC,
dnaN, hemD, hisD, purE, sucA, and thrA. We proceeded to search for homology of
these genes across all genomic sequences by using BLAST. We selected a lower
threshold of 80% identity and an upper threshold of 10~ e-value. We then con-
catenated the 7 genes (in the same order) and aligned the sequences using
MUSCLE?®2. We subsequently computed the phylogenetic distance matrix using
Distmat®>.

Salmonella serovar-specific pan-genome comparison. All pan and core genome
curves were constructed using the set of gene families obtained in the previous
steps. Pan-genome curves were built by drawing from a set of genomic sequences
one at a time without replacement and summing the number of novel gene families
encountered at each draw. Core curves were built by drawing from a set of genomic
sequences one at a time without replacement and subtracting the number of gene
families not encountered in the new draw. The core and pan-genome size were
determined at each draw. Traditionally, the genomic sequences are sampled (i.e.,
their order is mixed at random) and a pan and core genome curve are drawn for
each sample.

Here, the available set of 410 genomes was subdivided into 4 subsets consisting
of: (1) 41 sequences for strains of Paratyphi A, (2) 46 sequences for strains of
Typhimurium, (3) 159 sequences for strains of Enteritidis, and (4) 410 sequences
for all strains of Salmonella. Serovars Paratyphi A, Typhimurium, and Enteritidis
were chosen because there were more than 40 available genomic sequences
available for each. From each subset, we randomly sampled 41 sequences to obtain
1000 genomic permutations. In this way, we reconstructed four sets of pan and
core genome curves (Fig. 1b). Fitting the curves with Heap’s law resulted in large
variance in the fitted parameters (Supplementary Note 5, Supplementary Fig. 3 and
8). Instead, we chose to report the average and standard deviation of the number of
gene families found at a selected genomic addition across all pan-genome curves.
We selected the genomic addition after half of the dataset had been included in the
pan-genome analysis so as to obtain a standard deviation that is reflective of the
population. Since we sampled 41 sequences, we reported the number of gene
families encountered at the 20th genomic addition.

Because, we noticed that the core genome size was different for each subset, we
applied the unpaired Student’s t-test to assess whether there was a difference in the
number of shared gene families between two strains of the same serovar and two
strains of different serovars. For that purpose, two distributions were generated.
Two genomes were randomly sampled from all 410 genomes 500,000 times. For
each pair of genomes, the number of shared gene families was computed. When the
two sampled strains belonged to the same serovar, the number of shared gene
families was added to the first distribution, otherwise, it was added to the second
distribution. As a result, the first distribution contained 15,154 computed numbers
and the second distribution contained 67,061. The normality of the two
distributions was confirmed (p <0.001) using the “stats.mstats.normaltest”
command from the scipy toolkit. The unpaired Student’s ¢-test was then applied to
determine whether the two distributions were significantly different using the
“stats.ttest_ind” command from the scipy toolkit. Since the p-value was <0.001, we
concluded that they were.

To represent the fact that two strains of a similar serovar shared significantly
more gene families than two strains of different serovars, we modified the
traditional workflow that computes core and pan-genome curves. We started by
grouping strains of the same serovar together and only sampled those strains
together. Thus, genomic sequences from the first serovar were sampled 100 times
and the core and pan-genome values were averaged after each genomic addition.
The genomic sequences from the second serovar were subsequently introduced and
core and pan-genome values were computed. After the addition of the last serovar
to the pan-genome, the core and pan-genome curves were finally plotted (Fig. la
and Supplementary Fig. 3).

To examine the pan-genome in more detail, we constructed a cluster map for
the gene families across 247 genomes of serovars Typhimurium, Paratyphi A, and
Enteritidis using the clustermap command from the seaborn package (Fig. 1c). We
excluded the gene families that are shared by all genomic sequences. As a result, we
introduced a new term; “the serovar-specific core genome”, which represents the
set of gene families that are shared across all strains of a serovar. Accordingly, the
core genome of a species is the set of core genomes of all the serovars of that
species. The venn diagram in Fig. 1d displays the number of shared gene families
across serovar-specific core genomes for serovars Typhimurium, Enteritidis, and
Paratyphi A.

Reconstruction of a consensus Typhimurium str. LT2 GEM. We used the
genome scale metabolic reconstruction (GEM) for S. enterica ser. Typhimurium str.
LT2 (STM.v1.0) as a starting point for our reconstruction efforts'>>4, A GEM is a
curated structured knowledge base that contains all of the biochemical transfor-
mation occuring in a cell along with a mapping of the gene encoding them>. The
starting GEM contained 2545 reactions, 1271 genes, 1802 metabolites, uptake rates

for in vitro M9 minimal medium (see Troubleshooting and gap-filling for a
detailed definition) and the corresponding biomass reaction. We updated this
network with curation efforts performed by another group!4. Additions included a
new in vivo biomass reaction with experimental validation, 16 new genes and 48
new reactions spanning various subsystems, including 20 reactions involved in
transport and exchange, 15 reactions involved in cell envelope biosynthesis and 4
reactions involved in cofactor and prosthetic group biosynthesis. We also updated
the Salmonella core oligosaccharide biosynthesis pathway by removing the rham-
nosyltransferase reaction because the core oligosaccharide structure in Salmonella
strains does not contain a rhamnose residue. Because different strains of Salmonella
possess a wide range of O-antigens and addition of synthesis capabilities for these
was outside the scope of this project, we removed O-antigens from the in silico
Salmonella biomass objective function. O-antigens form the outer part of the LPS
molecule—which are glycolipids that are embedded in the external membrane of
Gram-negative bacteria. They are variably produced throughout a bacterial life-
time, vary in structure across serogroups and are not always necessary for the
strain’s survival®. They thus do not strictly fit within the definition of a biomass
objective function®”.

Functional annotation of orthologous proteins via Uniprot. The annotated and
manually reviewed Salmonella protein sequences were queried from Swiss-Prot>S.
All 1287 manually curated proteins included in the Salmonella GEM were then
blasted against the set of Swiss-prot proteins. The best bi-directional BLAST hits
(BBH)>” were selected and detailed biochemical assignments were extrapolated for
all orthologs/gene variants of a cluster. A BBH pair is defined when two genes are
best BLAST hits of each other with a minimum percent identity threshold of 80%
and a maximum e-value of 0.01. As a result, 2131 Salmonella protein sequences in
Swiss-Prot were annotated with biochemical reactions using BiGG standards®® and
added to the pan-STM.v1.1 reconstruction.

Pan-STM.v1.1 expansion using the BiGG database. Metabolic networks and
proteins are often shared across closely related species. We thus queried 55
genome-scale reconstructions of species closely related to Salmonella from BiGG to
build a metabolic reconstruction database. The species included E. coli (46 GEMs)
11,61, Shigella (8 GEMs) 1161 and K. pneumoniae (1 GEM)62 (Supplementary
Data 2).

We used BLAST to map all Salmonella gene families against the BiGG database
built above and assigned candidate gene reaction rules based on BBH pairs. When
the function was already represented in the pan-STM.v1.1, but the sequence was
novel, the protein was considered to be an ortholog. When the function was novel,
it was checked against the literature for evidence of its presence in Salmonella and
assigned a confidence score that complies with the standards set by Thiele et al.>°.
Functions with a confidence score of more than 0 were added to the reconstruction.
As a result the pan-STM.v1.1 was expanded with 124 new reactions, 119 new genes,
96 new metabolites, and 53 new orthologs. These reactions spanned several
subsystems notably the inner and outer membrane transport, amino acid
metabolism, membrane lipid metabolism, antibiotic resistance, nucleotide salvage
pathway, pentose phosphate pathway, cofactor, and prosthetic group metabolism.
All new reactions, metabolites, and genes were standardized using BiGG
abbreviations. The pan-STM.v1.1 reconstruction included 2695 reactions, 1395
genes, 2131 gene orthologs, 1935 metabolites, and biomass objective functions
representing in vivo and in vitro conditions (Supplementary Data 2). We
proceeded to run a homology search using bi-directional best blast hits of all of the
genomic sequences included in the dataset against the pan-STM.v1.1 annotated
genes (Supplementary Data 3).

Medium definition and biomass objective function. A biomass reaction repre-
sents the drain of precursors and macromolecular building blocks for bacterial
growth in a certain environment (i.e lipid, glycogen, lipopolysaccharides, amino
acids, and nucleotides). Quantifications are based on the experimental determi-
nation of the relative fractions of the precursors in a culture®’. As such, the biomass
reaction highly depends on the bacterial environmental niche. There have been two
such formulations in Salmonella for growth in M9+glucose minimal medium

(in vitro) and mouse spleen tissue (in vivo) both of which have been experimentally
verified. The M9-+glucose minimal medium definition includes less restrictive uptake
rates and fewer nutrient sources. It is simulated with unlimited uptake rates for
Calcium, Chloride, CO,, Co?*, Cu?t, Fe2*, Fe’*, Potassium, Magnesium, Mn?*,
Molybdate, Sodium, Ammonium, Phosphate, Sulfate, Tungstate, and Zinc and
limited uptake rates for 2,3 Di-hydroxybenzoate, O,, HT, H,O, p-Glucose, and Cob
(1)alamin (Supplementary Data 3). By convention, exchanges are negative when
the flux is directed from the extracellular compartment to the periplasmic com-
partment. For the purpose of predicting growth, we ran flux balance analysis (FBA)
using the COBRApy package version 0.13.2 to simulate for an optimal flux state
with the in vitro biomass reaction set as the objective function. Flux balance
analysis is a method to analyze the flow of metabolites through a metabolic
network!®.

GEM validations. The pan reactome of Salmonella served as a scaffold for building
the strain-specific reconstructions. All genomic sequences were blasted against the
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annotated genes in the pan-STM.v1.1 reconstruction. In each genome, gene pre-
sence/absence was determined on the basis of sequence homology between Prokka-
predicted coding DNA sequences and the curated genes. We considered genes to be
homologous when they were BBH pairs. The result of this step led to the creation
of 410 strain-specific GEMs. We ran several safety checks across the reconstruc-
tions to assess their validity including: (1) FBA (to simulate growth); (2) fermen-
tation of various carbohydrates (Lactose, glucose L-arabinose, maltose, b-mannitol,
D-mannose, L-thamnose, D-sorbitol, trehalose, b-xylose and dulcitol); (3) growth on
citrate as the sole carbon source; (4) carboxylation of lysine, and; (5) production of
hydrogen sulfite. These checks served to verify that all GEMs could recapitulate
some of the known catabolic/metabolic features of Salmonella®®. A GEM cannot
simulate growth if one of the biomass precursors cannot be produced, which occurs
when there is a gap in one of the essential anabolic pathways. We assumed that a
maximal growth of <0.001 h~! meant that no growth could be achieved.

We tested the capability to ferment various carbohydrates by: (1) setting the
lower bound for oxygen and glucose exchange to 0 mmol/gDW/h, (2) iterating
through each of the carbon sources by setting the lower bound for the
corresponding reaction at —50 mmol/gDW/h and, (3) optimizing for flux through
the biomass function at each iteration. Growth on citrate as the only carbon source
was simulated similarly but with the lower bound for oxygen set to —20 mmol/
gDW/h (its default amount). Production of hydrogen sulfite was simulated by the
temporary addition of a demand reaction for hydrogen sulfite with the objective
coefficient set to 1. The biomass objective coefficient was set to 0 and FBA was
employed to simulate flux. When a test failed, i.e. growth could not be achieved, the
model was flagged for further investigation. Other identification tests that
characterize Salmonella by its inability to produce a certain enzyme or to catabolize
certain substrates were not taken into consideration here because they are already
embedded in the curated metabolic reconstructions.

Troubleshooting and gap-filling. All previously flagged models were considered
and distributed into four classes: (1) the flag was raised because of the presence of
unknown alternative pathways, (2) the modeled strain is a potential auxotroph, and
(3) there was an assembly and/or annotation error.

We first identified 160 essential genes for biomass production and found that 18
of these genes were missing across the 35 GEMs that could not simulate growth.
Essential genes were found by removing one gene at a time from the pan-STM.v1.1
reconstruction and simulating for biomass production using FBA. The removal of a
gene was accompanied by the removal of the encoded metabolic reactions that were
found using the find_gene_knockout_reactions tool available in the COBRA
toolbox. A missing gene was classified as essential when its removal from the model
resulted in a non-growth phenotype prediction. We further set out to identify
potential auxotrophies caused by these gene deletions. Three GEMs that were
flagged due to missing Salmonella-specific metabolic traits, were subsequently
excluded from the analysis because they were found to be missing over 70 essential
genes. We traced this aberration back to the nucleotide sequence and found it to
contain over 200 regions of unassigned nucleic acid bases (“Ns”). We subsequently
searched all genomic nucleotide sequences for a high occurrence of unassigned
nucleotide bases and excluded another 27 genomic sequences from further study as
described in Reconstruction of a consensus Typhimurium str. LT2 GEM.

In each flagged GEM, we iteratively knocked out one of the 18 essential genes.
We then simulated the sequential addition of extracellular nutrients by setting the
lower bound of the exchange for that nutrient to —50 mmol / gDW /h. If growth
was achieved, the essential gene was classified as the source of a potential
auxotrophy and the corresponding extracellular nutrient as the nutrient for which
the strain is auxotrophic. These strain-specific auxotrophies are only hypotheses
because there could be alternative pathways that are not yet known for the
metabolism of the essential components. However, in two cases they pointed
towards metabolic pathways that were missing in the starting reconstruction
(anthranilate and NAD biosynthesis biosynthesis). When nutritional
supplementation did not yield growth, and we could not find an alternative
network that would compensate for the metabolic requirement, the reactions were
added back as orphan reactions (Supplementary Data 6).

Conditional gene essentiality. The base model (pan-STM.v1.1) was used to
simulate growth of all 410 GEMs on 531 nutrient conditions Supplementary
Data 4) and gene essentiality sets were identified in each condition using the
command cobra.flux_analysis.single_gene_deletion from the COBRApy package
(Supplementary Data 7). We then subtracted from each set the genes found to be
essential in glucose+M9 minimal medium. The remaining genes were classified as
conditionally essential genes (CEG) and mapped to the corresponding nutrient
conditions.

Mutant fitness across hosts. We retrieved fitness scores associated to Salmonella
genes calculated by Chauduri et al. across 4 hosts including 3 food producing
animals and BALB/c Mice3%37. Briefly, a total of ~10,000 transposon mutants were
generated and combined into pools which were then introduced into the animals.
Input and output pools were collected and sequenced. Each mutant’s fitness score
was reported as the log2-fold change between the number of sequence reads
obtained across the boundaries of each transposon insertion between the input and

output pools. We then filtered out the fitness scores with an adjusted p-value of
<0.1 and an absolute log2-Fold change of >2.

Data availability

All data generated in this study are included in this published article (and its supple-
mentary information files). Models are available on BioModels with accession
MODEL1807280001. All genomic sequences analyzed in this study are publicly available
on PATRIC!® and NCBI'> and accession numbers are available in Supplementary Data 1.
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