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Unconventional superconductivity arising from the interplay between strong spin-orbit
coupling and magnetism is an intensive area of research. One form of unconventional
superconductivity arises when Cooper pairs subjected to a magnetic exchange coupling
acquire a finite momentum. Here, we report on a signature of finite momentum Cooper
pairing in the three-dimensional topological insulator Bi,Ses. We apply in-plane and out-
of-plane magnetic fields to proximity-coupled Bi,Ses and find that the in-plane field creates
a spatially oscillating superconducting order parameter in the junction as evidenced by
the emergence of an anomalous Fraunhofer pattern. We describe how the anomalous
Fraunhofer patterns evolve for different device parameters, and we use this to understand
the microscopic origin of the oscillating order parameter. The agreement between the
experimental data and simulations shows that the finite momentum pairing originates from
the coexistence of the Zeeman effect and Aharonov-Bohm flux.
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n the conventional Bardeen-Cooper-Schrieffer (BCS) theory

of superconductivity, Cooper pairs form an isotropic con-

densate with a zero center-of-mass momentum!. However,
introducing magnetism can change the stability of the BCS
superconducting state, thereby destroying superconductivity or,
as in unconventional superconductors, altering the pairing
symmetry®. The potential for unconventional superconductivity
at the confluence of magnetism and superconductivity has made
it an area of great theoretical and experimental interest. One
such example of an unconventional superconducting state is
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductivity,
which was proposed as a way for maintaining superconductivity
even beyond the critical Zeeman field>*. Despite the intensive
search for an FFLO superconductor in various types of materials
such as heavy fermion compound CeColns>® and BEDTTTEF-
based organic superconductors’~%, FFLO superconductivity still
remains a controversial subject?10-12,

To better hunt for unconventional superconductivity, there
have been proposals for utilizing materials with strong spin-orbit
interaction coupled to a conventional s-wave superconductor.
This is predicted to stabilize an FFLO superconducting state: the
spin-orbit coupling lifts the degeneracy in the Fermi surfaces of
the material and introduces an anisotropy to the surfaces that
makes it more amenable to a finite momentum phase!3~1°. In
particular, time-reversal invariant topological insulators (TIs),
whose surface states are massless Dirac fermions, are proposed to
be an attractive candidate for unconventional superconductivity
that carries finite momentum pairing'®. To the best of our
knowledge, experimental signatures of finite momentum Cooper
pairs in TIs have mainly been sought after in the electron-doped
regime of the two-dimensional (2D) TT HgTe quantum wells!?,
but the surface states of three-dimensional (3D) TIs also provide
unique advantages to engineering finite momentum pairing. The
Dirac cones on the surfaces are non-degenerate and have spin-
momentum locking. As a consequence, the Fermi surface of
the Dirac cone shifts uni-directionally under the application of
an in-plane magnetic field to the surface, which can lead to an
FFLO state!>1°. Even though transport measurements in normal
3D TIs are often complicated by the presence of bulk carriers,
there is experimental consensus that the metallic surface state
dominates transport in a proximity-coupled TI even when the
bulk is not depleted!8-22,

To this end, we study the experimental signatures of Cooper
pairs in a superconductor (S)-3D TI-S Josephson junction
subjected to in-plane and out-of-plane magnetic fields. We
probe the phase of Cooper pairs by generating Fraunhofer pat-
terns with an out-of-plane field, and we find that adding an
in-plane field distorts the Fraunhofer patterns by (1) transferring
the intensity of superconductivity from the central Fraunhofer
peak at B, =0 out to finite magnetic field values and (2) intro-
ducing asymmetries between positive and negative values of B,
in the Fraunhofer patterns. We show that the intensity transfer
is suggestive of a spatially oscillating superconducting order
parameter phase, which we call a finite momentum shift; we
propose two potential origins for this finite momentum shift;
and we demonstrate that asymmetries in the transport signal
come from the sample geometry. Simulations show a close
match between experimental data and finite momentum Cooper
pair theory.

Results

Experimental set-up. Our devices consist of Bi,Se; flakes that are
mechanically exfoliated from crystals with a bulk carrier density
n~5x107cm™3 (see Supplementary Note 1). Angle-resolved
photoemission (ARPES) measurements have been made in a

Table 1 Dimensions for devices 1-5

Device nhumber t (nm) Average W (nm) d (nm) a= %
1 9 860 140 1.07

2 n 1930 240 1.04

3 12 570 160 115

4 21 500 270 1.00

5 18 940 220 1.04

previous work on crystals similar to the ones used in our
experiments, and they show that the Fermi energy is close to the
bulk gap?3. The flakes are contacted with two superconducting
electrodes, forming a Josephson junction device, and the mea-
sured devices vary in flake thicknesses and junction dimensions
(Table 1). A representative atomic force microscope (AFM) ima-
ge is shown in Fig. la for device 1, which has flake thickness
t ~9nm, average junction width W ~860nm, and electrode
spacing of 140 nm. Because we utilize high in-plane fields to tune
the behavior of the junction, we choose NbTi/NbTiN (T.~12.5K
and He in plane > 9 T) as the superconducting material.

Out-of-plane magnetic field B, is applied to the super-
conducting junction to generate a Fraunhofer pattern. In the
absence of any in-plane fields, the devices exhibit a central peak
with maximum critical current I. and decaying side peaks, as is
expected for a conventional Fraunhofer pattern. The nodes of our
Fraunhofer pattern are at B, = %7 where magnetic flux
quantum @, =L, d is the effective electrode spacing that takes
into account flux focusing (see Supplementary Note 2), and # is
an integer’*. The Fraunhofer pattern of device 1, shown in
Fig. 1b, is representative of our devices.

When an in-plane field along the current direction B, is
introduced to the devices, the conventional Fraunhofer pattern
is modulated to an anomalous Fraunhofer pattern: the Fraunho-
fer pattern is shifted along the B, direction and the critical current
of the side lobes increases as the critical current of the central
lobe disappears. To measure the evolution of the Fraunhofer
pattern as a function of B, we apply a small AC excitation
(with zero DC current) and measure the differential resistance
dV/dl as a function of B, and B,, where lower resistance
corresponds to higher critical current, similar to in ref. 7. The
evolution of the Fraunhofer pattern for device 1 is shown in
Fig. 2a. As B, is applied, the Fraunhofer pattern is shifted along
B,. This is evident as an overall tilt of the 2D differential
resistance map in Fig. 2a. Although a tilt could be caused by
misalignment of the sample with respect to the B,~B, plane, this
type of misalignment would cause a similar shift in the
Fraunhofer pattern when a field is applied in any in-plane
direction. Because we do not see a corresponding shift when an
in-plane field perpendicular to current direction B, is applied,
we can exclude sample misalignment as a cause for the shift of
the Fraunhofer pattern.

Besides the shift to the Fraunhofer pattern, we also observe
additional side branch features in the evolution of the Fraunhofer
pattern: at B, = 0, the intensity of superconductivity is maximum
at the central lobe, but as B, is increased, the intensity is
transferred outwards to higher values of B,. The emergence of
this anomalous side branch becomes more evident if the tilt in
the 2D differential resistance map is removed by rotating the
graph until the lobe minima are vertical, as shown in Fig. 2b. The
approximate locations of the minima of the lifted side lobes are
marked as a guide to the eye, and a slope for the side branch can
be approximated, as illustrated by the dashed black line in Fig. 2b
(see Supplementary Note 3). This unique Fraunhofer evolution is
evidence of finite momentum pairing, as discussed below.
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Fig. 1 Measurement configuration and Device 1 Fraunhofer pattern. a AFM image of the S-TI-S Josephson junction: superconducting leads (white) on a
Bi,Se; flake (yellow) exfoliated onto a substrate (red). Measurement scheme and magnetic field configurations are also shown. b Conventional Fraunhofer
pattern for device 1 (t ~9 nm, d ~140 nm, and W ~920 nm). The conventional pattern has a principal peak at B, =0
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Fig. 2 Device 1 Fraunhofer evolution. a Evolution of the Fraunhofer patterns for device 1. b Fraunhofer evolution for device 1 that has been rotated so
that the lobe minima are vertical, making it easier to compare across samples. There is a side branch feature that develops as B, is applied to the junction,
which can be quantified as a line with slope m (dashed line). Black dots mark approximate locations of minimum resistance at different side lobes as a

guide to the eye

Modeling Josephson junction with finite momentum pairing.
To determine the origin of the evolution of the Fraunhofer pat-
tern, we begin by considering the mesoscopic effects of magnetic
fields B, and B, on the superconducting order parameter phase.
For the following discussion we look primarily at the surface
contribution because we find that the bulk order parameter
decays much more rapidly than the surface contributions in the
junction, which means the supercurrent is predominantly carried
by the surface states (see Supplementary Notes 4 and 5). The
phase modulation manifests itself as a spatially oscillating current
distribution in the %-direction (I(x) = isin(A¢ — M))M. By
summing up all the oscillating components of the current, the
conventional Fraunhofer diffraction pattern arises, which can be
derived from the following equation:

. sin(’%’)
IC = ICW T . (1)
®,

While the Fraunhofer pattern is generated by B,, the additional
high in-plane magnetic field, B,, generates a Zeeman effect within
the surface bands and adds magnetic flux inside the TI flake.
When the in-plane Zeeman effect is present, the low-energy
Hamiltonian of the TI surface can be written as

guB
HDirac = _hvf <kx - W:) 0y + hvfkyo'x’ (2)

where v¢ is the Fermi velocity of the Dirac cone, g is the g-factor,
and p is the Bohr magneton®’. By examining the Hamiltonian, we
find that the location of the Dirac node is shifted from the I'-point

guB,

along the X-direction by T resulting in a shift of the corre-

sponding Fermi surface. Figure 3a shows a schematic of the
shifted Fermi surface. As a result of this shift, when the electrons
on the TI Fermi surface form spin singlet Cooper pairs, the

2guB
‘if 2 As a
Vi
consequence, the superconducting order parameter at the end
of each junction has a phase modulation in the x-direction. The
.2guB
order parameter is given as A; ~ Aje’ ™, where

Cooper pairs gain a finite center of mass momentum

2B xgu .
Y
i is the

phase modulation due to a finite momentum shift. The finite
momentum of the Cooper pair under these conditions is similar
in nature to FFLO states®>. Unlike for the Fermi surface, the bulk
energy eigenvalue is degenerate. The Zeeman effect will therefore
only lift the spin degeneracy rather than shifting the bulk bands,
so the bulk does not acquire a phase from the Zeeman effect (see
the Methods section).

Besides the Zeeman effect contribution to the order parameter,
there is also a contribution from the finite flux that is inserted
along the in-plane, or y, direction of the flake. This magnetic flux
from B, results in a phase modulation given by an

LF)
Aharonov-Bohm phase 3% [A - dI*®. For a bulk electron, the
"

phase will be determined by its trajectory inside the flake, and we
find that the bulk electrons will acquire a negligible net phase
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Fig. 3 Finite momentum shift and simulation of trident pattern for ideal junction. a The shifted Fermi surface and spin texture (red arrows) of the Tl due to a
finite Zeeman effect. To form a spin singlet, Cooper pairs acquire a non-zero center of momentum, as indicated by the purple arrow. b Simulations of the
Fraunhofer pattern for different values of B,. We find that the intensity of superconductivity is transferred outwards to higher values of B, as B, is increased.
¢ Evolution of the Fraunhofer pattern for a symmetric Josephson junction due to finite momentum pairing. The differential resistance is calculated and
normalized to 1. The slope of the side branch is indicated by the dashed green line

modulation (see the Methods section and Supplementary Note 6).
For a surface electron, on the other hand, the phase modulation
nB, xt
?,

momentum shift contributions to the surface order parameter of
the 3D TI: the Zeeman effect and the Aharonov-Bohm effect,
which we call the Zeeman modulation effect (ZME) and flux
modulation effect (FME), respectively.

By summing up the three relevant contributions to the phase—
the out-of-plane magnetic field B,, the ZME, and the FME—we
get the total phase difference between the two junctions:

is given as . As a result, we see that there are two finite

B _ 27Bd(x, +x,) | 2B,(x, —xy)gp 7B, (x; — x))t
¢,(x;) — ¢,(x) = 20, + vy + @, . (3)

Here, ¢;(x;) and ¢,(x,) are the phases of the order parameters
of superconductor 1 and 2 at the coordinates x; and x,,
respectively, along the width of the junction. Based on the phase
difference between the two leads, we can model the total transport
current along the y-direction in the Josephson junction using
quasi-classical methods!”?”. This analysis is equivalent to
summing up all possible quasi-classical trajectories of electron
transport, so the total transport current is

I<¢’B)”BZ> = /Vé/idxldxzwsin(A¢+ $1(x1) = ,(x2)),
(4)

where W, is the width of the superconducting lead 1(2), A¢

is the overall phase difference between the superconductors,
and d is the distance between the two superconductors. Using
Eq. (4), we can calculate the critical current I.(B,,B,) =
max, I(¢,B,,B,) as a function of B, and B, to derive the
evolution of the Fraunhofer pattern.

Figure 3b shows simulations of the Fraunhofer pattern for
various values of B, calculated using Eq. (3) and illustrates how
the intensity of superconductivity is transferred from the central
peak out to the side peaks as B, is increased. This transfer of
intensity is proportional to the momentum shift of the Cooper
pair. In terms of the differential resistance as a function of B, and
By, the transfer of the superconducting intensity can be seen as
the formation of two side branches (formed by evolving side
peaks) in the differential resistance map with slope m. These
side branches are visible in the simulation for a symmetric
Josephson junction in Fig. 3c and in the data for device 1
(Fig. 2b). The agreement between the simulation and the
experimentally observed pattern indicates that the formation of
the side branches is a result of the transfer of superconducting
intensity due to the additional phase modulation generated
by B,. This feature is known to be a key signature of finite
momentum pairing and distinguishes the system from typical
BCS superconductivity!®282%,

Additionally, the slope m of the side branches reflects the
relative contributions of finite momentum pairing due to ZME
and FME as a function of B,. In the simulations, the slope is
defined by a line between the origin and the nth side lobe as n
becomes large (green dashed line in Fig. 3c). By calculating the

4 NATURE COMMUNICATIONS | (2018)9:3478 | DOI: 10.1038/541467-018-05993-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-05993-w

ARTICLE

a t=11nm

-8 6 4 -2 0 2 4
Rotated B, (a.u.)

(o] t=21nm
500

400

S

©

= 300

8 dV/AdI Q)

£ 200 ol

g 200
100 100

—

—20 -10 0
Rotated B, (a.u.)

10 20 30

b t=12nm
200
S 150
8
m>.
< 100 dv/dl (@)
L f—
g 200
o 50
100
0 0
-15-10 -5 0 5 10 15
Rotated B, (a.u.)
d 0.24 T T T T T T
022 {1 &——0¢6— 0 —0
— —o— ZME (theory)
TE 0.20 —&— FME (theory)
c —— FME + ZME (theory)
= 0.06 1 —m— Experiment
~
€ 0.04 1 1
0.02 - 1
0.00 T T T T T r

t (nm)

Fig. 4 Fraunhofer evolution for devices with thicker flakes. a-c¢ Fraunhofer evolution for devices 2-4, which have different flake thicknesses. For comparison,
the data were rotated so that the lobe minima are vertical for better comparison and approximate minima are marked with black dots. The side branch
slope is illustrated for device 2 in a. d The relation between the slope of the side branch m (normalized by effective electrode distance d) and thickness
t of the Tl flake. Experimental data (with error bars for deviations in extracted slopes) are compared with simulations for each device using a finite

momentum pair model. The theory and data matches best for a model that takes into account both ZME and FME. v;=5x10>ms~', g=19 are used in

the simulations3'32

integral in Eq. (4), the slope of the side branches is estimated as

7&7 nd/®, )
- T2 | omt”
sy

In Eq. (5), the first and the second terms in the denominator
are the contributions of the ZME and the FME to the slope,
respectively. Because of the inverse relation, larger slopes reflect
smaller ZME and FME contributions. Looking at the FME
and ZME contributions separately, we can see that the FME
contribution is proportional to the thickness of the flake ¢ since
the flux through B, will increase as the thickness increases.
The ZME, on the other hand, is proportional to the intrinsic
material parameters of the TI, v%, rather than on an external
parameter, such as the thickness.

We examine the slope dependence on TI thickness across
multiple samples, where devices 2-4 are shown in Fig. 4a-c,
respectively, with approximate minima marked and the 2D
differential resistance maps rotated so that the lobe minima are
vertical for ease of comparison. The slope m for each device is
extracted from the minima (see Supplementary Note 3) and is
illustrated for device 2 by the dashed line in Fig. 4a. To compare
the experimental data with theory, we also calculate m for each
device based on t and d using Eq. (5). Figure 4d shows the
dependence of m (normalized by an effective d that takes into
account flux focusing effects) on thickness, where m is extracted
from the data (black) and calculated using theoretical predictions
for finite momentum pairing due to ZME alone (red), FME alone
(blue), and ZME and FME together (purple).

It is clear that the dominant contribution to the finite
momentum shift comes from the FME. In the thickest sample,
in particular, the FME closely predicts the slope in the
experiment since more flux is enclosed in the flake and the
orbital effect therefore has a more significant contribution.
However, there are some deviations between the data and the
FME curves. First, some of the normalized slopes do not follow
the monotonically decreasing trend predicted by the FME theory.
The deviations are caused by variations in the sample: in real
samples, there are variations in chemical potentials, which would
result in the V% ratio changing from sample to sample,
and fabrication imperfections, which would result in distortions
in the transport signal. Nevertheless, the overall decreasing
trend in the experimental slopes mirrors the decreasing trend
predicted by the FME model.

We also find that the FME is not enough to predict the observed
slope from the experiment on its own even when the error bars
of slope calculation are taken into account. In fact, the ZME
contribution needs to be considered for the theory to more closely
match the data, which means that the finite momentum pairing
due to the shifted Dirac cones is non-negligible. We calculate a
curve that takes into account an additional ZME value (purple)
that demonstrates that by introducing the ZME contribution to
the theory, the theory curve is shifted closer to the experimental
data. Therefore, our data are generally better explained by the
coexistence of both FME and the unconventional ZME, which is
more closely related to the FFLO state.

We also looked at the potential phase contribution from
inserting a flux through the superconducting leads. In the
supplementary section of a previous work!”, it was found that a
flux through the electrode seemed to contribute to the phase
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Fig. 5 Simulation of effect of junction asymmetry and field inhomogeneity. The width and field asymmetry dependence of the Fraunhofer pattern.

a, b When a width asymmetry factor a is added to the model, we find that the signal becomes asymmetric between positive and negative B,. Here,
the amplitude of the left side lobes increases relative to the amplitude of the right side lobes. We used the values a = 0.3, 0.6 respectively. ¢, d When
the asymmetry factor g is introduced to the model, the Fraunhofer patterns are shifted along B,, which can be seen as a tilt introduced to the 2D differential

resistance map. We used = 0.01, 0.02 respectively

modulation in the system. However, the normalized slopes are
not correlated with the thickness of the device leads in our
experiment. This suggests that the relevant flux for the finite
momentum pairing is the flux through the flake.

Effect of Josephson junction asymmetries on the evolution of
the Fraunhofer pattern. In addition to simulating the Fraunhofer
evolution as B, is applied to an ideal junction, we also consider
the effect of asymmetries in the junction geometry and on the
evolution of the Fraunhofer pattern. Due to the fact that typical
sample fabrication can result in imperfect device configurations
and flux focusing effects, it is important to understand what
happens to the Fraunhofer pattern as the devices deviate from the
ideal junction. For example, as reported in ref. 30, asymmetric
features between positive and negative values of B, often appear
in Fraunhofer patterns and can be attributed to a combination of
device-dependent factors such as disorder and the microscopic
structure of the device. We consider some sources of asymmetries
in the device configuration to model the effect of these asym-
metries on the transport signal.

One form of geometric asymmetry that arises in a Josephson
junction is the asymmetry in the width of the two super-
conducting leads W; and W,. To model this effect, we introduce
the width asymmetry factor «, which is the ratio of the two
superconducting lead widths and satisfies W; = aW, in Eq. (4).
Figure 5a, b shows how the Fraunhofer evolution changes as we
increase the asymmetry between W; and W, by increasing a.
Because finite a breaks the symmetry of I(¢,B,,B,) upon
reversing the sign of B, in Eq. (4), we find that for increasing «,
the amplitude of the left and right side branches becomes more
asymmetric. Another form of asymmetry, as quantified by flux
asymmetry factor f3, comes from the flux focusing effect>?. Due to
the screening of the magnetic field inside the superconductor,
magnetic field B, may bend and cause contributions to B.. Since
we apply large B, compared to B,, a very small bending of B, can

cause a large tilt in the Fraunhofer pattern (see Supplementary
Information). We model this effect by replacing B, with (B,—fB,)
in Eq. (3), which generates the tilt seen in Fig. 5¢, d.

After understanding possible origins for anomalous features in
the evolution of the Fraunhofer pattern, we can now compare our
experimental data with simulations that take into account
asymmetry factors. The results are shown in Fig. 6 (see
Supplementary Note 8 for the detailed numerical methods).
The width asymmetry factor «a is extracted from scanning
electron microscope images of the devices (summarized in
Table 1). Due to the difficulty of quantifying the magnitude of
the flux asymmetry, we add in an artificial 8 factor to simulations
that generates a tilt that best matches with the data for better
comparison. As discussed earlier, the overall structure and in-
plane field dependence of the Fraunhofer pattern is determined
by the ZME, the FME, and the geometry of the junction.
However, we find that by also incorporating the sample width
asymmetries into the finite momentum pairing model and adding
an artificial tilt in the data to take into account flux focusing
effects, the theoretical prediction and the experiment agree
very well.

Discussion

In conclusion, we observe an anomalous Fraunhofer pattern that
is indicative of the presence of finite momentum pairing in 3D TI
Josephson junctions that are subjected to in-plane magnetic fields.
We identify the two microscopic origins of the finite momentum
pairing to be the ZME and the FME. By comparing the slope of
the side branches in the anomalous Fraunhofer pattern with the
theoretical predictions, we conclude that the measured slope can
only be explained by the coexistence of both the ZME and the
FME. In particular, the ZME—the contribution associated with
the FFLO phase—becomes significant when there is less phase
accumulation due to enclosed flux, which occurs for thinner
samples. We believe that this is a promising start for the hunt for
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Fig. 6 Evolution of the Fraunhofer pattern across different devices. Comparison of the evolution of the Fraunhofer pattern when B, is applied to devices 1-4.
The experimental data (a-d) agrees well with the normalized differential resistance of the simulations (e-h) that are based on a finite momentum shift
model and take into account width asymmetries delineated in Table 1. An additional tilt is added to the simulations for better comparison with the data.
(A possible origin for the tilt is a flux asymmetry, which is difficult to quantify.) In all the devices, side branches with slope m appear as an in-plane field
B, is added. The appearance of these side branches is indicative of interference in the phase modulation due to B, and B,

unconventional superconductivity in a proximity-coupled 3D TI
in the presence of in-plane fields, but further work can be done to
mitigate the effect of the FME. For example, besides finding
thinner flakes, the ZME can be enhanced by increasing g/vs, which
can be done by tuning the TI flake closer to the Dirac point.
Furthermore, as demonstrated by our work and others, a con-
tinued understanding of the effect of non-ideal junctions is
conducive to identifying anomalous asymmetric signatures, like
the Fraunhofer asymmetry across B,, in transport signals.

Methods

Experimental techniques. 3D TI flakes were mechanically exfoliated from bulk
Bi,Se; crystals onto Si/SiO, substrates, and thicknesses were identified using atomic
force microscopy. After identifying suitable flakes, superconducting electrodes were
defined using standard ebeam lithography techniques. Forty to 65 nm of NbTi/
NbTiN was then sputtered onto the device using an rf source following a brief ion
mill to clean off the surface. Devices were then wire-bonded and measured in a dry
dilution unit that reaches a base temperature of T=25mK and has a three-axis
vector magnet.

Numerical methods. After calculating the Josephson current using Eq. (4), we
numerically generate Fraunhofer patterns as a function of B, for each device. We
find that a non-zero B, transfers the intensity of superconductivity from B, =0 out
to higher values of B,. To illustrate this feature, we present various slices of the
Fraunhofer pattern as a function of B, in Supplementary Figure 6. Once we derive a
set of Fraunhofer patterns as a function of B, we can draw the surface contour plot
of the critical current as a function of both B, and B, and map the critical current
map to a differential resistance map with an effective thermal noise, as detailed in
Supplementary Note 7.

Calculation of bulk and surface contributions to the ZME. In this section, we
determine how the Zeeman effect affects surface and bulk states by calculating the
normal propagator of the surface and the bulk of the TI. We first solve for the
surface propagator. The Hamiltonian of the TI surface with a finite in-plane
Zeeman term is given as

Hgyp = th(—(kx —a)o, + ky"x> —E,

where & = ‘% and Ey is the Fermi energy. The energy of the above Hamiltonian is

given as

Egus = —Eg£hvey [ (k, — 0‘)2+k§

with eigenstates

k (k)
Va4 +i N

After deriving the eigenstate and the energies and taking just the
positive eigenstate (since we assume the chemical potential is near the
conduction band), we can use these results to solve for the surface propagator,
Gsur(E;1):

where e ¢ = cos(¢) — i sin(¢) =

21 .
k¢ . / ” 1 el
E.r) = elox do el crcos(0,—6,) : ,
gsurf( ) (27_[)2 th elgk 1
0

where k¢, = E'h:rTE is the Fermi wave vector. The above integration is the Bessel

function of the first kind, J,:
k iax | 2o (ke
gsurf(E7 l‘) —L l: 0( f )

_ . 2mie 0], (ker)
(27)*hvg 27iel% ], (ker) '

2n), (ker)

In the canonical quasi-classical approximation, we assume that k; r > 1, so the
Bessel functions can be asymptotically approximated as

) cos(ker —Z ie 10 cos (ker — 3%
gsurf(E7 r) = 2:;1“'{ elox /%ﬂ > ( f 4)371 ( f . 4)
ie® cos (ker — 37 cos(k;r — Z)

2 cos (ker — %) 2ie % cos (ker — 32) }

1
— ff N lax 4
(@m)2hver? 2ie® cos (kr — 22) 2 cos(ker — %)

This is the final expression for the surface propagator, where the e%* term
represents oscillations in the surface propagator due to the Zeeman effect.

We now solve for the bulk propagator. To do so, we follow a similar
procedure to the one used to solve for the surface propagator. Using
Supplementary Eq. (2), the bulk Hamiltonian of the TT with the Zeeman effect
can be written as

Hyy = —Eg +mly + hvek - T + ry0,,
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where 8= guB. The bulk energy eigenvalue is given as
2
Ebulk:—Efi\/k§+(,/m2+k;+k§¢ﬁ) : (6)

It is important to note that Eq. (6) differs from the surface energy eigenvalue
because, in the bulk, the Zeeman effect does not shift the location of the Fermi
surface but rather only lifts the degeneracy. As a consequence, we will see that the
ZME is absent from the bulk band contribution.

We again solve for the normal propagator

S (Eor) = o [ ST IO(E ()
_ 1 * 2 " in o ikrcos(6) _
7(271)3/0 kdk/o s (9)d9/0 dge ;M)(A\B(E E,(K)).

The eigenstate of the above Hamiltonian can be explicitly calculated by
assuming |k| < m. In this case, we can focus on just the conduction band to
simplify the expression:

1 i : o ik¢rcos
SalE0) = 553k [0 [ agehrolay
A

1, " K Lo ik,
— ikgre _ = (oker _ —ikgr
—(271)3 kflldc/) dee (2”)2 (ikfr (e e ))

ke .
=———2sin(kr).
(2m)*hver sin(k?)

Because the bulk band is initially degenerate and does not shift in one direction
in momentum space, the bulk propagator does not have oscillations from the ZME.

Calculation of surface and bulk quasiparticles of the Aharonov-Bohm phase.
In addition to the Zeeman effect, the electrons gain additional phases due to the
FME. In this section, we calculate the phase accumulated by electrons in a magnetic
field as they acquire an Aharonov-Bohm phase. The vector potential of the in-
plane magnetic field can be written as A = (B, (z — 3),0,0). Under this gauge, the
surface electrons, which travel along the outmost trajectory of the TI, gain the
conventional Aharonov-Bohm phase. More specifically, the electrons at the top
surface, z=t, gain momenta opposite from the bottom surface, z= 0, which is
consistent with a current circulating around the surface loop. When the surface
electron classically travels from x; to x,, the phase is given as

total flux  travel distance

_ -2
B(x) — ¢(x)) = 2mx ¢ " ircumference
tWB, (x, —x,) 7B,

=2 —_—~—
¢ 2W 42t ®

(x — x7)-

Unlike the surface electrons, the set of classical trajectories of the bulk electrons
can be characterized by the number of reflections off the bottom surface
(Supplementary Figure 4). Similarly the Green function can be decomposed as
follows:

F(iw,1) = Fy(iw, 1) + F, (iw,1) + ... ,

where F, represent the normal propagators that consist of the trajectories having n
reflections off the bottom surface. When the travel distance is longer than the
hc)l/Z

magnetic length I = (&

¢5) > the Green function gains the Aharonov-Bohm

no_,
phase, %" J A - dl, where the integral is taken over the chord connecting r; and r,.
0
n

There are two distinct Aharonov-Bohm phases that come from the bulk
quasiparticle trajectories: (1) a phase due to a trajectory with no reflections so
that the quasiparticle is transferred directly from one superconducting contact into
the other and (2) a phase due to a trajectory that reflects off of the bottom surface
more than once before being transferred into the other contact. If there are no
reflections, the bulk quasiparticle will follow the same trajectory as the surface
quasiparticles. In this case, the bulk electron should gain the same phase as the
surface electron:

X

o)~ o) =57 [a-at =220 [ (s~ D)ax = "2 s, - ).

1

If the bulk quasiparticle is reflected from the bottom surface at least one time, it
will follow a continuous path from z=0 to z = t and the bottom half will have the

opposite modulation from the top half of the flake. In this case, the net phase
cancels each other out:

t

¢(Xz)*¢(xl):%/A-dl:i—:/o(z(x)fé) —o.

As a result, bulk electrons with reflection-less trajectories gain the same FME
effect as surface electrons while the bulk electrons with reflected trajectories do not
experience the FME and only contribute to the conventional Fraunhofer pattern.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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