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Evolution of the Kondo lattice and non-Fermi liquid
excitations in a heavy-fermion metal
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F. Steglich! & S. Wirth!

Strong electron correlations can give rise to extraordinary properties of metals with renor-
malized Landau quasiparticles. Near a quantum critical point, these quasiparticles can be
destroyed and non-Fermi liquid behavior ensues. YbRh,Si, is a prototypical correlated metal
exhibiting the formation of quasiparticle and Kondo lattice coherence, as well as quasiparticle
destruction at a field-induced quantum critical point. Here we show how, upon lowering the
temperature, Kondo lattice coherence develops at zero field and finally gives way to non-
Fermi liquid electronic excitations. By measuring the single-particle excitations through
scanning tunneling spectroscopy, we find the Kondo lattice peak displays a non-trivial tem-
perature dependence with a strong increase around 3.3 K. At 0.3 K and with applied magnetic
field, the width of this peak is minimized in the quantum critical regime. Our results
demonstrate that the lattice Kondo correlations have to be sufficiently developed before
quantum criticality can set in.
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eavy fermion materials, i.e. intermetallics that contain rare

earths (REs) like Ce, Sm, and Yb or actinides like U and

Np, are model systems to study strong electronic corre-
lations2. The RE-derived localized 4f states can give rise to local
magnetic moments which typically order (often anti-
ferromagnetically) at sufficiently low temperature as a result of
the inter-site Ruderman-Kittel-Kasuya-Yosida interaction. In
addition, the on-site Kondo effect causes a hybridization between
the 4f and the conduction electrons, which eventually screens the
local moments by developing Kondo spin-singlet many-body
states. Hence, these two interactions directly compete with each
other and lead to different (long-range magnetically ordered vs.
paramagnetic Fermi-liquid) ground states®. A zero-temperature
transition between the two states can be controlled through
doping, pressure or magnetic field H. A quantum critical point
(QCP) and concomitantly non-Fermi liquid properties ensue if
the phase transition is continuous at zero temperature*~°.

Heavy fermion metals have been established as a canonical
setting for quantum criticality?. How the Kondo lattice coherence
develops upon lowering the temperature, i.e. the hierarchy of
energy scales, is, however, still a matter of debate. Intuitively, the
coherence temperature T, is set by the single-ion Kondo tem-
perature Ty of the lowest-lying crystal-field level” and can be
further reduced by disorder®, while within another model T,
can exceed T considerably”!0. The latter model might be related
to the influence of crystalline electric field (CEF) effects®!l.
Considerable experimental efforts have recently been devoted to
the study of the quantum critical regime at sufficiently low
temperatures. A key observation is that quantum criticality
induces a large entropy, suggesting that it is linked with the
Kondo effect. This raises the important question!? as to how the
onset of Kondo lattice coherence at elevated temperatures con-
nects with the emergence of quantum criticality at low
temperatures.

The prototypical heavy fermion metal YbRh,Si, shows an
antiferromagnetic (AFM) ground state with a very low Néel
temperature, Ty = 70 mK, and a QCP upon applying a relatively
small field poHy =0.66 T parallel to the tetragonal c-axis. Non-
Fermi liquid behavior has been observed in the quantum critical
regime (i.e. at finite field), extending up to temperatures of about
0.5 K13, depending on the physical quantity that is measured as
well as the degree of disorder!?, see T-H phase diagram in Fig. 1.
Isothermal magnetotransport!>1® and thermodynamic!” mea-
surements at low temperatures have provided evidence for the
existence of an additional low-energy scale T'(H), which has been
interpreted as the finite-temperature manifestation of the critical
destruction of the lattice Kondo effect!® and the concomitant
zero-temperature jump of the Fermi surface from large to small
across the QCP. Measurements of the thermal and magnetic
Griineisen ratio strongly support this picture!®20. An ever
pressing issue, however, is the huge specific heat coefficient even
in zero magnetic field!42!, which implies an abundance of fluc-
tuations. Below Ty, these are of Fermi-liquid type. Above Ty, an
obvious cause of these fluctuations are dynamical Kondo corre-
lations, and above ~0.5 K YbRh,Si, at zero field belongs to the
quantum-critical fluctuation regime!3. Yet, alternative scenarios
have been proposed as well22-24,

Scanning tunneling spectroscopy (STS) measures locally the
density of states (DOS)?> through single-particle excitations”-2%27.
Spectra obtained at temperatures T>4.6K and H=0 revealed
the successive depopulation of the excited CEF states as the
temperature is lowered, with essentially only the lowest crystal-
field Kramers doublet occupied at lowest temperatures’. The
coupling between the localized 4f electrons in this Kramers
doublet and the conduction electrons gives rise to periodic
Kondo-singlet correlations which start to develop below Ty

This coherence temperature is linked to the effective single-ion
Kondo temperature Tx =25K extracted from bulk measure-
ment?8, While these properties conform to the traditional
understanding of the high-temperature behavior of the Kondo
lattice?®30, the questions remain open on how the Kondo
coherence evolves further upon lowering the temperature!331,32
and in applied field (green arrows in Fig. 1) and, importantly,
how it connects with quantum criticality.

We therefore measure STS down to 0.3K and in applied
magnetic fields up to 12 T, complemented by magnetotransport
and thermopower measurements on identical YbRh,Si, samples.
We find that lattice Kondo correlations dominate only at tem-
peratures about an order of magnitude below the single-ion
Kondo temperature. Substantial lattice Kondo correlations are a
prerequisite for quantum criticality to set in.

Results

Temperature evolution of tunneling spectra down to 0.3 K.
Tunneling conductance curves dI/dV = g(V,T) obtained over a
wide range of temperatures are presented in Fig. 2a. Both, the
peaks due to CEF splitting of the Yb3*T multiplet (marked by
black dots in Fig. 2a) and the conductance dip at zero bias (V=
0), result from single-ion Kondo physics’. Specifically the latter
signifies the hybridization between 4f and conduction electrons.

high
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~25 K [gppp0000000000005¢0000000000000009000000090000000000000092 Tic=Toon

Lattice Kondo effect

Fig. 1 Phase diagram of YbRh,Si,. Schematic temperature-magnetic field
phase diagram as inferred from magnetotransport'>1¢, magnetostriction'’,
and magnetization?® measurements at low T, and STM measurements
down to ~5K”. The QCP (red dot) is located at H" ~ 0.06 T for H.Lc and
H"~0.66 T for H||c. The single-ion Kondo temperatures T]Tgh and T involve
all (purple shading) and the lowest-lying (white) crystal electric field levels,
respectively. The lattice Kondo effect starts to develop around Teop &~ Tk. The
Kondo-exchange interaction between the two types of spins, respectively,
belonging to the local moments or the conduction electrons, gives rise to
Kondo correlations in the spin-singlet channel, which are always dynamical
at finite temperatures. The lattice Kondo effect (gray arrow) grows as
temperature is decreased. At large magnetic fields, lowering the
temperature eventually turns the short-lived lattice Kondo correlations into
long-lived ones (brown region) indicating a heavy Fermi liquid with
renormalized (large) Fermi surface well below Tg.. For small magnetic fields
the correlations stay dynamical. Here, an antiferromagnetic (AFM) order
(blue region) develops below the Néel temperature Ty, again with long-lived
lattice Kondo correlations. The reddish regime embedding the T'(H)
crossover line indicates incoherent quantum critical fluctuations as the
system evolves towards the respective ground state on either side'>""7. This
scale, anchored by the QCP, marks the finite-temperature signature of the
Mott-type phase transition at T= 0, additionally visualized by the red bars
corresponding to the width of the crossover in Hall effect'®. The green
arrows indicate the parameters used in STS measurements
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Fig. 2 Tunneling spectroscopy on YbRh,Si,. a Tunneling conductance g(V,
T) normalized at V= —80 mV and obtained at 0.3, 1.7, 5.5, and 30 K (from
bottom to top), curves at 1.7, 5.5, and 30 K are offset for clarity. The —6
meV-peak evolves strongly at low T (red arrow). Black dots mark features
resulting from CEF splitting of the Yb 4f multiplet. b g(V, T)-curves at
selected low T (blue: 0.3 K, magenta: 1K, orange: 1.9 K, olive: 3.3K)
obtained on the Si-terminated surface shown in the inset. Inset:
Topography indicating excellent surface quality (scale bar: 4 nm, V=100
mV, = 0.6 nA)

The most striking feature, however, is the evolution of the peak at
about —6 mV (red arrow in Fig. 2a). This peak initially develops
below 30K, but clearly dominates the spectra only for T<3.3K.

We now focus on this low-temperature regime T<3.3K
(Fig. 2b). These data were obtained on the surface shown in the
inset where topography over an area of 20 x 10 nm? is presented.
Such a topography not only attests the excellent sample quality
but is also indicative of Si termination (see Supplementary Note 1
and Supplementary Figs. 1, 2). This termination is pivotal to our
discussion as it implies predominant tunneling into the conduc-
tion electron states. A hint toward the origin of the —6 mV-peak
comes from renormalized band structure calculations®’: a
partially developed hybridization gap is seen in the quasiparticle
DOS at slightly smaller energy. Here, as a result of the
renormalization the 4f band is shifted close to the Fermi level.
Since tunneling spectroscopy on Si-terminated surfaces primarily
probes conduction electrons and the total number of electrons
must remain constant, the hybridization gap in the 4f-band is
seen as a peak in our tunneling spectroscopy. On the other hand,
a multi-level, finite-U non-crossing approximation (NCA)
described our temperature-dependent tunneling spectra away
from the energy range of this peak reasonably well” but presented
no indication for the existence of a peak at —6 mV. Since NCA
does not include intersite Kondo correlations it is very reasonable
to assume that this peak results from a strong development of
lattice coherence, i.e. the lattice Kondo effect, and will be referred
to as the Kondo lattice peak. The bulk nature of the —6 mV peak
is supported by comparison to bulk transport measurements, as
discussed below.
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Fig. 3 Analysis of the Kondo lattice peak. a Tunneling conductance g(V, T=
0.3K) normalized to its value at V=—80 mV, and parabola used for
background subtraction (dashed line). Arrows indicate onset of deviations
between data and parabola. b Examples of g(V, T, H= 0)-data after
background subtraction (hollow markers, data sets at T<5.5K are offset).
Data can be well described by Gaussians (lines). ¢ Height (circles) and
width (FWHM, crosses) of the peak at —6 mV after normalizing all g(V, T)-
curves at —80 mV. At Tp, indicated by the upward arrow, peak height and
width change significantly. Results from different samples cause several
markers to overlap. Dashed lines are guides to the eye. d Relative depth of
the single-ion Kondo dip at zero-bias. Low-T data were obtained on several
surfaces of two different samples, data at T>5K from ref.”. The upward
arrow indicates Tp (as in ¢), the downward arrow Ty. Dashed line is a
logarithmic fit to the data as proposed in ref.34

An analysis of the Kondo lattice peak is impeded by the
strongly temperature-dependent zero-bias dip close by (see also
Fig. 3d, Supplementary Notes 2, 3 and Supplementary Figs. 3, 4).
Data g(V,T230K) for —15mV <V<-3mV can be well
approximated by a parabola and hence, we assume a parabola
to describe the background below the Kondo lattice peak at low
temperature, see the example of T=0.3K in Fig. 3a. There are
finite energy ranges on both sides of the peak feature allowing to
fit a parabola, cf. arrows in Fig. 3a. After background subtraction,
each peak can be well described by a Gaussian (lines in Fig. 3b)
from which its height and width (full width at half maximum,
FWHM) is extracted. Note that the peak position in energy is
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Fig. 4 Development of lattice Kondo correlations. The height of the Kondo
lattice peak (red squares) is compared to thermopower S divided by T (blue
crosses) in dependence on T. Low-temperature data (T <6 K) were taken
from ref.35. Left inset: same S/T-data on a logarithmic scale to show
broader range. Right inset: Hall mobility uy vs. T. All three properties exhibit
a strong upturn below Tp ~ 3.3 K and saturation at lowest T

independent of temperature (Fig. 3b). Clearly both, the peak
height and FWHM, exhibit a significant change across Tp = 3.3 K,
Fig. 3c. In contrast, the dip in zero-bias conductance, the
hallmark of the single-ion Kondo effect, smoothly continues to
deepen (Fig. 3d, for data on linear T-scale see Supplementary
Fig. 4). Here, the depth of the zero-bias dip is defined as
1—[g(V=0,T)/g(V=-8mV,T)). This depth decreases
logarithmically for 10K < T< 120K, i.e. around T, as predicted
by dynamical mean field theory>*.

Comparison to magnetotransport and thermopower measure-
ments. While this temperature evolution of the single-particle
spectrum is surprising, it connects well with the features that
appear in bulk transport measurements'4-17-3>36, Importantly,
Fig. 4 shows that the thermopower divided by temperature, —S/T,
has a qualitatively similar temperature dependence as the height
of the STS Kondo lattice peak. Both display a plateau below about
7K, and a subsequent strong increase upon lowering the tem-
perature below Tp = 3.3 K. Here, Tp is defined as the temperature
at which the —6meV-peak strongly develops. In the zero-
temperature limit, a Fermi liquid is characterized by a constant
value S/T. For a Kondo lattice system, this is expected to be seen
at very low temperatures, ie., once the renormalized band
structure is almost fully developed?”. In fact, for YbRh,Si, heavy
Fermi-liquid behavior was observed beyond the QCP: At fields
HoH= 1T, the coefficient —S/T reaches =7 uV/K? for tempera-
tures up to ~0.5 K, indicative of a very large effective charge
carrier mass. The plateau in S/T seen in Fig. 4 occurs at a value
almost an order of magnitude smaller and extends to a corre-
spondingly higher temperature (see also Supplementary Note 5).
This indicates some medium heavy Fermi liquid, i.e. prevailing
Kondo-lattice correlations. Moreover, the nearly logarithmic
increase in S/T below Tp resembles that of the Sommerfeld
coefficient y of the electronic specific heat!# and is a clear sig-
nature of non-Fermi liquid behavior3. Therefore, the comparison
of our STS results with those of S/T naturally leads us to propose
that the incipient saturation of the Kondo lattice peak height
below about 7 K (Fig. 4) signifies some prevailing Kondo-lattice
correlations and, importantly, the growth of this peak below Tp,
as well as the concomitant drop of peak width (Fig. 3c) capture
the quantum critical behavior. This leads to the insight that
quantum criticality arises not before there is sufficient buildup of
lattice Kondo correlations (see Supplementary Note 4 and

Supplementary Fig. 5), or conversion of the local 4f electron spins
into extended quasiparticle-like, but still incoherent excitations.
To illustrate this point further, the Hall mobility py = Ry/p.x
as a function of temperature is also plotted in Fig. 4, right inset
(Ry itself is compared to S/T in Supplementary Fig. 6). In the
regime where the anomalous Hall effect dominates, this quantity
has been considered as capturing the buildup of the on-site
Kondo resonance38. Tt is striking that the Hall mobility also shows
a strong increase upon lowering the temperature. Yet, the Hall
mobility does not show any plateau near 3 K, and neither does the
resistivity nor the Sommerfeld coefficient as a function of
temperature!, This implies that Tp=3.3K is not an ordinary
Fermi liquid scale. The connection between the growth of the
Hall mobility with quantum criticality becomes evident when we
analyze its inverse 1/upy = ps/Ry, which is equivalent to the
cotangent of the Hall angle, cot 0, as a function of temperature.
In YbRh,Si,, a power-law behavior of 1/uy, more specifically 1/
Y ~ T2, is observed for 05K <ST<S 5K (see Supplementary
Fig. 7). Such a behavior, as well as the T-linear electrical resistivity
seen in relevant parts of the phase diagram of YbRh,Si,!4, has
also been observed, eg, in the cuprate high-T,

superconductors®.

Evolution of tunneling spectra in magnetic fields. To search for
more direct STS evidence for quantum criticality in the H-T
phase diagram of YbRh,Si,, the system was tuned by a magnetic
field at T=0.3K=0.1Tp, i.e. where coherent lattice effects are
clearly dominating. Some g(V, H, T = 0.3 K)-curves are presented
in Fig. 5a. No major change in the overall shape of the spectra
with magnetic field is observed. The Kondo lattice peak can again
be described by a Gaussian after parabolic background subtrac-
tion (Fig. 5b). Within the energy resolution of our STM the peak’s
position in energy is independent on H. The resulting FWHM of
the peak in dependence on H is presented in Fig. 5c. We note that
the FWHM at low T and fixed H varies very little between dif-
ferent spectra, and even different samples, i.e. <4% (see also
Fig. 3¢ where several data points of the FWHM fall on top of each
other). This is taken as the error of FWHM, and determines the
size of the error bars in Fig. 5c. Moreover, a comparison between
the data and the Gaussian fit in Fig. 5b reveals an only slightly
enhanced noise of g(V, H, T= 0.3 K) at elevated fields compared
to zero field. Consequently, the trend displayed in Fig. 5¢ appears
genuine.

At a field of yoH = 1T, the Kondo lattice peak FWHM exhibits
a minimum, with a reduction of about 15% of its high-field value.
This field is approximately of the value yoH = 1.3 T at which the
Hall crossover takes place at T=0.3K for H||c (red cross in
Fig. 5¢, for the field direction see Supplementary Note 6). The
range in magnetic field over which the Hall crossover is
observed!® is indicated by a red arrow in Fig. 5c. This implies
that changes in g(V, H, T=0.3K) are to be expected within a
similar field range, as indeed suggested by the drop in peak width
vs. H at T=0.3K (see also Supplementary Note 7 and
Supplementary Fig. 8). Note that at this low temperature Kondo
lattice effects are dominating. In this regime, the observed drop of
peak width at yoH = 1T indicates a reduced quasiparticle weight
and follows the expected behavior for a critical slowing down
concluded from isothermal magnetotransport (Hall coefficient,
Ry, and magnetoresistance, p,,) measurements!>:16, revealing
thermally broadened jumps at H'(T). One may therefore expect
that the drop in peak width may further increase and sharpen
upon cooling, (cf. Fig. 1). In this view, all our findings reflect the
finite temperature remnant of a field-induced QCP at T'= 0. Data
from specific-heat measurements on YbRh,Si, in magnetic field*°
confirm this assignment (cf. Supplementary Fig. 8). They yield a
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Fig. 5 Spectroscopy in applied field. a Tunneling conductance g(H, T=0.3
K) measured at different magnetic fields (0, 1, 7, 11 T from bottom to top)
applied parallel to the magnetically hard c-axis. Curves are offset for clarity.
b Tunneling conductance data of a after parabolic background subtraction
(markers) as described in Fig. 3a. Lines are the corresponding Gaussian fits;
fields and color scheme as in a. ¢ FWHM of the Kondo lattice peak for
different magnetic fields at T=0.3 K. At this temperature and field
orientation, the energy scale T (cf. Fig. 1) is located at a field of about 1.3 T
(red cross'™17), approximately where a minimum is observed in the peak
width. Several samples/cleaves were used to establish the existence of this
minimum. The red arrow indicates the FWHM of the Hall crossover at T=
0.3K 16, Height of blue error bars correspond to the errors of the Gaussian
fits (Figs. 3a and b) and differences between samples, the line is a guide to
the eye

relative change of the Sommerfeld coefficient between critical
(H") and elevated fields of order 30% at T= 0.3 K, if scaled for the
relevant field orientation. We believe that the larger change in
Sommerfeld coefficient compared to the drop in FWHM of the
STS Kondo lattice peak (Fig. 5¢, about 15% compared to the value
at 9 T at which YbRh,Si, is almost in the Fermi liquid regime‘“) is
related to the fact that heat capacity integrates over the whole
Brillouin zone while STS is a more directional measurement. For
a surface along the a-b plane (Fig. 2), tunneling along the c-
direction is most relevant, yet hybridization of the Yb CEF
ground state orbitals is anisotropic®3, mostly with the Rh 4d,o_yp.

Remarkably, the FWHM at zero field falls in line with its trend at
high fields yoH 2 3.5 T, i.e. there is no significant difference at T=
0.3 K at both sides of the QCP. While the presented STS data on its
own do not allow to distinguish between quantum critical scenarios,
they are in good agreement with isothermal magnetotransport data.
Even at a temperature as low as ~0.5K, the Hall crossover is
expected to reach all the way to H = 0'3. In analogy, the peak width
in STS at H = 0 should be close to the one extrapolated from higher
fields, where a large Fermi surface constitutes the heavy Fermi
liquid. Crossing the T -line at temperatures as high as about half a
K, there is still a dominating contribution of the large Fermi surface
to the quantum-critical fluctuations even at zero field*2. Upon
cooling, this contribution of the large Fermi surface at H=0 is
expected to decrease!3. To establish this trend further, lower
temperatures for our STS measurements are clearly called for. We
note that Lifshitz transitions and Zeeman splitting can be ruled out
as origins for the drop of the peak’s FWHM (see Supplementary
Note 5).

Discussion

Our STS studies here have revealed two important insights. One
is that the development of the dynamical lattice Kondo correla-
tions in a stoichiometric material such as YbRh,Si,, while setting
in at T.op = T, extends to considerably lower temperatures and
dominate the material’s properties only at much lower tempera-
tures (see Supplementary Note 4). In the case of YbRh,Si,, the
STS Kondo lattice peak height and thermopower coefficient do
not indicate dominant lattice Kondo correlations before the
temperature has reached Tp~0.1-T.p. Moreover, the con-
ductance minimum at zero bias, which has been shown to capture
primarily the on-site Kondo (i.e. hybridization) effect at tem-
peratures T25 K7, also continues to deepen down to the lowest
measured temperature as shown in Fig. 3d. Conversely, the
strengthening of the lattice Kondo coherence only at much below
Tk implies that the on-site Kondo effect dominates many ther-
modynamic and transport properties at around and below Ty, in
YbRh,Si,, and gives way to the lattice Kondo correlations only
slowly upon reducing the temperature. Such a persistence of this
distinct signature of the single-ion Kondo effect down to tem-
peratures substantially below T, is consistent with observations
based on different transport>”-*® and thermodynamic®#* prop-
erties of several other heavy-fermion metals. On the one hand,
this provides a natural explanation to the applicability of single-
ion-based descriptions to temperatures well below Ty even
though they neglect lattice Kondo coherence effects”->738. On the
other hand, this finding supports nicely the theoretical concept of
two temperature scales, i.e. a single-ion and a lattice Kondo
scale?®30, including the predicted order of magnitude
difference’”.

The second lesson concerns the link between the develop-
ment of the dynamical lattice Kondo correlations and quantum
criticality. As a function of temperature, our measurements of
the height and width of the Kondo lattice peak strongly suggest
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that, in order for the quantum criticality to set in, the lattice
Kondo correlations first have to develop sufficiently upon
lowering the temperature through, and well below, Tx = Tcop
~30K. More specifically, as the temperature is lowered
through T, both the Kondo lattice peak height and the
thermopower coefficient first reach a plateau below about 7 K
signifying well-developed lattice Kondo correlations. It is
against this backdrop that the Kondo lattice peak height and S/
T markedly increase below Tp = 3.3 K. This manifests quantum
criticality at the level of the single-particle spectrum, which
goes considerably beyond the quantum critical behavior seen
in the divergent Sommerfeld coefficient of the electronic spe-
cific heat and the linear-in-T electrical resistivity'4. This sig-
nature of the quantum criticality at the single-particle level is
complemented by the isothermal behavior of the Kondo lattice
peak with respect to the control parameter, the magnetic field,
at the lowest measured temperature, T = 0.3 K. The FWMH of
this peak displays a minimum at a similar field value at which
isothermal transport and thermodynamic measurements show
a Fermi surface crossover!®-17 indicating its relation to
quantum criticality.

To put these findings into perspective, our comparative studies
indicate an appealingly natural scenario: the development of the
lattice Kondo correlations is the prerequisite for quantum criti-
cality. Only if the Kondo lattice is sufficiently established quan-
tum critical fluctuations can evolve. As such, the insights gained
in our study will likely be relevant to the non-Fermi liquid phe-
nomena in a broad range of other strongly correlated metals, such
as the high-T. cuprates and the organic charge-transfer salts,
which are typically in proximity to Mott insulating states and in
which quantum criticality is often observed*4-46,

Methods

Sample characterization. High-quality single crystals of YbRh,Si, were grown by
an indium-flux method; they grow as thin platelets with a height of 0.2-0.4 mm
along the crystallographic c-direction (see also Supplementary Note 6). Crystalline
quality and orientation of the single crystals were confirmed by x-ray and Laue
investigations, respectively. The residual resistivity p, of the six samples investi-
gated here ranged between 0.5 and 0.9 uQ) cm with no apparent differences in their
spectroscopic results. The samples were cleaved in situ perpendicular to the crys-
tallographic ¢ direction at temperatures ~20 K. Subsequent to cleaving, the samples
were constantly kept under ultra-high vacuum (UHV) conditions and did not
exhibit any sign of surface degradation for at least several months, as indicated by
STM re-investigation.

Scanning tunneling microscopy and spectroscopy. STM and STS was con-
ducted (using a cryogenic STM made by Omicron Nanotechnology) at tem-
peratures between 0.3 and 6 K, in magnetic fields yoH < 12 T (applied parallel to
the crystallographic ¢ direction) and under UHV conditions (p < 2-10~° Pa).
Spectroscopic measurements were conducted using lock-in technique with V,
=0.2mV. For the tunneling spectra shown, g(V, T)-data were averaged over
areas of 1 x 1 nm? on grids of 24 x 24. In zero magnetic field, the averaging area
was repeatedly varied between zero (i.e. spectroscopy repeated at a given point)
and 5 x 5nm? to ensure local homogeneity of the g(V,T)-data. For the tem-
perature range 4.6 K< T'<120K a second UHV STM (LT-STM) was utilized
(p<3-10~7 Pa).

Thermopower measurements. The thermopower S was measured by applying a
temperature gradient to a rod-shaped sample of dimensions 4 x 0.5 x 0.1 mm3
out of the same batch as the samples used in STM/S measurements. For low
temperatures 0.03 K STS 6 K, a home-built, dilution refrigerator-based setup
was used, while measurements between 2 and 360 K were conducted in a PPMS
(Quantum Design Inc.). The overlap of the two temperature ranges between 2
and 6 K serves as consistency check. Thermopower data in the high-temperature
range compare nicely to those obtained earlier?”. Hall effect measurements (see
ref.%8 for details) were conducted on the same sample as the thermopower
measurements.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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