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Nonreciprocal responses from non-
centrosymmetric quantum materials
Yoshinori Tokura1,2 & Naoto Nagaosa1,2

Directional transport and propagation of quantum particle and current, such as electron,

photon, spin, and phonon, are known to occur in the materials system with broken inversion

symmetry, as exemplified by the diode in semiconductor p–n junction and the natural optical

activity in chiral materials. Such a nonreciprocal response in the quantum materials of

noncentrosymmetry occurs ubiquitously when the time-reversal symmetry is further broken

by applying a magnetic field or with spontaneous magnetization, such as the magnetochiral

effect and the nonreciprocal magnon transport or spin current in chiral magnets. In the

nonlinear regime responding to the square of current and electric field, even a more variety of

nonreciprocal phenomena can show up, including the photocurrent of topological origin and

the unidirectional magnetoresistance in polar/chiral semiconductors. Microscopically, these

nonreciprocal responses in the quantum materials are frequently encoded by the quantum

Berry phase, the toroidal moment, and the magnetoelectric monopole, thus cultivating the

fertile ground of the functional topological materials. Here, we review the basic mechanisms

and emergent phenomena and functions of the nonreciprocal responses in the non-

centrosymmetric quantum materials.

Chirality, which characterizes right and lift, is an important and fundamental notion in
whole sciences, including physics, chemistry, and biology1. For example, a molecule is
called chiral when its mirror image does not overlap with the original molecule. In the

language of symmetry, it has no inversion symmetry Î nor mirror symmetry M̂. The inversion
Îcan be expressed in terms of the product of the mirror symmetry M̂ and the 180° rotation C2

around the axis perpendicular to the mirror plane. Therefore, Î and M̂ are identical once C2 is
assumed in free space. (Hereafter, we use Î symmetry representing either Î or M̂ depending on
the crystal symmetry.) It often determines the biological functions and is crucial for the phar-
maceutical biotechnology. In addition to these issues on static structures, the dynamics of the
systems is the main interest in physics. Namely, the directional responses may occur in physical
systems with broken Î. In solids, the crystal structure often breaks the Î symmetry, but they do
not necessarily guarantee the directional response. To see this, one can look at the one-
dimensional scattering problem with the asymmetric potential barrier V(x)(≠V(−x)). The
transmission and reflection probabilities are identical, irrespective of the left-going or right-going
incident wave. Namely, the directional dependence is missing here. It comes from the unitary
nature of the scattering (S)-matrix. Furthermore, the time-reversal symmetry T̂ of the Schroe-
dinger equation imposes the condition S= ST (ST means the transpose of S). It is natural that the
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right mover and left mover are exchanged by both Î and T̂ , and
hence these two symmetries play essential roles in the non-
reciprocal responses.

Accordingly, as shown in Box 1, there are four categories of
nonreciprocal responses depending on (i) the linear and non-
linear response, and (ii) T̂-unbroken and T̂-broken. While the
physical mechanisms of the phenomena and effects listed in this
table will be discussed below in detail, we stress here that non-
reciprocal responses touch the most fundamental issues of con-
densed matter physics such as symmetries, quantum geometrical
nature of electrons, and electron correlation.

Linear nonreciprocal responses
Onsager reciprocal theorem. In many-body systems in ther-
modynamic limit, the dissipative process occurs commonly,
which determines the direction of time due to its irreversible
nature. However, this is distinct from the time-reversal symmetry
T̂
� �

breaking due to the magnetic field B or the spontaneous
magnetization M. Onsager recognized the role of T̂-symmetry in
the microscopic dynamics of the system appearing in the mac-
roscopic response functions linear to the external stimuli2,3. It is
formulated by Kubo formula for linear response function KAB(q,
ω, B) corresponding to the input B and output A with the
wavevector q and frequency ω, which satisfies the relation4

KAB q;ω;Bð Þ ¼ εAεBKBA �q;ω;�Bð Þ ð1Þ

where εA= ±1, εB= ±1 specifies the even–odd nature of the

quantity A (B) for the time-reversal operation. This Onsager’s
reciprocal theorem, when applied to the conductivity tensor, gives

σαβ q;ω;Bð Þ ¼ σβα �q;ω;�Bð Þ ð2Þ

The magnetochiral effect described in Box 1 corresponds to the
formula that σαα(q, ω, B)= σαα(ω)+ κBq, which is consistent
with Eq. (2). Another application of Eq. (2) is the natural circular
dichroism which is expressed by σαβ (q, ω, B= 0)= ζεαβγqγ with
εαβγ being the totally antisymmetric tensor, which describes the
rotation of the light polarization in a chiral crystal. This natural
circular dichroism should be distinguished from the Kerr and
Faraday rotation which follows from σαβ(q= 0, ω, B)= ξεαβγBγ,
and does not depend on the direction of light, i.e., q. Below, we
discuss the linear nonreciprocal responses in more detail
describing their microscopic mechanism.

Directional dichroism and birefringence in magnetoelectrics.
The light wave-vector- (q) dependent optical response, typically
termed directional dichroism or directional birefringence, can be
observed ubiquitously in materials with broken symmetries of
both space-inversion Î

� �
and time-reversal T̂

� �
and in a wide

photon-energy region ranging from a microwave to hard X-ray.
One of the early observations is the directional light emission
(luminescence) from a chiral molecule with luminescent Eu3+ ion
under the magnetic field reported by Rikken et al.5; depending on
the relative direction of parallel and antiparallel light-emission q

Box 1 The classification of nonreciprocal responses in noncentrosymmetric materials according to the time-reversal symmetry
and linear/nonlinear nature of the responses

The nonreciprocal responses are classified into four categories, as shown in Table depending on (i) the linear or nonlinear responses, and (ii) with time-
reversal symmetry or broken time-reversal symmetry. Note that the broken inversion symmetry Î is always assumed. The nonreciprocal linear response is
described by the difference of the response function between q and –q (q: the wavevector of the electromagnetic field), and is subject to Onsager’s
reciprocal theorem Eqs. 1 and 2 in Section “Onsager reciprocal theorem” of the main text. Therefore, the diagonal response, i.e., α= β in Eq. 2, the time-
reversal symmetry T̂ must be broken for the different response between q and –q. An example is the directional magnetochiral effect, where the dielectric
function ε(q,ω,B) differs from ε(−q,ω,B) (Section “Directional dichroism and birefringence in magnetoelectrics”). The constraint ε(q,ω,B)= ε(−q,ω,−B)
from Onsager’s theorem requires that B should be finite for the magnetochiral effect. As for the off-diagonal linear response, the rotation of the
polarization of light in the opposite directions between q and –q is possible for noncentrosymmetric systems even without the broken T̂, i.e., the natural
circular dichroism. Once the T̂-symmetry is broken, we expect the directional dependence of the propagation of excitations in general. Magnon
propagation in noncentrosymmetric magnets is an example, where the q-linear term in the energy dispersion appears (Section “Nonreciprocal dynamics
of magnons”).
On the other hand, nonlinear nonreciprocal responses are characterized by the directional I–V characteristics, typically realized in p–n junction. In this
case, the role of the wavevector q is replaced by the current I as first suggested by Rikken40, which leads to the resistance R expressed by

R ¼ R0 1þ βB2 þ γBI
� � ðB1Þ

where the resistance depends on the direction of the current I (Section “Unidirectional magnetoresistance”). Here it is evident that the broken
T̂-symmetry due to B is needed for the directional resistance. Also, various nonreciprocal nonlinear optical responses are realized when both Î- and
T̂-symmetries are broken, e.g., in multiferroics (Section “Nonlinear optical effects in multiferroics”). However, this argument is a heuristic one, and it
should be noted that the breaking of T̂-symmetry is not needed in the nonreciprocal response in sharp contrast to the linear response. A classic example
of the nonreciprocal nonlinear response is the rectification effect of p–n junction, and another example is the shift current in noncentrosymmetric
materials, where the optical excitation creating interband transitions induces the spontaneous dc photocurrent depending on the polarity of the crystal
(Section “Shift current in polar insulators”). This effect does not require the T̂-symmetry breaking, and is related to the Berry phase connection of the
Bloch wavefunction.

Nonreciprocal response Linear response Nonlinear response

Time-reversal unbroken Forbidden (diagonal)
Natural circular dichroism (off-diagonal)

Shift current
Nonlinear Hall effect
p–n junction

Time-reversal broken Optical ME effect
Magnetochiral effect
Nonreciprocal magnon

Nonreciprocal nonlinear optical effect
Electrical magnetochiral effect
Inverse Edelstein effect
Magnetochiral anisotropy
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and the applied magnetic field B, i.e., q·B > 0 or <0, the light-
emission intensity is modulated, typically up to a few % for B of
the order of a few tesla. This case is called the magnetochiral
dichroism. Magnetoelectric (ME) directional anisopropy has been
first observed in Er1.5Y1.5Al5O12 with the modulation of the
refractive index δn= γq·(E × B)6. When luminescent rare-earth
ions are incorporated into a polar medium, e.g., in ferroelectric
BaTiO3 doped with Er7, modulation of luminescence intensity
occurs depending on the case, q·(P × B)>0 or <0; here P denotes
the electric polarization. When the breaking of T̂ is brought about
by spontaneous magnetization M instead of applied magnetic
field B, even a larger directional effect can show up. The direc-
tional dichroism is phenomenologically described by the Maxwell
equations plugged in with the ME susceptibility tensor α; P= αB
or M= tαE. In case of multiferroics where the spontaneous P and
M coexist, the diagonal and off-diagonal components of α are
outcomes of the free energy terms proportional to E·B8 and E ×
B6, respectively.

Figure 1a–d exemplifies the directional dichroism observed for
the ME spin excitation, termed electromagnon, which shows both
magnetic and electric transition-dipole activities9. The helical or
conical spin order as shown in Fig. 1a can produce the electronic
chirality depending on the magnetic helicity. In this particular
compound, Ga-doped CuFeO2 with a triangular lattice of Fe3+

ions10, the hybridization of the metal (Fe3+) d state, and ligand
(O2−) p state under the influence of spin–orbit interaction can
produce the electric polarization P along the screw wavevector
(Q) direction, as described by the d–p orbital hybridization
model11. This multiferroic character can allow one to obtain the
single spin-helicity domain, or equivalently the single chirality
domain, via the ME cooling procedure under B//E, since the sign
of P depends on the spin helicity in this mechanism. Thus, when
the magnetic field is applied along the Q direction (or the Q is
directed along the applied magnetic field direction), the
magnetochiral dichroism for the qω//Q (here qω being the light
q vector with the frequency of ω, set parallel to the z axis) is
anticipated to stem from the off-diagonal ME coefficient (αxy)
since the orthogonal light electric and mangetic fields are along x
or y. Figure 1b, c exemplifies the large directional dichroism
spectra, i.e., the spectra of real part (n) and imaginary part (κ) of
the refractive index depending on the qω//P or –P12. The change
of complex refractive index is given by the off-diagonal
component of the ME susceptibility, ±αij(ω), in conjunction with
the Maxwell wave equation. The αxy(ω)= Δn(ω)+iΔκ(ω) shows
the characteristic anomalous dispersion spectrum due to the
resonance of the electromagnon.

The diagonal ME susceptibility arises from the E·B-type
coupling term in the free energy and is found in the system
endowed with the ME monopoles. Here the ME monopole is
defined by the magnetic structure with the inward or outward
configuration of spin moment (m), i.e., div m ≠ 013. A classic
example of this is the antiferromagnetically ordered state in
Cr2O3, in which Cr dimers formed along the c (z) direction show
the up and down spin moment configuration, i.e., the ME
monopole, and the linear ME effect was first predicted14 and
detected15. While Cr2O3 shows both the diagonal and off-
diagonal ME effect, the diagonal component leads to the specific
nonreciprocal optical effect, termed gyrotropic birefringence
(GB). The GB represents the rotation of the optical principle
axes depending on the light incident direction, as schematized in
Fig. 1d. When the light propagates along the y direction (qω//y)
with the light Eω//z and Hω//x, the additional Pωx and Mω

z

components are induced inside the material by the diagonal ME
susceptibility of αxx and αzz, respectively. Therefore, the rotation
of the optical principle axes is described in terms of the dynamic

ME susceptibility αGB(ω)= αxx(ω)–αzz(ω). This was first con-
firmed for the Cr d–d excitation region in the visible range16.

The large GB has been observed for the electromagnon in
multiferroic (Fe, Zn)2Mo3O8 with the ferromagnetic moment M
and the inherent electric polarization P both along the c axis
(Fig. 1d)17,18. The ferrimagnetic spin alignment along the c axis
also produces the ME monopoles. The electromagnon locating at
1.4 THz (5.6 meV) shows the resonant dispersion of αGB(ω),
giving rise to the 0.02-rad rotation and 0.04-rad ellipticity of the
light polarization for the 430-μm-thick crystal at 5 K. The
electromagnon resonance is turned out to contribute to about 8%
of the DC (ω= 0) linear ME susceptibility, pointing to the
important role of the electromagon excitation as the ME
fluctuation in multiferroics18.

Another important example of multiferroics to potentially
show the GB is the axion insulator state constituted from the
topological insulator (TI). In the TI, the Lagrangian of the
electromagnetic field can contain the axion coupling term,

α
4π2
� �

θE � B, in addition to the conventional Maxwell term19,20.
Here, α= e2/ħc is the fine structure constant and θ is equal to π (0
or 2π) in the topological (non-topological) insulator. When the
top and bottom surface-state dispersions both show mass gaps
due to the exchange coupling with the opposite magnetizations
(i.e., ±1 Chern number, Fig. 1e) and the Fermi level is inside these
mass gaps, the compound can be an axion insulator with the
topological ME effect, as characterized by the diagonal ME
susceptibility αzz~α. This state can also be viewed as possessing
the ME monopole like Cr2O3, and be anticipated to show the
topological GB in a quantized manner21.

As exemplified above, the nonreciprocal dichroism/birefrin-
gence can be ubiquitously observed in a broad family of materials
system with both broken Î and T̂ in a wide photon-energy region
ranging from μeV (microwave)22 to keV (hard X-ray) region23.
Apart from the case of the ME excitation resonance like the
electromagnon24,25, their magnitudes usually remain at most a
few % to the original absorption intensity or to the π/2 rotation
for GB. A notable exception is the case of sharp resonant crystal-
field d–d excitations in the canted antiferromagnetic phase of
CuB2O4 with noncentrosymmetric space group I42d26. There,
zero-phonon line of the d–d transition is observed to show the
huge q-directional change of the absorption or the nearly perfect
cloaking at high magnetic field, which is ascribed to the strong
interference between E1 (electric-dipole) and M1 (magnetic-
dipole) transitions caused by the spin–orbit coupling26,27.

Nonreciprocal dynamics of magnons. When the quasiparticle
with the wave vector k propagates along the magnetic field B (or
magnetization M) in the chiral-structure compound, the relevant
response function adds the additional term AMCh, which is in
proportion with σ[sgn(k·H)], to the conventional term A0; here σ
= ±1 depends on the lattice chirality, i.e., right or left handedness
of the crystal. This relation generally holds for photon, magnon,
and other quasiparticles which can be sensitive to the B orM. The
case of photon is the magnetochiral dichroism as described in the
previous section. Here we review the studies done on the magnon
(spin wave) propagation.

The most archetypal example is the spin wave propagation in
the chiral-lattice ferromagnet; this was recently observed in chiral
magnets such as LiFe5O8

28, Cu2OSeO3
29, and other intermetallic

compounds30,31. The effective Hamiltonian of the chiral magnet
can be described as the sum of symmetric (J) and antisymmetric
(D) exchange interactions, cubic anisotropy (K) term, and
Zeeman term proportional to H. There the asymmetric exchange
interaction, called Dzyaloshinskii–Moriya (DM) interaction,
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originates from the relativistic spin–orbit coupling in the
noncentrosymmetric (here, chiral) lattice and works as a source
of nonreciprocity of magnon transport. The chiral magnet
generally shows the helical (screw) spin state whose magnetic
periodicity is given as aD/J with a being lattice constant. The
application of H turns the helical spin ground state to the spin-
collinear (ferromagnetic) state, where the spin wave dispersion is

given by

hν ¼ σ sgn k �Hð Þ½ � � 2DSV0 kj j þ Csym ð3Þ

Here, Csym= JSV0 κ2+ 2KV0S3+γħμ0 H is an even function of k;
γ, μ0,V0, and S are gyromagnetic ratio, vacuum magnetic
permeability, unit cell volume, and vector spin density,
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Fig. 1 Magnetochiral dichroism and gyrotropic birefringence (GB) in multiferroics. a Schematic illustration of the conical screw spin structure under an
external magnetic field (Hex) in multiferroic CuFe1–xGaxO2 (x= 0.035). The Hex parallel to the in-plane magnetic modulation qm (e.g., // [110]) modifies the
proper screw spin structure to the conical one. The ferroelectric polarization (P) driven by the screw spin structure also points to the in-plane qm direction
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Copyright (2017) by the American Physical Society. e Axion insulator potentially showing the topological magnetoelectric effect and associated GB,
composed of the magnetic topological insulator with the opposite magnetization directions on the top and bottom layers. Figure from ref.21 with permission
from Nature Publishing Group
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respectively. The first k-linear term causes the shift of the
parabolic spin wave dispersion (Csym) and hence the different
group velocity between +k and –k, as shown in Fig. 2a, leading to
the nonreciprocal propagation of the spin wave. (In the case of
the plate-shaped sample, the dispersion is modified by the
magnetic dipolar interaction in the k~0 region, as discerned by
the sharp spike around k~0 in Fig. 2a.)

The spin wave spectroscopy can directly demonstrate the
nonreciprocal magnon transport. As the typical experimental
setup (Fig. 2b), a pair of coplanar wave guides (ports 1 and 2)
placed beneath the chiral magnet play roles of generator and
detector of magnon. The wave number (k) distribution of the
generated spin wave is represented by the Fourier transform of
the wave guide pattern with the spacing of λ, i.e., k~2π/λ. The
spectra of the mutual inductance L12 (L21) represent the
propagation of the spin wave or magnon from terminal 1 to 2
(2 to 1). Figure 2c exemplifies the imaginary part of the
inductance spectra L12 and L21 with λ ∼12 μm, taken for the
specific-chirality (D-body or σ=+1) crystal of chiral (space
group: P213) magnet Cu2OSeO3 with the spin-collinear state
induced by the magnetic field of ±740 Oe applied parallel/
antiparallel to the magnon k direction29. The magnetochiral
nonreciprocal propagation can be clearly discerned as the
frequency shift between L12 and L21 and also as the reversal of
the shift upon the reversal of the magnetic field direction. The
results for the L-body (σ=−1) crystal show the reversed relation,
confirming the magnetochiral nature. Figure 2d summarizes the
result of the spin wave spectroscopy; in the relatively high

magnetic field (hatched) region where the spin-collinear ferro-
magnetic state is stable, the difference Δvp of the peak frequency
of L12 and L21 (representing the magnon energy difference
propagating from terminal 1-to-2 and 2-to-1) is opposite in sign
in the positive and negative magnetic fields. The magnon group
velocity vg deduced by the L12 and L21 data differs between the 1-
to-2 and 2-to-1 propagation and the difference is also reversed
upon the reversal of magnetization. All these features point to the
magnetochiral nonreciprocity of magnon transport, which is well
accounted for with Eq. (3). By contrast, the helical spin state in
the low magnetic field shows the minimal nonreciprocity
although the symmetry argument would allow the nonreciprocal
effect. The magnon energy difference between+k and –k is
directly related to the DM interaction D, and in turn its
observation can give the quantitative estimate of D, as demon-
strated in a series of the chiral-lattice magnets hosting the
magnetic skyrmion near room temperature31.

The k-linear term in the magnon dispersion caused by the DM
interaction can be probed by other means of spin wave or
magnon spectroscopy such as inelastic neutron spectroscopy30

and light Brillouin scattering spectroscopy32,33. For example, the
inelastic neutron-scattering spectroscopy on chiral-lattice magnet
MnSi (P213 space group) has directly demonstrated the
asymmetric magnon dispersion as described by Eq. (3)30. The
DM interaction produced at the interface between the heavy-
element (i.e., large spin–orbit interaction) metal and ferromagnet
can play an important role in spintronics function and also
generate the nonreciprocal magnon transport along the lateral
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direction under the magnetic field applied laterally and normal to
the k direction. This was also detected as the difference of the spin
wave resonance frequency between+k and –k in terms of the
light Brillouin scattering spectroscopy32,33.

Nonlinear/nonreciprocal transport
Theorem of fluctuation. Compared with the linear response
theory, its nonlinear generalization of nonreciprocity is far more
difficult and not well explored. However, the generalization of
Onsager’s reciprocal theorem has been intensively discussed
recently, and is called “fluctuation theorem”, which also origi-
nates from the time-reversal symmetry of the microscopic
dynamics of the system34–37. Let p(R) be the probability that the
entropy change is R. Then the fluctuation theorem claims that

pðR;BÞ
pð�R;�BÞ ¼ eR ð4Þ

where R > 0 means the entropy production, while R < 0 the
entropy reduction. B represents the magnetic field, and the
denominator and numerator of the left-hand side of Eq. (4) are
related by the time-reversal symmetry. In the thermodynamics
limit, R becomes very large, and hence the right-hand side of Eq.
(4) is infinite, and the probability of the entropy reduction is zero,
i.e., the second law of thermodynamics. This theorem imposes the
constraint on the fluctuation around the average, and the linear
response theory as well as the Onsager’s reciprocal theorem can
be derived from this theorem. Especially, the fluctuation phe-
nomena in the mesoscopic systems are an ideal laboratory to
study this theorem. As an application of the fluctuation theorem,
the analysis of the counting statistics gives the relation between
the nonlinear transport coefficient and noise in quantum trans-
port of a mesoscopic conductor38. Let I be the current and V the
voltage between the electrodes. The nonlinear I–V characteristics
can be written as

I ¼ G1Vþ 1
2!
G2 V

2 þ 1
3!
G3 V

3 þ � � � ð5Þ

and the current-noise S= <(δI)2>/Δf (δI: the deviation of the
current from the average, Δf: the frequency range) is expressed as

S ¼ S0 þ S1 V þ 1
2!
S2 V

2 þ � � � ð6Þ

The fluctuation-dissipation theorem in the linear response is S0=
4kBTG1, which determines the Johnson–Nyquist noise S0 in
thermal equilibrium. The generalization to nonlinear response
reads S1= 2kBTG2. The analysis including the magnetic field B as
well as its experimental test has been done, and the readers would
refer to the literature38,39. Fluctuation theorems can provide the
basis of the nonlinear responses beyond the Onsager’s reciprocal
theorem, but their applications to the bulk transport phenomena
are not well explored as yet.

Unidirectional magnetoresistance. The directional nonlinear dc
resistance has been discussed by Rikken40, who gave a heuristic
argument generalizing the Onsager’s reciprocal theorem into the
nonlinear regime, and suggested Eq. (B1) in Box 1 for the current
(I)-dependent resistivity R, where the second term with coeffi-
cient β represents the usual magnetoresistance, while the third
term with coefficient γ the directional resistance, i.e., magne-
tochiral anisotropy. Although Eq. (B1) does not describe the
vector nature of the current and magnetic field, there are two
types of magnetochiral anisotropy according to the crystal
structures with broken inversion symmetry. One is the polar
structure where the directions of the polarization P, magnetic

field B, and the current I (electric field E) are orthogonal to each
other; R= R0[1+γ′(P×B)·I]. The upper part of Fig. 3 presents the
list of examples, i.e., Si FET41, magnetic bilayer42, BiTeBr43, and
surface state of TI42, in this class. One typical example is the
rectification effect in BiTeX (X= I, Br) in which Bi, Te, and X
layers are stacking alternately so that the mirror symmetry along
the c axis is broken, i.e., P//c. This material shows the giant spin
splitting of the band structure due to the Rashba spin–orbit
interaction44. However, the time-reversal symmetry leads to the
relation

εσ kð Þ ¼ ε�σ �kð Þ ð7Þ

with k being the crystal momentum and σ is the spin component.
Therefore, when the spin components are summed up as in the
case of charge transport, the directional dependence disappears.
Once the external magnetic field is applied in plane, e.g., along the
y-axis, the energy dispersion becomes asymmetric between kx and
–kx as shown in Fig. 4a, and I–V characteristic along a-direction
becomes nonreciprocal. Analysis in terms of the Boltzmann
transport theory concludes that the coefficient γ in Eq. (B1) is
independent of the lifetime of the electrons in the relaxation time
approximation, similar to the case of Hall coefficient, and is an
intrinsic quantity to the band structure. Therefore, one can pre-
dict quantitatively the magnitude of γ as a function of the electron
density and temperature. Figure 4b shows the dependence of the
nonlinear resistivity on the direction of the magnetic field in
BiTeBr, which is consistent with the relation that R= R0[1+γ′
(P × B)·I]43. Figure 4c presents the electron density dependence
of γ measured by experiments and calculated theoretically with-
out any fitting parameters since the band structure of this
material has been already determined43. Excellent agreement
between theory and experiment indicates that the microscopic
origin of the magnetochiral anisotropy in this material is the
asymmetric deformation of the energy dispersion.

Another example of the (P × B) · I-type nonreciprocity is the
case of the TI, as shown in Fig. 4d–f 45. In the TI thin film (Bi,
Sb)2Te3 (BST), the upper layer part (denoted CBST) is doped with
magnetic Cr ions to enhance the magnetic response as well as to
introduce the asymmetry between the top and bottom surface
layers where the cone-like dispersion of the conduction electron is
formed with strong spin-momentum locking (Fig. 4d). When the
magnetic field B is applied along in-plane and perpendicular to
the current I direction, the large nonlinear component ΔRxx
shows up (Fig. 4e); note that the spontaneous magnetization is
originally (at zero field) perpendicular to the plane but inclined to
the in-plane by the external in-plane field. The important feature
for ΔRxx is its sign reversal upon the reversal of B and also upon
the reversal of the stacking sequence structure of BST
(nonmagnetic) and CBST (magnetic) layer; the latter procedure
corresponds to the reversal of P, thus satisfying the condition of
the magnetochiral anisotropy. Under the in-plane B field, the
Weyl cone should show a parallel shift in the k-space, yet this
would give no effect on the nonlinear conduction if the quadratic
term of the band dispersion could be neglected, being contrary to
the case of the above example of the Rashba system. The
unidirectional nonlinear magnetoresistance ΔRxx observed in this
semi-magnetic TI system shows the characteristic magnetic field
and temperature dependence; as increasing B to several-tesla
region and as elevating temperature across the ferromagnetic
ordering temperature, ΔRxx shows a steep reduction. These
observed features are all explained in terms of the relevance of the
magnon excitations, i.e., their emission and absorption, in the
originally forbidden backward-scattering process of the spin-
momentum-coupled Weyl electrons (Fig. 4a). The application of
B opens the spin wave gap, resulting in the reduction of the
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magnon scattering events at low temperatures. Furthermore, the
tuning of the Fermi level around the Dirac (band crossing) point
is found to enhance ΔRxx because the magnon’s q vector and
energy to mediate the backward scattering of the conduction
electron can be small and more effectively thermally populated.

The other class of the materials showing unidirectional
magnetoreistance is the chiral structure shown in the lower part
of Fig. 3; in this case, the nonlinear nonreciprocal conduction is
sometimes called the electrical magnetochiral effect in analogy to
the above-described optical magnetochiral effect. Examples of this
class include Bi helix40,46, molecular solid47, and MiSi48. The
helix is a representative example of this class, and an early
experiment on Bi-helix wire found a finite γ value40. The
suggested mechanism of this effect is the magnetoresistance due
to the magnetic induction b by the current I circulating along the
helix, i.e., the effective magnetic field felt by the electrons is B+ b,
the magnitude of which depends on the direction of I. In this
case, the nonlinear conduction is maximized when magnetic field
B and the current I (electric field E) are parallel to each other,
namely taking the form of B·I. A similar effect was also observed
in a molecular semiconductor47. Ferromagnets with chiral crystal
structures are also expected to show the magnetochiral
anisotropy.

Beyond the phenomenological or symmetry argument, there is
known the case where a specific scattering mechanism can cause
the electrical magnetochiral effect. In MnSi with the cubic chiral-
lattice structure (P213), in which spin-helical or skyrmion phase
forms below Tc= 35 K because of Dzyaloshinskii–Moriya inter-
action inherent to the lattice chirality, the B·I-type nonlinear
conduction is observed with the opposite sign for the two
enantiomers48. Symmetry allows the electrical magnetochiral
effect in every T–B region. In reality, however, the effect becomes
appreciable not in the helical magnetic order region but
immediately above Tc, where the spin fluctuation is observed to
retain the chiral character. This means that the scattering process
of the conduction electron by the chiral spin fluctuation is proven
to be the major source of the electrical magnetochiral effect in this
case.

Nonreciprocal response in Weyl semimetals. Weyl semimetal is
a class of materials where the Weyl fermions are at the Fermi
energy typically described by the Hamiltonian49

HWeyl ¼ ηvσ � k � k0ð Þ; ð8Þ

where σ= (σx,σy,σz) are Pauli matrices, v is the velocity, k0 is the
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Fig. 3 Systems showing the unidirectional magnetoresistance. There are two classes according to the crystal symmetry, i.e., polar and chiral structures.
Polar systems include Si FET41, magnetic bilayer42, BiTeBr43, and surface state of topological insulator (TI)44. In this class of systems, the resistivity R
showing the magnetochiral anisotropy has the form R= R0[1+γ(P×B)·I] where the directions of the polarization P, magnetic field B, and the current I
(electric field E) are orthogonal to each other. There are several microscopic mechanisms of the magnetochiral anisotropy. For Si FET41, the relativistic
Lorentz transformation and associated correction due to the factor v/c (v: velocity of electrons, c: velocity of light) was proposed41. For magnetic bilayer Ta|
Co and Pt|Co systems, it has been proposed that the current-induced spin accumulation modifies the resistivity through the spin–orbit interaction and spin-
dependent scattering42. The asymmetric band dispersion under the in-plane magnetic field in the presence of the Rashba spin–orbit interaction is identified
as the origin of the nonreciprocal resistivity in BiTeBr43, while the asymmetric scattering of electrons by magnons is the origin in the surface state of
topological insulator (TI)44. The examples of the other class, i.e., the chiral structure, are shown in the lower part, which shows the behavior R= R0[1+γ
(B·I)] called the electrical magnetochiral effect. Examples of this class include Bi helix40,46, molecular solid47, and MiSi48. The helix structure is a
representative example of this class. It has been discussed that the magnetic field b produced by the current is combined to the external magnetic field B,
and the magnetoresistance for b+ B results in the electrical magnetochiral effect in Bi helix40. Similar effect was also observed in a molecular
semiconductor [DM-EDT-TTF]2ClO4 (middle of the lower panel)47. In a ferromagnet, the time-reversal symmetry is spontaneously broken, and the chiral
ferromagnet can show the electrical magnetochiral effect. MnSi is a representative example, and that effect is enhanced above the helical transition
temperature Tc48. This suggests that the spin fluctuation of chiral nature is the origin of the electrical magnetochiral effect. Reprinted figures with
permission from ref40,41,45. Copyright (2001, 2005, 2016) by the American Physical Society. Figures from ref.42–44,47,48 with permission from Nature
Publishing Group
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band crossing point, and η= ±1 specifies the chirality. It has been
known that the Weyl fermion acts as the magnetic monopole or
antimonopole of the emergent magnetic field in the momentum
space for η=+1 and η=−1, respectively. The
Nielsen–Ninomiya theorem50 dictates the equal number of the
Weyl fermions with opposite chiralities. One of the peculiar
phenomena associated with Weyl fermions is the chiral anomaly,
which is shared also by the Dirac fermion with 4 × 4 Hamiltonian.
This is the phenomenon where the fermions are transferred
between opposite chiralities in proportion to E·B under the
external electromagnetic field. This results in the large negative
magnetoresistance when the electric and magnetic fields are
parallel or antiparallel to each other49,51.

Note that, as for the Weyl fermions with 2 × 2 Hamiltonian,
either the time-reversal T̂ or the space-inversion Î must be broken
to lift the Kramer’s degeneracy except at k0. Accordingly, there
are two types of Weyl semimetals. One is the T̂-broken, but
Î-symmetric Weyl semimetal. Î-symmetry relates the Weyl
fermions at k0 and −k0, and the chiralities of these are opposite
to each other. On the other hand, in the Î-symmetry broken Weyl
semimetals, the Weyl fermions at k0 and −k0 have the same
chirality. Therefore, according to the Nielsen–Ninomiya theo-
rem50, there must be at least another pair of Weyl fermions at k1

and −k1. Namely, there are at least four Weyl fermions at ±k0
and ±k1. The energy dispersions and also the Fermi energy shift
at ±k0 and ±k1 are different and contribute differently to the
conductivity. Therefore, once the external magnetic and electric
fields shift the electrons in proportion to E·B between positive
and negative chirality Weyl fermions due to the chiral anomaly,
there occurs the current proportional to (E·B)E, which indicates
the magnetochiral anisotropy52. Because the Weyl fermions in
Î-broken system are solely due to the spin–orbit interaction, and
also the Fermi energy shift from the Weyl point is usually small,
the smallness of the perturbation discussed in the previous
section is avoided, leading to the large nonreciprocal response.
Quantitatively, γ value in Eq. (B1) can be four orders of
magnitude larger than those discussed in the literature40.

Nonreciprocal transport in a noncentrosymmetric super-
conductor. The magnetochiral anisotropy is usually a small effect
because it requires both the spin–orbit interaction λ, which
reflects the inversion symmetry breaking and the magnetic field B
breaking the time-reversal symmetry. For each perturbation, the
energy denominator is typically the Fermi energy εF, and γ is
expected to be proportional to (μBB/εF)(λ/εF) and is usually very
small. In the case of BiTeBr discussed above, the giant Rashba
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splitting leads to λ/εF ∼ 1 and the reasonably large γ. However,
even larger γ is realized in the noncentrosymmetric super-
conductors53 as shown below. The physical picture for this
enhancement is that the Cooper pairs with the large coherence
length ξ feel the noncentrosymmetric nature of the potential
sensitively in the low- energy region below the superconducting
gap Δ. In the I–V characteristics, the voltage is zero in the low
current region. However, in 2D superconductors with an external
magnetic field, the unpinned vortices produce the finite resistance
and γ can be defined54. In this case, the energy denominator in
the expression of γ becomes Δ replacing εF, leading to the
enhancement of γ by some power of the factor (εF/Δ). An
example is the noncentrosymmetric superconductor MoS2 com-
posed of the stacked layers with weak van der Waals interac-
tion55. The monolayer system is a 2D network with D3h

symmetry, leading to the trigonal-warping of the Fermi surfaces
and out-of-plane spin polarization with effective Zeeman fields at
K-points. Measurement of γ as a function of temperature shows
its rapid growth below the temperature slightly higher than the
mean field transition temperature T0, the mean field transition
temperature, reaching the value γ~8000 T−1A−1 well below T056.

Theoretical analysis has been restricted to the paraconductivity
above T057, concluding the enhancement of γ as γS

γN
� εF

Δ

� �3
, and

predicted γ ~400 T−1A−1 . Although the analysis well below T0

has not yet been done, the rapid increase of γ observed
experimentally is consistent with the theoretical prediction. The
dynamics of vortices should be relevant to the nonreciprocal
resistivity well below T0, which is left for future studies.

Nonlinear/nonreciprocal photonic responses
Nonlinear optical effects in multiferroics. The nonlinear and
nonreciprocal optical effects are also expected generically for the
materials system with broken symmetries of space-inversion and
time-reversal. One important source of such nonlinear optics
(NLO) in the magnetic system is the toroidal moment T58 as
defined by T ¼ 1

2

P

i
ri ´ Si; here Si is the spin moment on the site

ri. Since the effective spin–orbit coupling term in Hamiltonian is
described as λL·S= λ(r × p)·S=−λ(r × S)·p= eAeff ·p where e
and p are electron’s charge and momentum, the toroidal moment
T can be viewed as the built-in vector potential Aeff under the
presence of spin–orbit interaction. Then T can mix with the ac
vector potential Aω from the light (frequency ω, i.e., T+Aω). The
compound may not show the second-order nonlinear optical
(NLO) effect responding to A2

ω, but generically does the third-
order term responding to A3

ω. When the T is mixed in, this third-
order term can effectively generate the second-order response,
i.e., responding to TA2

ω. Namely, when the light electric field Eω
(or Aω) is parallel to T of the material, the effective second-order
NLO, typically second-harmonic generation (SHG with frequency
of 2ω) is observed. Conversely, such magnetization-induced SHG
can be used as a probe for the toroidal moment.

Figure 5 exemplifies the toroidal moment-induced SHG in
multiferroics59. FeGaO3 (Fig. 5a) shows the polar structure along
the b axis (P//b), while the magnetic moments on two Fe sites
(Fe1 and Fe2) is antiferromagnetically coupled with their
moments parallel to the c axis. Then Fe1 and Fe2 jointly form
the toroidal moment T //a60. The respective sublattice magne-
tization on Fe1 and Fe2 shows the unbalance, allowing the
ferromagnetic moment M, which enables to control the sign of T
//(P ×M) by application of an external field. The SHG is
originally active to produce E2ω//b light along the polar axis,
while it is also activated by the toroidal moment for Eω//a. In the
case of oblique incidence of the light with Eω//a (s-polarized) on
the ac plane sample, both the SHG components (E2ω //b from the
original crystal polarity and E2ω //a from the toroidal moment)

can mix to generate the rotation of the polarization of the SHG
light, as shown in Fig. 5b. This is called nonlinear Kerr rotation61

and the effect is usually much larger than the conventional Kerr
rotation angle in ferromagnets. The reversal of either P or M can
cause the sign reversal of the nonlinear Kerr rotation. The parallel
component (say, x-component) of the oblique incident light k-
vector is either parallel or antiparallel to the applied magnetic
field or magnetization direction (along x), and hence the reversal
of kx shows also the sign reversal of the nonlinear Kerr rotation.
The phase (π) change of the E2ω of the SH light upon the sign
change of the toroidal moment enables one to image and map the
toroidal moment domains in a multi-domain state, as exemplified
in Fig. 5c. In some multiferroics, the ferrotoroidic/
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antiferrotoroidic domains can be distinguished from ferromag-
netic/antiferromagnetic domains, as exemplified for the case of
multiferroic LiCoPO4

62. This method has been also applied to
probe the magnetization at the heterointerface with the effective
polarity along the normal63,64. It is also noted that the spin
toroidization in periodic crystals has been formulated recently
from the viewpoint of the Berry phase of Bloch wavefunctions65.

Shift current in polar insulators. Up to now, we assume the
broken time-reversal symmetry to obtain finite nonreciprocal
response, e.g., the current proportional to BE2. However, one can
ask if there is a possible mechanism of the current proportional
E2 even without the broken T̂-symmetry. From this viewpoint, it
is known that the photoexcitation produces the current even
without the potential gradient, i.e., the external electric field, in
noncentrosymmetric materials. This photocurrent is called shift
current. Figure a of Box 2 shows the experiment on a perovskite
ferroelectrics [KNbO3]1–x[BaNi1/2Nb1/2O3–δ]x (KBNNO), where
the direction of the shift current is switched by that of the electric
polarization66.

Then, an important question is how the nonreciprocal
nonlinear responses are possible without the broken T̂-symme-
try? To answer to this question, one notes that the previous
discussion was based on the energy dispersion satisfying the
relation Eq. (7). Therefore, when the current does depend not
only on the energy dispersion but also on the wavefunction, it is
possible to realize the nonreciprocal responses without T̂-break-
ing. This means that one must go beyond the Boltzmann
transport theory where only the energy dispersion εn(k) of the nth
band and consequent group velocity appear in the equation.
Namely, the group velocity vn(k)= ∂εn(k)/∂k corresponds to the
intraband matrix element of the current operator. On the other
hand, the interband matrix elements of the current operator are
related to the quantum geometry of the Bloch wavefunction and
Berry phase67, playing essential roles in the various quantum
transport phenomena including quantum Hall effect, quantum
charge pumping, anomalous Hall effect, and spin Hall effect68,69.
The Berry connection an(k) is defined as an(k)= i<un(k)|∂/∂k|
un(k)> with |un(k)> being the periodic part of the Bloch
wavefunction. an(k) is related to the overlap of the two Bloch
wavefunctions neighboring in the momentum space as
<un kð Þjun k þ Δkð Þ> ¼ eiΔk�an kð Þ, and has the geometrical mean-
ing of “connection” of manifold in Hilbert space. Therefore an(k)
is called Berry connection acting as the vector potential in the
momentum space. From the vector potential, one can define the
“magnetic field”, i.e., Berry curvature bn (k) as bn(k)=∇k × an(k).
It is known that the Berry curvature causes the anomalous
velocity of the electrons vann kð Þ ¼ F ´ bn kð Þ under the force F
acting on the electrons. This anomalous velocity is regarded as the
origin of the intrinsic anomalous Hall effect in ferromagnets69.
When the symmetries Î and T̂ are valid, there occurs the
Kramer’s doublet at each k-point, and therefore the Berry phase
should be defined as the 2 × 2 matrix, i.e., SU(2), instead of the U
(1) phase as discussed before. In other words, the U(1) Berry
curvature is zero in this case. On the other hand, when
Î-symmetry is broken, the Kramer’s degeneracy is lifted at each
k-point in the presence of the spin–orbit interaction, and U(1)
Berry phase can be nonzero. Therefore, the noncentrosymmetry
is encoded in the U(1) Berry phase. (Note that T̂-breaking also
produces the Berry phase in the presence of the spin–orbit
interaction.)

Since the real-space position r of the wavepacket made from
the Bloch wavefunctions is given by the gauge covariant
derivative as rn(k)= i∇k+ an(k), an (k) has the meaning of
intracell coordinate70. The interband transition from n-band to

m-band induced by the incident light results in the change of this
intracell coordinate from an (k) to am (k) and the corresponding
shift of the electron by the amount of rnm(k)=∇kφnm(k)+
an(k)–am(k) (shift vector) where the first term makes the rnm
gauge invariant with φnm(k) being the phase of the interband
matrix element of the current operator. Therefore, in the steady
state under the light irradiation, the continuous shift of the
electrons by rnm gives the dc current called shift current66,71–75.
This shift current has been estimated as a function of incident
light energy for BaTiO3 by the first-principles calculation, and a
good agreement was obtained between theory and experiment73.

Shift current is essentially different from the conventional
transport current in the sense that the former comes from the
interband matrix elements of the current J, while the latter from
the intraband ones71–75. Therefore, it is analogous to the
polarization current in ferroelectrics, but the remarkable feature
is that it can be the dc current. The experimental results on
tetrathiafulvalene-p-chloranil (TTF-CA) which is a quasi-one-
dimensional compound consisting of mixed stacks of alternating
donor (TTF) and acceptor (CA) molecules are shown in Box 2 76.
Shift current is a rather ubiquitous phenomenon in noncen-
trosymmetric systems. Actually, shift current has been studied or
discussed for GaAs77, SbSI78, and warped surface state of the
three-dimensional TI79. Furthermore, the shift spin current can
be also considered, which can have an application to
spintronics79.

Giant second-harmonic generation in Weyl semimetals. The
shift current is the dc current induced by the optical excitation,
and is the second-order process where the current is proportional
to E(ω)E(−ω). Similarly, the ac current with frequency 2ω pro-
portional to E(ω)E(ω) can be produced, i.e., second-harmonic
generation (SHG). It has been discussed that SHG has the similar
expression in terms of the shift vector rnm(k)=∇kφnm(k)+an(k)–
am(k) defined above, and again has the geometrical meaning.
Especially, the Weyl point corresponds to the magnetic (anti)
monopole of the Berry connection49, and hence can be a source of
large SHG. Actually as shown in Fig. 6, in noncentrosymmetric
Weyl semimetal TaAs, the large SHG has been observed with the
magnitude of |d|≈3600 pmV−1 (d represents a component of the
third-rank tensor representing SHG). This large value is to be
compared with corresponding values in other materials such as |
d|≈350 pmV−1 for GaAs, |d|≈250 pmV−1 for ZnTe, and |d|≈15
pmV−1 for BaTiO3

80. SHG of a model with two Weyl fermions
has been analyzed, and reasonably consistent values with the
experiment were obtained.

Nonlinear photocurrent induced by Berry curvature. The
photocurrent discussed above is driven by the Berry connection
an(k) rather than the Berry curvature bn(k). Then it is natural to
ask if there is a photocurrent induced by bn(k). This question has
been studied by Moore and Orenstein, who predicted the helicity-
dependent photocurrent due to Berry curvature81. The idea is that
the deviation δfn(k,t) of the electron distribution function occurs
in the presence of the electric field E and is proportional to τ(∂f
(ε)/∂ε)vn(k)E with being the relaxation time and vn(k) the group
velocity. The integral of the anomalous velocity vann kð Þ ¼
�eE ´ bn kð Þ over the modified distribution function results in the
photocurrent proportional to E2. The photocurrent is induced by
this mechanism for the quantum wells structure with the quan-
tum confinement of electrons81. A similar idea has also been
applied to the nonlinear Hall effect in time-reversal symmetric
systems induced by Berry curvature dipole82.
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Box 2

Shift current has been proposed theoretically71,72, and recently attracts intensive interest as a possible mechanism of the highly efficient solar cell action
in noncentrosymmetric crystals such as perovskite oxides. Figure a shows a representative example, i.e., ferroelectric oxide [KNbO3]1–x[BaNi1/2Nb1/
2O3–δ]x (KBNNO)66. This materials shows the ferroelectric behavior, and the spontaneous electric polarization can be switched by an external electric
field. Correspondingly, the direction of the photocurrent changes as shown in Fig. b. Figures c–e show another example, i.e., charge transfer organic
semiconductor tetrathiafulvalene-p-chloranil (TTF-CA), where the shift current is considered to be the main mechanism of photovoltaic effect76. Figure
c shows its crystal structure made of alternating donor and acceptor molecules, and Fig. d the temperature dependence of the photocurrent without the
applied electric field (short-circuit current). It is seen that the photocurrent grows rapidly below Tc. Figure e shows the light irradiation position
dependence of the photocurrent at above and below Tc. Above Tc, it shows the maximum near the electrodes and the sign is the opposite between the
right and left. This can be interpreted naturally that the photoinduced electrons and holes diffuse and are easily captured by the electrodes near the
ends of the sample. Below Tc, this behavior changes dramatically as well as the magnitude of the photocurrent. It is almost independent of the local
position of light irradiation, which indicates the nonlocal nature of the shift current. A recent theoretical study reproduces this behavior on the basis of
the numerical simulation of Rice–Mele model under the local light irradiation89.
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Perspective. In this article, we have seen ample examples of
nonreciprocal responses from quantum materials with broken
space-inversion symmetry Î. The directional transport/propaga-
tion of the quanta, such as electron, photon, spin, and phonon,
enables the one-way transmission of the information carrier. As
shown in Box 1, the diagonal linear nonreciprocal response is
only allowed for the system with broken time-reversal symmetry,
namely in a magnetic field or in a magnetically ordered state such
as the multiferroics. As the linear response, the nonreciprocal
transport of magnon can substantiate the diode effect of spin
current, which may append an important spintronic function.
The directional dichroism response is also an important non-
reciprocal function in the multiferroics that can support the ME
excitations, typically electromagnons. The directional dichroism
can realize the cloaking function; contrary to the conventional
Faraday rotation, it does not need the additional analyzer of the
light polarization to achieve the one-way transmission of light, if
the effect can be tuned so as to nearly equalize the electric-dipole
and magnetic-dipole transition moments.

Let us turn our eyes to the nonreciprocal transport of an
electron. The p–n junction (diode) is the most successful and
spectacular example for this. Although we did not touch on this
classic example in this article, it originates from the change in the
width of the depletion layers at the junction, and can be attributed
to the Coulombic interaction of electrons, i.e., the electron
correlation effect. Recently, this issue has been revisited from the
viewpoint of the multiband effect83. As for the dc electric field,
only the inclusion of the electron–electron interaction can
produce the nonreciprocal current proportional to E2, while the
non-interacting electron system cannot.

The shift current is another example that does not need
breaking of time-reversal symmetry, but even the electron

correlation is not required in this case. Its topological nature
may ensure the ballistic photocurrent upon the photoexcitation.
In addition to its importance as the initial process of the
photovoltaic action, the shift current may also work as potentially
ultrafast information transfer. As exemplified by the p–n junction
and the shift current, the nonlinear nonreciprocity is the key to
realize the ac-to-dc conversion. On this basis, the dc spin current
generation is also possible by the ac (photo) excitation on the
surface state of TI79. In the magnetic system with broken time-
reversal symmetry T̂ , an even more variety of the nonlinear and
nonreciprocal current controls are possible, as described in this
article for the nonlinear conduction for the Rashba system under
a magnetic field, the semi-magnetic TI, and the chiral-lattice
magnet. There, one mechanism of unidirectional magnetoresis-
tance is the field (magnetization)-induced electronic structural
change even with the constant scattering time as in the Rashba
system, and the other is due to the carrier scattering itself, for
example, the backward scattering via magnon emission/absorp-
tion in a TI and the directional scattering due to chiral spin
fluctuation in the chiral-lattice magnet (MnSi). Thus, the study
on the nonlinear and nonreciprocal charge transport can bring
about the important information about the underlying charge
dynamics in the simultaneously broken symmetries of time-
reversal and space-inversion.

One interesting question is whether the nonreciprocal
responses are possible when the product of the symmetries ÎT̂
is intact while both Î and T̂ are broken. One can easily see that
this product symmetry does not exclude the linear nonreciprocal
responses. For example, the toroidal moment, which produces the
directional dichroism, breaks both Î and T̂ symmetries, while it
does not break ÎT̂:. Of particular interest is the ÎT̂symmetry in
non-Hermitian systems. (Usually it is called PT-symmetry84.) It
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has been found that PT-symmetry plays a crucial role in
enhancing the optical isolator function85,86. In addition to optics,
the nonreciprocal propagation of heat is also a hot topic87. Also
the relation to the quantum Ratchet is an interesting problem to
be explored more in depth88. In this case, there is no T̂ symmetry
breaking and the soliton-like nonlinear excitations are regarded as
the source of the thermal rectification effect.

From the viewpoint of the basic principles, the noncentro-
symmetry is encoded by the Berry phase, and the Bloch
wavefunctions acquire the quantum geometric properties as
discussed in section “Nonlinear/nonreciprocal photonic
responses.” Berry phase is related to the interband matrix
elements of the current operator, and produces new types of
current in sharp contrast to the conventional transport current
due to the intraband matrix elements which allows the particle
picture through the wavepacket formalism. This “interband
current” manifests itself as the shift current appearing as the
photovoltaic effect. Furthermore, it should be noted that the
electron correlation combined with the interband current matrix
elements plays an essential role in the nonreciprocal responses.
Therefore, the physics of nonreciprocal responses touch the most
important elements of modern condensed matter physics, i.e., the
symmetry, quantum geometry or topology, electron correlation,
and also irreversibility. Reducing the symmetries in space and/or
time in quantum materials have explored a fertile ground for
condensed matter physics and electronics. The recent research of
multiferroics exemplifies this. Exploring the nonreciprocal
responses in quantum and topological materials as described
here is a promising direction of the research in search for
emergent functions.
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