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In vivo phosphoproteomics reveals kinase activity
profiles that predict treatment outcome in triple-
negative breast cancer
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Triple-negative breast cancer (TNBC) lacks prognostic and predictive markers. Here, we use

high-throughput phosphoproteomics to build a functional TNBC taxonomy. A cluster of 159

phosphosites is upregulated in relapsed cases of a training set (n= 34 patients), with 11

hyperactive kinases accounting for this phosphoprofile. A mass-spectrometry-to-

immunohistochemistry translation step, assessing 2 independent validation sets, reveals 6

kinases with preserved independent prognostic value. The kinases split the validation set into

two patterns: one without hyperactive kinases being associated with a >90% relapse-free

rate, and the other one showing ≥1 hyperactive kinase and being associated with an up to

9.5-fold higher relapse risk. Each kinase pattern encompasses different mutational patterns,

simplifying mutation-based taxonomy. Drug regimens designed based on these 6 kinases

show promising antitumour activity in TNBC cell lines and patient-derived xenografts. In

summary, the present study elucidates phosphosites and kinases implicated in TNBC and

suggests a target-based clinical classification system for TNBC.
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Triple-negative breast cancer (TNBC) is an immunohisto-
chemically defined breast cancer subtype that is negative
for ER, PR, and HER2 expression, and has a poor prog-

nosis1. A prognostic stratification system directly linked to dif-
ferent therapeutic options would be of great interest for TNBC.
Several gene-centered approaches, such as high-throughput -omic
studies assessing different properties of genes (NGS, CGH-arrays,
methylomics, transcriptomics), have revealed a marked hetero-
geneity within TNBC2–5, with sets of mutations unique to indi-
vidual patients4. In several cancer types, NGS studies have defined
subtypes by point mutations, which are actionable targets in a
number of malignancies, although not in breast cancer6. Highly
penetrant oncogenes are rarely found in TNBC, suggesting that
the TNBC phenotype is a result of coexisting, moderately pene-
trant, genetic changes that together contribute to its clinical
presentation.

An alternative investigative approach is in-depth high-
throughput phosphoproteomics, which exhibits certain advan-
tages due to the fact that proteins are effector molecules in tumor
cells7–10 and their functional status is modulated through post-
translational modifications (PTMs), of which phosphorylation is
the most ubiquitous during cellular signaling events7–10. These
upper-level regulatory events are not covered by the assessment of
gene-centric layers11,12. Previous studies in this area of research
have preliminarily assessed the kinome in breast cancer at the
gene expression level13,14. We hypothesized that the existing
(genomic, transcriptomic) aberrations among different patients
may coalesce into a discrete number of phosphorylation-driven
patterns of activation of the proteome, the activity of which would
determine the prognosis of a TNBC patient. These patterns would
be driven by the activity of a certain number of kinases among the
~500 encoded by the human genome, many of which are cur-
rently targetable.

The aims of the present study were: (1) to define the phospho-
profiles differentiating the relapsed from the non-relapsed TNBC
cases in a training set; (2) to identify novel phosphosites involved in
TNBC biology and the identities of the hyperactive kinases driving
the phosphoprofiles; (3) to evaluate the prognostic roles of these
kinases in independent TNBC training sets; and (4) to preliminarily
assess the therapeutic effect of blocking the kinases that drive the
aggressive phosphoprofiles in preclinical models of TNBC. As a
post-hoc analysis, the confluence of mutational patterns into
kinase-activation patterns was investigated.

We found that a set of six kinases drives the phosphoprofiles of
relapsing TNBC. These kinases preserve prognostic impact in two
independent validation sets. When patients are classified in pat-
terns according to the status of activation of these six kinases, two
main patterns of activation with 44 sub-patterns can be found.
Interestingly, several different genomic landscapes converge into
each of these patterns. Finally, therapeutic studies in preclinical
models suggest potential therapeutic utility of targeting these
kinases in TNBC.

Results
Kinases that drive the phosphoprofile of the relapsed cases. The
training set consisted of 34 tumor samples from patients with
extreme phenotypes15 of TNBC. To maximize the chances of
capturing the underlying biological factors accounting for the
differences between the non-relapsed and relapsed phenotypes,
we selected patients who relapsed in the first 3 years of follow-up
after locoregional treatment and those free of relapse after 12 or
more years, matched by conventional prognostic factors such as
T, N, or G (Fig. 1a; Supplementary Table 1). Accordingly, we
expected to have an increased chance of detecting phosphopep-
tides and kinases that could explain adverse outcomes.

Phosphofractions of tumor samples purified by Ti(IV)-IMAC16

were analyzed by high-resolution, accurate-mass, tandem mass
spectrometry (MS/MS), which yielded ~1.5 million spectra. We
identified >10,000 nonredundant phosphorylation sites in >9000
phosphopeptides that mapped to at least 2643 distinct proteins
(Supplementary Table 2).

We extracted functional readouts from the phosphorylation
status of the peptides and translated this large data matrix to
practical information. We first determined the abundance and
nature of the phosphorylated peptides that distinguished relapsed
from non-relapsed cases. The heatmap in Fig. 1b shows the 702
phosphopeptides identified in the tumors that demonstrated
significant differential regulation; 159 peptides had significantly
increased phosphorylation (at a higher intensity and frequency)
in the relapsed versus the non-relapsed cases. Supplementary
Table 3 shows the mapped proteins, the phosphorylated residue
(s), the kinases predicted to elicit their phosphorylated status, the
absolute intensity (abundance), and the percentage of relapsed
and non-relapsed patients in whom these 159 peptides were
detected. Sixty-three of these phosphosites have not previously
been shown to be related to breast cancer. Moreover, since
information regarding the function of many of the identified
phopshosites is lacking, we sought to piggyback the phospho-
profiles onto their driver kinases, based on the nature and
abundance of phosphorylation events and theoretical affinity of
the consensus sequences for each kinase. We employed a
methodology similar to that used for gene set enrichment
analysis of gene expression data to identify clusters of interest17,
and applied annotations to kinase motifs extracted using the
Perseus software, which integrates 327 linear motifs (80 of which
are SH2-binding domain motifs, 23 are phosphatase substrate
motifs, and 224 are kinases motifs). This strategy of kinase set
enrichment analysis (KSEAS) was used for the PSMs identified in
the tumors, generating enrichment plots for the kinases that drive
the profiles of relapsed versus non-relapsed cases. Figure 2a shows
an example chart for the kinase, CLK1, for which increased
activity was predicted in the relapsed cases based on the
abundance/occurrence of its putatively identified substrates (right
panel). The 11 KSEAS obtained from the phosphoprofiles of the
relapsed cases are shown in Fig. 2a, b. Random substrates from
the KSEAS predictions were tested with in vitro kinase assays
coupled with mass spectrometry and proven to be real substrates
of their predicted upstream kinases (Supplementary Figure 1).
These data implicate several hyperactive kinases (CDK4/6, CLK1,
CDK1, PP2Cδ, S6K, DAPK3, AKT, DUSP6, P70S6K, PAK2, and
PKCε) in the relapsing TNBC phenotype. With the exception of
the well-studied AKT kinase and to a lesser extent CDK4/618,
CDC2/CDK119, PKCε20, S6K13, and CHK121, these identified
kinases have not yet been linked to aggressive TNBC. Therefore,
we subsequently validated this information in an independent
patient series.

Translation of mass spectrometry to immunohistochemistry.
We aimed to translate the information that we obtained by mass
spectrometry (activated kinases—Fig. 2—and upregulated phos-
phosites—Supplementary Data 1) into data that could be
obtained from FFPE samples (the common vehicle of tumor
samples in the daily routine of the clinical environment), while
seeking external validation of our results. Mass spectrometry-to-
immunohistochemistry translation has 2 main challenges: (1)
unknown criteria for defining an activated kinase and identifying
the activated form in FFPE samples; and (2) lack of suitable
reagents: currently, antibodies suitable for use in the immuno-
histochemical detection of most of the kinases or upregulated
phosphosites identified by phosphoproteomics are not yet
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Fig. 1 Phosphoprofiling of the patient training set. a There were two patient subgroups in the training set: A 13 patients who relapsed within <3 years after
locoregional treatment (green chart), and B 21 patients who did not relapse >10 years after locoregional treatment (blue chart). The graphic shows the
Kaplan–Meier curves of the training set as a whole (purple chart) and of the two subgroups. Median time to relapse in group A: 17.4 months; median time
to relapse in group B: not reached (log-rank test, p < 0.001). b The heatmap shows the phosphopeptides (n= 702: 543 upregulated in non-relapsed and
159 upregulated in relapsed patients) with significant differences in phosphorylation levels in tumors from the training set by relapse status
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available. Supplementary Figure 2 explains the algorithm used to
select the antibodies employed for external validation of the
functional phosphosites depicted in Fig. 2 and Supplementary
Data 1. The algorithm yielded 11 valid antibodies against the
following targets: CDK6, CLK1, p-S6K (Ser240), DAPK3, PRKCE,
p-AKT (Ser473), p-ERK (Thr202/Tyr204), p-P70S6K (Thr389), p-
PNKP (Ser114/Thr118), CHK1, and c-Kit (control stainings are
shown in Supplementary Figure 3).

External validation. To ensure sufficient follow-up for the
observation of all events in the series and coverage of all disease
stages and treatment options, we gathered an independent set of
113 TNBCs, consecutively diagnosed in the year 2003, for vali-
dation purposes (Fig. 3a; Supplementary Table 1; Val-1). The
distribution of H-scores among the quartiles and photo-
micrographs of stained tissue samples are shown in Fig. 3b;
Supplementary Table 3 and Supplementary Figure 4, respectively.
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A kinase of interest with an H-score in the upper quartile was
considered highly active. Six of the 11 kinases exhibited inde-
pendent predictive power in Val-1, as shown by the
Kaplan–Meier curves and/or Cox’s adjusted hazard ratios for
patients with highly active kinases versus the remaining,
according to their kinase H-scores (Fig. 3c: PRKCE, c-Kit, p-ERK
(Thr202/Tyr204), p-P70S6K (Thr389), p-PNKP (Ser114/Thr118),
and CDK6). The other 5 kinases showed no significant prognostic
power (Supplementary Figure 5).

Comparing kinomic and mutational landscape of TNBC
patients. Given the lack of co-linearity among the H-scores of the
different kinases (Supplementary Figure 6), and the lack of
known direct functional interplay, we expected none of the
kinases to be necessary for relapse but to perhaps independently
contribute to the relapsed phenotype. We analyzed the outcomes
of patients whose tumors showed high activity of any of the 6
kinases versus patients whose tumors showed no such activity.
The resulting variable (K-high) allowed stratification of the 113
patients into two groups; one containing 81 cases (71%, high
activity of any of the 6 kinases) and one containing 32 cases (29%,
low activity of any of the 6 kinases). The respective relapse rates
were 47% and 6.5% after 12+ years follow-up, and the respective
median times to relapse were 9 years and not reached (Log Rank
P < 0.001; Fig. 4). Following adjustments for T, N, G, and age, K-
high positivity showed a Cox’s hazard ratio for relapse of 9.22
(Cox P < 0.001), suggesting that the group of patients without
high activity of any of the 6 kinases defines a subgroup of TNBCs
with an exceptionally good prognosis, and conversely, K-high
defines a subgroup with an extremely poor prognosis. For test
purposes, different variables were built combining the values of
only 2, 3, 4, or 5 kinases; however, despite showing better prog-
nostic discrimination than any of the kinases alone, none
achieved the same prognostic accuracy as K-high (Supplementary
Figure 7).

The number of activated kinases per patient varied substan-
tially; nevertheless, out of 64 possible patterns, we found only 38
in Val-1 (Fig. 4b, Supplementary Data 2). In total 12 patterns
were exclusive to the relapsed cases. The most frequent pattern
was the absence of activation of any of the 6 kinases, which was
associated with a >93% rate of relapse-free survival at 12.5 years.
The more commonly detected patterns were those showing
activation of a single kinase (p-P70S6K, CDK6, or c-Kit),
although most patterns involved diverse combinations of kinases.
Interestingly, no trends were observed in patterns showing
mutually exclusive or co-occurring kinases, which is in contrast to
gene mutation patterns4–6,22,23. These results suggest that
different gene mutation patterns may converge to activate each
of these kinases, in turn, driving tumor progression. When
comparing the overlay of the mutational status of the top 25
most-frequently mutated genes in breast cancer and the kinase
classification, it can be appreciated that each kinase activation

pattern could be achieved by different mutational landscapes
(Fig. 4c). These data highlight the importance of a kinase-based
classification as compared with one based on genes.

Patients from Val-1 were diagnosed more than a decade ago,
and treatment standards have since changed. The current standard
for patients with tumors >1 cm includes a combination of one
anthracycline, cyclophosphamide, and one taxane (A+C+ T).
A+C+ T was only administered to certain patients (n= 27;
25%) from Val-1 who showed adverse classic prognostic factors;
thus, we gathered a second validation set (Val-2), diagnosed from
2009, of 61 TNBC patients that received A+C+ T (Supplemen-
tary Table 1). Val-2 served two purposes: (1) to validate K-high,
which was built with 6 out of 11 candidate kinases from the
training set; and (2) to test the role of K-high in a modern series.
Despite the fact that Val-2 had a shorter follow-up period, and
therefore a smaller proportion of patients experienced relapse,
K-high was still highly significant (HR: 4.47; Cox P= 0.029;
Supplementary Figure 8A). The kinase-pattern distribution across
this series was similar to that of Val-1, although 6 new patterns
emerged from this series (Supplementary Figure 8B, Supplemen-
tary Data 3).

Targeting activated kinases in preclinical models. Various
analytical approaches have been used to narrow-down drug
candidates for use in the design of drug regimens on the basis of
different -omic data24–27. With the aim of exploring a less
laborious approach, we tested a very simple alternative; to
determine the levels of each of the 6 active kinases, whose hyper-
function appeared to drive the fate of aggressive cases, and select
combined agents of interest according to the levels of these tar-
gets. To this end, several TNBC cell lines (in vivo characteriza-
tion, phosphoprofiling, and KSEAS are shown in Supplementary
Figures 9 and 10, and Supplementary Table 2) and patient-
derived xenografts were chosen for further study.

The levels of PRKCE, c-Kit, p-ERK (Thr202/Tyr204), p-P70S6K
(Thr389), p-PNKP (Ser114/Thr118), and CDK6 for each preclinical
model are shown in Fig. 5a. Three clinical-grade (palbociclib,
imatinib, and GDC-0994; which target CDK628, c-Kit29, and
ERK30, respectively) and three non-clinical-grade (A12B4C3, the
peptide H-EAVSLKPT-OH. and Ly2584702; which target
PNKP31, PRKCE32, and P70S6K33, respectively) agents were
tested. To the best of our knowledge, there are no clinical-grade
agents available against the latter kinases. The 6 agents
demonstrated limited single-agent in vitro activity (Fig. 5b,
Supplementary Figures 11 and 12). Since the kinases tended to be
non-colinear (Supplementary Figure 6), and many TNBC cases
harbored activation of more than one kinase (Fig. 4), taken
together these data suggest that no particular kinase is essential
for TNBC progression and that several can co-exist within each
individual tumor, contributing to the aggressive TNBC pheno-
type. Thus, combining the clinical-grade agents two-by-two
seemed like a reasonable approach. Indeed, the combination of

Fig. 2 Kinases driving the profiles of the relapsed cases. a Example of a chart of normalized enrichment scores (NESs) (left) obtained for CLK1 from the
relative abundance of its phosphorylated substrates in either the relapsed or the non-relapsed cases (right)—or kinase set enrichment analysis (KSEAS).
Each substrate (phosphopeptide) is represented in the KSEA as a vertical black line. The proteins to which they map are represented in the right column by
their encoding genes, adjacent to the site at which phosphorylation was detected. In this column, a larger or shorter horizontal bar depicts, for each
substrate, the Log2-fold regulation in the relapsed (blue) versus non-relapsed (red) cases. b Two phosphatase (DUSP6 and PP2C-δ) and 9 kinase domains
were enriched in the relapsed cases. The finding of an enriched phosphatase domain can be accounted for by the presence of a high concentration of a
substrate for that phosphatase in a specific subgroup of patient tumors or cell lines. The in silico tool cannot predict whether a phosphatase is functional
based on the absence of phosphorylation of its putative substrates; however, it can predict which upstream kinases or phosphatases can bind (and
phosphorylate or cleave) an identified substrate. P-values and false discovery rates (FDR) are depicted for each kinase or phosphatase. Although most
KSEAS show a low FDR, a relaxed FDR boundary (up to 0.25) was allowed to ensure as little information loss as possible in the mass spectrometry-to-
immunohistochemistry translation step
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low-activity or even virtually inactive single-agent doses into
doublets yielded profound inhibitory effects in MDA-MB-231
(the most aggressive of these cell lines; Supplementary Figure 9),
Hs-578T, and MDA-MB-468 (Fig. 5b, Supplementary Figures 11
and 12) colony assays.

Further, in vivo models showed important effects of drug
combinations selected by simple assessment of the target levels.
Clinical-grade agents were tested in doublets to assess the efficacy
and selectivity of the approach. MDA-MB-231 showed high levels
of pERK and CDK6, together with almost negligible levels of
c-Kit (Fig. 5a). Palbociclib, GDC-0994, and imatinib were
combined in pairs at the recommended doses for preclinical
studies28–30, showing proof-of-pharmacodynamic effect on their
targets (inhibition of p-AKT-S47334, p-P90RSK-S380, and p-Rb-
S807/81128) (Fig. 5c). Kaplan–Meier curves and median overall
survival of MDA-MB-231-grafted animals treated with the three

drug combinations are shown in Fig. 6a, in addition to tumor
burden comparisons, showing a more profound effect for
palbociclib plus GDC-0994 than for the imatinib-containing
combinations. High levels of p-PNKP were found as well in
several cell lines. Given the absence of effective compounds, we
tested the effect of PNKP deletion by CRISPR in MDA-MB-231
(high p-PNKP) and MDA-MB-468 (virtually absent p-PNKP).
Intratumour deletion of PNKP is shown in Fig. 5c. Again, only
statistically significant advantages were obtained for the combi-
nation targeting ERK and PNKP in MDA-MB-231 (Fig. 6b), but
not in the model with low p-PNKP (Fig. 6c). Similarly, the 4T1
murine TNBC transplantable model, showed high levels of p-ERK
and CDK6 but no detectable levels of c-Kit (Fig. 5a). The
combination of palbociclib plus GDC-0994 led to a statistically
significant improvement in overall survival, as opposed to the
combination of imatinib plus palbociclib (Supplementary
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Figure 13A). Finally, patient-derived xenografts (PDXs) are
considered better mimics of human tumors than cell
line xenografts for drug development. Two PDX (one with high
c-Kit, p-ERK, and CDK6 activity—PDX156—and one with high
p-ERK and CDK6 activity only—PDX93) were tested (Fig. 5a).
Figure 6d shows that both imatinib plus GDC-0994 and
palbociclib plus GDC-0994 improved overall survival compared

to each treatment alone. However, in PDX93, only palbociclib
plus GDC-0994, but not the imatinib-based doublets, achieved
statistically significant differences in tumor control (Supplemen-
tary Figure 13B). Taken together, these data suggest that the levels
of the kinases in K-high, which drive aggressive TNBC biology,
appear to aid selection of active and relatively specific doublets in
TNBC preclinical models.
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Discussion
While gene-centered approaches have brought unprecedented
knowledge to breast cancer drivers and subtypes3,4,13,22,23,35,36, in
the case of TNBC, this novel information has revealed extreme
heterogeneity that has, to date, precluded a definition of prog-
nostic/predictive factors. The lack of oncogenic addiction drivers
in TNBC renders conventional chemotherapy the main treatment
option.

Previous studies have carried out the initial steps of pin-
pointing the main kinases involved in breast cancer13,14,37;
however, mass spectrometry of TiO2-IMAC-purified phospho-
fractions can achieve a greater depth of phosphoproteome cov-
erage, with very large dynamic ranges and high specificity com-
pared with other alternatives38–40. In addition, the KSEAS
methodology allows the estimation of a functional readout from
the spectra, allowing summarization of large phosphoprofiles into
their driving kinases. Two previous studies have implemented the
KSEAS methodology while portraiting the main aberrant signal-
ing axes in prostate41 and ovarian cancers42; however, these
studies did not link this information to clinical outcome. Another
study combining mass spectrometry assessment of the proteome
with a multi-layer -omic interrogation of breast cancer allowed
the discovery of the paths linking genomic to signaling aberra-
tions43. Here, we aimed to advance the field of TNBC taxonomy
and show proof-of-concept of a kinase-based classification of
TNBC linked to clinical outcomes.

Several findings of the present study deserve attention. First,
the reduction of the initial >10,000 phosphosites identified by
mass spectrometry to a selected number of TNBC-driver kinases
allowed the translation of a large amount of data, revealing an
upper level of regulation by a few elements; that is, we identified
TNBC clusters defined by the activity of a few kinases (functional
clusters) (Figs. 2, 4, and Supplementary Figure 8B; Supplementary
data 2 and 3). Six kinases with increased activity that appeared to
drive the aggressive clinical course of TNBC were identified
(Figs. 3, 4 and Supplementary Figure 8A). Investigations
regarding the potential prognostic, predictive, or therapeutic role
in TNBC of the majority of these kinases (with the exception of
ERK) are yet very preliminary44–46 or absent. Together with the
identification of 63 novel phosphosites in the phosphoprofile of
the relapsed cases (Supplementary Data 1), this information lays
the foundations for further basic research on signaling axes
driving the aggressive biology of TNBC and indicates that our
strategy is valuable as a discovery tool.

Moreover, the kinase hits extracted from the present study
allowed the construction of a basic kinomic landscape of TNBC
according to the kinase status (high or low activity), which was
linked to disease course. When considered together, the status of
the 6 kinases was more informative than any separately.
According to the status of the 6 kinases, we found two main
TNBC patterns; of which, one, without high activity among any
of the 6 kinases, was associated with a long-term relapse-free rate
of 93%. The second pattern (with 37 sub-patterns) was char-
acterized by the hyperactivity of one or more kinases, with all but

two of the patients who relapsed having tumors that showed this
pattern (Fig. 4, Supplementary Data 2). Belonging to any of these
37 sub-patterns conferred a greater than 9-fold risk of relapse,
even when adjusted for the conventional risk factors. Similar
results were obtained with a second validation set (Supplementary
Figure 8 and Supplementary Data 3). To the best of our knowl-
edge, there is no other prognostic factor or signature that can
stratify the outcomes of patients with TNBC with the accuracy of
K-high. The ability to identify patients belonging to this subgroup
is useful from a clinical point of view, since therapeutic efforts can
be focused on those patients who are not in this group. Future
studies should compare the prognostic performance of this
approach and gene expression-based classifications2.

Furthermore, a key taxonomic question that was formulated
following the observation that a relatively parsimonious classifi-
cation could be obtained based on phosphoproteomic analysis, is
whether complex genomic mutation patterns can be condensed
into simpler classification systems. TNBC taxonomic studies have
not yet revealed associations between the mutational status of
single genes or combinations of several genes and disease
outcomes4,5,36. The possibility of kinase patterns encompassing
complex genomic patterns was assessed in the present study in a
post-hoc manner; thus, several samples could not be sequenced
due to insufficient or inadequate leftover tissue, and this con-
stitutes a study limitation. However, we believe that the data
shown in Fig. 5 serve as proof-of-concept of the fact that different
genetic landscapes converge into the same kinase-activation
pattern. Thus, diseases with complex genomic landscapes, such as
TNBC, may benefit from kinase-based classifications.

Finally, the kinase-based classification shows that several sig-
naling axes have high activity in patients that relapse despite
adequate treatment according to current standards. This fact may
have future therapeutic implications. Kinase pattern-oriented
treatments may simplify current precision medicine approaches
that aim to “treat genes”, since: (1) most known mutations
involved in TNBC are not oncogenic addiction drivers; (2) several
mutations with complex functional implications exist at the
individual tumor level; (3) different mutations converge into a
given kinase-activation pattern; and (4) most kinases in the sig-
nature are, or soon will be, targetable with compounds under
current development. We have provided preliminary experi-
mental evidence suggesting that a simple assessment of activated
kinases could guide the design of tailored regimens. The data
shown in Fig. 6 and Supplementary Figure 13 suggest a certain
degree of specificity of the approach. Nevertheless, the detected
efficacy of imatinib in models with little c-Kit levels suggest either
certain off-target effect of the agent or, most likely, that the
specificity is not 100%. Different analytical approaches that
integrate high-throughput data have suggested that powerful
drug-combinations can be designed on the basis of multi-omic
data24–27. Although the objective of this preliminary therapeutic
approach is not to compare its performance to the former, it
seems quite simple and non-time-consuming. Future mechanistic
insights into the manner by which the activity of the 6 kinases

Fig. 5 In vitro therapeutic efficacy and in vivo pharmacodynamics. a Western blotting showing the levels of each of the 6 kinases in the signature, in
addition to their non-phosphorylated controls where applicable, in 10 human TNBC cell lines, the transplantable murine TNBC tumor model 4T1, and 2
patient-derived xenografts (PDXs). The three targets against which clinical-grade drugs are available are highlighted in red. b Colony assays (MDA-MB-
231) showing the differences between single-target versus two-target pharmacological blockade. For each of the 15 possible 2-by-2 drug combinations
using the 6 agents against the kinases in K-high, a representative vehicle-treated well, representative single-agent-treated wells and a well containing the
doublet are shown. All 4-well images belong to unique 12-well dishes. Representative images of three independent experiments. c In vivo dosage of
imatinib, GDC-0994, and palbociclib at standard doses for animal use led to decreased AKT, P90RSK, and RB phosphorylation levels (targets of the kinases
c-Kit, ERK, and CDK6, respectively) in MDA-MB-231-xenografted tumors after 24 h. The right panel shows total PNKP levels in wild-type (upper) and
CRISPR PNKP MDA-MB-231 transfectant (lower panels) tumors. Scale bar, 50 μm
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drives TNBC progression (role in therapeutic resistance, metas-
tasis, or other aggressive features) are necessary to ascertain how
and when to use clinical grade inhibitors. Pilot proof-of-concept
trials studying the aggregation of efficacy of doublets according to
the status of the 6 kinases should establish the role of this
approach in a clinical setting. It is important to highlight,

however, the positive effects found for palbociclib or imatinib
when used in combinations guided by the present taxonomic
findings; since, previous preclinical studies have suggested a
limited role for CDK4/6 inhibition in TNBC47, and clinical stu-
dies using imatinib alone in unselected48 or c-Kit-positive breast
cancer patients has also shown limited efficacy49.
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The present study has certain limitations. First, the accuracy of
the classification may be compromised in the mass spectrometry-
to-immunohistochemistry step. Second, since current kinase
enrichment predictions are in silico tools based on available kinase-
substrate knowledge, when databases are updated with novel data
regarding kinase catalytic affinity and substrate identification, novel
predictions may emerge from the present data. This may explain,
for instance, why a PIM1 kinase enrichment (a kinase recently
linked experimentally to TNBC50,51) was not found in the present
data. Third, while translation to immunohistochemistry appears to
be a necessary step to gain widespread use of this approach, sample
handling, staining protocols, and pathologist evaluations may vary
considerably among hospitals, and standardizations in this regard
will be necessary in the future. Tissue hypoxia and fixation times
can bias the pathway enrichment found in the analysis of the
captured phosphosites (increasing the detection of phosphosites
related to stress, cell death, and transcriptional regulation path-
ways52) and decrease the sensitivity of mass spectrometry for
phospho-detection53,54, respectively. Despite the fact that the
country biobank standard operational procedures reinforce stan-
dardization of maximum hypoxia (20min) and fixation (24 h)
times, and we did not find significant enrichment in those path-
ways, both constitute sources of variability in the technique and
represent a weakness for widespread validation. Fourth the present
validation studies were conducted in the adjuvant setting only.
Future independent validations that test the role of K-high in other
scenarios (neoadjuvant, metastatic) are warranted.

In summary, we have shown for that in vivo phosphopro-
teomics can be used to predict outcomes in TNBC, simplify its
classification, and select treatment doublet candidates for clinical
testing. Future studies and trials by independent groups should
now find an adequate place for tumor phosphoproteomics in
routine clinics, akin to the case of the seminal studies performed
with gene expression almost 20 years ago.

Methods
Patient tumor samples. Samples from the training and validation set were
gathered through the Spanish National Biobank Network. The study was con-
ducted in accordance with the Declaration of Helsinki. Institutional review board
approval was obtained at the Instituto de Salud Carlos III (study number: CEI PI
30-2010). Informed consent was obtained from all participants. None of the
patients received neoadjuvant therapy prior to biopsy or were BRCA-1 deficient.

Cell lines. A panel of human triple negative breast cancer cell lines (MDA-MB-
231, MDA-MB-157, Hs578T, MDA-MB-468, HCC1937, HCC1143, HCC38,
BT549, BT483, and MDA-MB-415) was acquired from the American Type Culture
Collection (ATCC). Cells were maintained following the ATCC recommendations.
Luminescent cell lines were generated by stable transfection with a plasmid

encoding firefly luciferase (pGL.4.51 luciferase reporter vector, Promega). All cell
lines were confirmed to be mycoplasma negative by MycoalertTM Mycoplasma
Detection Kit (Lonza).

Colony assays. Breast cancer cell lines MDA-MB-231, MDA-MB-468 and Hs-
578T cell lines were seeded at a density of 200, 2000 and 2000 cells per well
respectively in 12-well plates. After overnight incubation, drugs were added to the
tissue-culture media. Media was replaced every 5 days. After 10 days of culture,
cells were fixed and stained with 0.1% (w/v) crystal violet in 10% (v/v) ethanol. All
experiments were performed in triplicate.

Kinase assays. Kinase reactions were carried out at 30 °C for 30 min using specific
kinases buffer. Recombinant P70 S6Kinase (1-421, TA412E, Millipore) was incu-
bated with recombinant IRS2 (H8660-Q01, Abnova) or RPS6 (H6194-P01,
Abnova) in kinase buffer (20 mM Tris–HCL pH 7.5, 20 mM MgCl2, 1 mM DTT,
1 mM EDTA, 1 mM sodium ortovanadate, 0.4 mM PMSF, 20 mM glicerphsphate)
in the presence of 50 μM cold ATP and 1.5 uCi [32 P] ATP. CDK6/Cyclin D3
complexes (14-519, Millipore) in 10 mM MOPS/NaOH pH7, 1 mM EDTA, 0.1%
B-mercaptoethanol, 10 mM Magnesium acetate were incubated with WEE1
(H7465-P01, Abnova), HSF1-11R (hTF-0070, LD Biopharma) or RUNX1 (hTF-
0380, LD Biopharma) in the presence of 100 μM cold ATP and 2 uCi [32 P] ATP.
Recombinant PKCE kinase (P2282, Thermofisher) was incubated with recombi-
nant IRS2 or RPS6 in the following kinase buffer (60 mM HEPES-NaOH pH7.5,
3 mM MgCl2, 3 mM MnCl2, 1 mM CaCl2, 4 mM EDTA, 3 μM Na-orthovanadate,
5 μg/ml phosphatidilserine, 1 ug diacylglycerol, 1.2 mM DTT, 50 μg/ml PEG20000
in the presence of 50 μM cold ATP and 1.5 μCi [32 P] ATP. In all cases, reactions
were stopped by addition of Laemmli sample buffer. Radioactive samples were
subject to acrylamide gel electrophoresis, followed by gel drying and
autoradiography.

The samples were then prepared for proteomic analysis as follows: proteins
were in-gel digested with trypsin using the standard procedure. Briefly, bands were
de-stained with 50 mM ammonium bicarbonate in 50% acetonitrile solution,
reduced with 15 mM TCEP at 45 °C for 60 min and subsequently alkylated with
30 mM chloro-acetamide at RT for 45 min. Digestion was performed overnight
with a trypsin solution (6.25 ng/mL) at 37 °C. Supernatant was collected and
peptides were further extracted from the gel plugs with 5% TFA. Resulting peptides
were desalted using home-made C18 stage-tips.

Finally, we detected the phosphorylated peptides by mass spectrometry.
LC–MS/MS was done by coupling an UltiMate 3000 HPLC system to a Q Exactive
Plus mass spectrometer (Thermo Fisher Scientific). Peptides were loaded into a
trap column Acclaim™ PepMap™ 100 C18 LC Columns 5 µm, 20 mm length) for
3 min at a flow rate of 10 µl/min in 0.1% FA. Then peptides were transferred to an
analytical column (PepMap RSLC C18 2 µm, 75 µm×50 cm) and separated using a
60 min effective curved gradient (buffer A: 0.1% FA; buffer B: 100% ACN, 0.1%
FA) at a flow rate of 250 nL/min from 2 to 35% of buffer B. Peptides were
electrosprayed (1.9 kV) using an EasySpray ion source (Thermo Fisher Scientific), a
heated capillary (250 °C) and S-Lens RF level of 60%. The mass spectrometer was
operated in a data-dependent mode, with an automatic switch between MS
(350–1500 m/z) and MS/MS (fixed first mass 100 m/z) scans using a top 15 method
and a dynamic exclusion of 25 s. MS and MS/MS spectra were acquired in the
Orbitrap with a resolution of 70,000 and 17,500 FWHM (measured at 200 m/z)
respectively. Peptides were isolated using a 2.0 Th window and fragmented using
higher-energy collisional dissociation (HCD) with a normalized collision energy of
27. The ion target values were 3E6 for MS (25 ms max injection time) and 1E5 for
MS/MS (45 ms max injection time). For very faint bands, maximum injection times
were increased to 90 ms (AGC value= 5E4).

Fig. 6 In vivo therapeutic efficacy. a MDA-MB-231 is a cell line with high levels of p-ERK and CDK6, but no visible levels of c-Kit. It can be observed that,
although imatinib-based doublets significantly prolonged mice overall survival as compared with the singlets or vehicle, the magnitude of the improvement
is much lower than that seen with the p-ERK+ CDK6-targeting doublet (GDC-0994 and palbociclib, mid chart; >5-fold increase in overall survival
compared with ~2-fold). Below the Kaplan-Meier curves, the median overall survival (days) for each combination (or single-agent) in addition to the Log-
Rank P-values are shown. Finally, representative tumor burdens of each treatment group are depicted. bMDA-MB-231 shows relatively high p-PNKP levels;
CRISPR PNKP MDA-MB-231 transfectant xenografts treated with GDC-0994 also showed statistically significantly longer overall survival as compared
with GDC-0994 administered to wild-type MDA-MB-231 or untreated CRISPR PNKP transfectants. Mice treated with: vehicle (n= 5), imatinib (n= 6),
GDC-0994 (n= 4), palbociclib (n= 5), GDC-0994+ palbociclib (n= 5), palbociclib+ imatinib (n= 5), sgPNKP (n= 11) and sgPNKP+GDC-0994
(n= 11). c Compared to MDA-MB-231, the levels of p-PNKP in MDA-MB-468 are almost undetectable. The levels of p-ERK and CDK6 are high, and those
of c-Kit are low. Matching the observations in the other models, when a targeted doublet includes a target with low or absent expression (namely, p-PNKP
in MDA-MB-468), no synergy is observed. In the three Kaplan-Meier curves it can be observed than the doublet is not better than any of the
monotherapies (or sgPNKP alone). Representative tumor burden charts are shown below the survival curves. Mice treated with: vehicle (n= 6), sgPNKP
and sgPNKP+ imatinib (n= 5), imatinib (n= 8), GDC-0994 (n= 11), GDC-0994+ imatinib (n= 13), palbociclib (n= 12), GDC-0994+ palbociclib
(n= 9), sgPNKP+ palbociclib (n= 4) and sgPNKP+GDC-0994 (n= 7). d Finally, in PDX156 (c-Kit and pERK higher than CDK6), imatinib plus
GDC-0994, and GDC-0994 plus palbociclib significantly prolonged median overall survival compared to the monotherapies. Mice treated with: vehicle
(n= 5), imatinib (n= 4), GDC-0994 (n= 4), palbociclib (n= 4), GDC-0994+ palbociclib (n= 5) and GDC-0994+ imatinib (n= 9). In tumor burden
graph, each point represents a tumor. The data are represented as mean±SEM and Student ´s t test was performed. *p < 0.05, **p < 0.01, ***p < 0.001
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Raw files were processed with Proteome Discoverer 1.4 (Thermo Fisher
Scientific) using Sequest HT against a human protein database (UniProtKB
20,558 sequences) supplemented with contaminants. Carbamidomethylation of
cysteines was set as a fixed modification whereas oxidation of methionine and
phosphorylation of serine, theronine and tyrosine as variable modifications.
Minimal peptide length was set to 6 amino acids and a maximum of two tryptic
missed-cleavages were allowed. Precursor tolerance was set to 10 ppm and
fragment ion tolerance to 0.025 Da. Results were filtered at 0.01 FDR using
Percolator. Abundances of phosphopeptides were calculated using the extracted ion
chromatograms (with a 10 ppm window around the M+ 0 isotope peak for 30 s
before and after the peptide’s MS/MS). In addition, phosphopeptide abundances
were normalized by total protein abundance, which was estimated based on non-
phosphopeptides. To this end, raw files were also processed with MaxQuant 1.5.7.4
using the standard settings against a human protein database (UniProtKB
20,585 sequences) supplemented with contaminants. Label-free quantification was
done with match between runs (match window of 0.7 min and alignment window
of 20 min). Carbamidomethylation of cysteines was set as a fixed modification
whereas oxidation of methionines, protein N-term acetylation and phosphorylation
of serines, threonines and tyrosines as variable modifications. Minimal peptide
length was set to 7 amino acids and a maximum of two tryptic missed-cleavages
were allowed. Results were filtered at 0.01 FDR (peptide and protein level). Protein
intensity values (obtained from the proteingroups.txt file) were then used to
calculate the normalization factor needed in each case.

Mouse models. All animal experiments were approved by the Institutio de Salud
Carlos Tercero Ethics Committee (PROEX/027/15) and performed in accordance
with the guidelines stated in the International Guiding Principles for Biomedical
Research Involving Animals developed by the Council for International Organi-
zations of Medical Sciences. Four- to 6-week-old female athymic nude mice (Hsd:
Athymic Nude-Foxn1nu) were purchased from Charles River Laboratories. For the
metastasis model, 5 × 106 luciferase-expressing cancer cell lines were suspended in
200 μl of 1× PBS and injected intraperitoneally into female nude mice. Biolumi-
nescence signal was followed once per week by IVIS Spectrum imaging system
(PerkinElmer). For mammary fat pad injections 1 × 106 cells were re-suspended in
50% Matrigel (Corning) and injected (50 μl volume). Regarding patient-derived
xenografts (PDXs) Surgical or biopsy specimens from primary tumors or meta-
static lesions were immediately implanted in mice. Fragments of 30 to 60 mm3

were implanted into the mammary fat pad (surgery samples) or the lower flank
(metastatic samples) of 6-week-old female athymic HsdCpb:NMRI-Foxn1nu mice
(Harlan Laboratories). Upon growth of the engrafted tumors, the model was
perpetuated by serial transplantation onto the lower flank.

Tumor formation and growth were monitored weekly by using calipers. Tumor
volumes were calculated using the formula V= (D °−d2)/2 mm3, where D is the
largest diameter and d is the shortest diameter. Mice were euthanized when
reaching humane end point (1500 mm3). Tumors were excised and fixed (10%
formalin solution) for histological examination (FFPE) or snap-frozen for
subsequent analysis.

Animal treatments. Animals were randomized (http://www.randomization.com/)
to receive vehicle, single agents or combinations when the tumors reached
500 mm3 size (intramammary tumors) or two days after the intraperitoneal
injections. Sample size was chosen based on previous data for similar assays. For
the animal treatments palbociclib, dissolved in 50 mM sodium lactate buffer, pH
4.0, was administered by oral gavage at 100 mg/kg/day. GDC-0994 was dissolved in
2% DMSO+ 30% PEG-300+ 5% Tween80+ dH2O and administered by oral
gavage at the dose of 50 mg/kg/day. Imatinib was dissolved in sterile saline and
administered by intraperitoneal injection at the dose of 70 mg/kg/day. Investigators
were blinded to treatment assignment during the experiment. Tumor growth
inhibition (TGI) was calculated using the following formula: TGI= [1−(TF/T0)A/
(TF/T0)V] × 100, where TF is the time point analyzed, T0 is the initial time, A () is
the tumor measurement corresponding to drug treatment, and V() is the tumor
measurement from the vehicle treatment. The same formula used for the in vivo
experiments for antagonism, indifferent or additive activity threshold was used for
TGI. The effects of the combinations were calculated at the last time point when
the animals belonging to the treatment group that was first terminated because of
tumor growth.

Generation of PNKP knockout cells. Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)/Cas9 All-in One Lentivector system was purchased
from Applied Biological Materials (ABM). Recombinant lentiviruses were gener-
ated in HEK 293T cells by cotransfection of sgRNA-encoding plasmids targeting
human PNKP (Cat#K1676005) with pVSV-G and psPAX2 packaging plasmids
(Addgene). MDA-MB-231 and MDA-MB-468 cells were infected with the sgRNA-
encoding lentivirus and stable cells were established by puromycin selection
(1.5 μg/ml) (Sigma). After 7 days of lentiviral infection, protein levels of PNKP
were measured by western blot.

Immunohistochemistry. Samples were included in fresh 10% neutral buffered
formalin immediately after surgical excision. The lag times from excision to fixing

and intra-hospital tissue mobilization procedures were minimized following the
protocols proposed for tissue biobanking. Cold ischemia times varied from 30 s to a
maximum of 20 min. Formalin-fixation times ranged from 16 to 24 h (from sur-
gical excision until the next morning). Tissue microarrays were mounted with two
1-mm cores per sample (MTA-I, Beecher Instruments) with the validation set
samples. An expert pathologist examined a template H&E slide from each sample
to select the areas for core selection.

Immunohistochemical staining was performed on 5-μm TMA sections.
Deparafinization and antigen retrieval (cell conditioning) were performed on
DISCOVERY XT automated slide staining system using validated reagents
(Ventana Medical Systems, Inc.).

The following antibodies were used for IHC: phospho-AKT (Ser473) (D9E,
#4060) (1:10), phospho-p70S6K (Thr389) (1A5, #9206) (1:150), phospho-p44/42
(ERK1/2) (Thr202/Tyr204) (#9101) (1:100), phospho-S6 Ribosomal Protein
(Ser240/Ser244) (D68F8, #5364) (1:250), phosho-PNKP (Ser114/Thr118) (#3522S)
(1:50), phospho-p90RSK (Ser380) (D3H11, #11989S) (1:30) and phospho-Rb
(Ser807/811) (D20B12, #8516) (1:100) (all from Cell Signaling Technology); CDK6
(98D/H8, Monoclonal Antibodies Core Unit, CNIO) (1:1); PKC Epsilon (EPR1482
(2), #LS-B7689/36454) (1:200), DAPK3/ZIPK (#LS-B557/43125) (1:10) and
phospho-CHK1 (Ser45) (#LS-C177888) (1:50) from LifeSpan BioScience; PIM1
(12H8 #sc-13513, Santa Cruz Biotechnology, Inc.) (1:10), c-KIT/CD117 (#A4502
Dako) (1:200) and CLK-1 (#SAB1300108 Sigma-Aldrich) (1:100).

Corresponding TMA were acquired and digitalized using the Ariol SL-50
system coupled with fully automated microscope system Leica DM6000 B. Scores
were generated using the TMASight assay, providing areas of high staining
(Area_Color 1), medium staining (Area_Color 2) and low staining (Area_Color 3).
We calculated the percentage of each staining per biopsy normalized to Area_Color
4, which represents the whole tissue, providing a computerized H-score calculated
by formula: ((% of Area_Color1×3)+ (% of Area_Color2×2)+ (% of Area_Color
1×1))/100

Immunoblots. Cells were washed 2× with PBS and harvested in cold RIPA Buffer
(Sigma) containing 1% protease and phosphatase inhibitor cocktail (Halt EDTA-
free; Thermo Scientific). Cell lysates were incubated at 4 °C for 15 min, sonicated
for 15 min and clarified by centrifugation at 14,000 × g at 4 °C for 30 min. Protein
concentration was estimated by a colorimetric assay (660 nm protein assay; Pierce)
following the manufacture’s instruction. In total 20 μg of proteins per sample were
loaded on 10% SDS–PAGE gel and transferred to nitrocellulose membranes for
further processing. 5% BSA was used to block the membrane for 60 min at room
temperature, followed by overnight incubation at 4 °C with the primary antibodies.

The following primary antibodies were used: phospho-AKT (Ser473) (D9E,
#4060) (1:1000), phospho-p70S6K (Thr389) (#9205) (1:1000), p70S6K (#9292)
(1:1000), phospho-p44/42 (ERK1/2) (Thr202/Tyr204) (#9101S) (1:1000), p44/42
(ERK1/2) (#9102) (1:1000), phospho-S6 Ribosomal Protein (Ser240/Ser244)
(D68F8, #5364) (1:1000) and phosho-PNKP (Ser114/Thr118) (#3522S) (1:1000)
(all from Cell Signaling Technology); CDK6 ready to use (clone 98D/H8,
Monoclonal Antibodies Core Unit, CNIO), PKC Epsilon (EPR1482(2), #LS-B7689/
36454) (1:1000), DAPK3/ZIPK (#LS-B557/43125) (1:1000) and phospho-CHK1
(Ser45) (#LS-C177888) (1:1000) from LifeSpan BioScience, c-KIT/CD117 (clone
YR145, #04-214, Milipore) (1:1000), PNKP (#NBP1-87257, Novus biologicals)
(1:1000), CLK-1 (#SAB1300108) (1:1000), Vinculin (#V9131) (1:5000) and β-Actin
(clone AC-15, #A1978) (1:5000) from Sigma-Aldrich. Membranes were incubated
with appropriate peroxidase-conjugate secondary antibodies (Sigma, St Louis, MO,
USA). Bands were visualized by the enhanced chemiluminescence (ECL) method
(Lumi-LightPlus detection kit; Roche). Uncropped versions of the blots can be
found in Supplementary Figures 14–16.

Proteomics sample preparation and runs. All tumor samples in study had >75%
tumor content. We interrogated the phosphoproteome by enriching the phospho-
fraction out of 250 micrograms of purified protein per sample by Ti4-IMAC
chromatography coupled with mass-spectrometry. Given the large number of
samples and the limited amount of material of the clinical specimens, we aimed to
probe the phosphoproteome using a label-free single-shot strategy as described
previously by de Graaf et al.55. Such approach allows highly reproducible mea-
surements, both qualitatively and quantitatively, over a large dynamic range55.

Frozen tumor samples were homogenized using a Precellys 24 device (Bertin
Technologies) in ice-cold lysis buffer containing 7M urea (ThermoFisher
Scientific), 2 M thiourea, 2% N-octyl glucoside (Santa Cruz Biotechnology, Inc.),
15 mM tris (2-carboxyethyl) phosphine (TCEP), 50 mM Hepes (pH 7.5), protease
and phosphatase inhibitor cocktail (Halt EDTA-free; Thermo Scientific), and 0.1%
Benzonase Nuclease (Novagen).

Tumor cell lines were washed 2 times with cold PBS 1× and harvested in ice-
cold lysis buffer containing 7 M urea, 2 M thiourea, 2% N-octyl glucoside (Santa
Cruz Biotechnology, Inc.), 15 mM tris (2-carboxyethyl) phosphine (TCEP), 50 mM
Hepes (pH 7.5), protease and phosphatase inhibitor cocktail (Halt EDTA-free;
Thermo Scientific), and 0.1% Benzonase Nuclease (Novagen).

Protein lysates from tumors and cells were sonicated for 15 min on ice and
clarified by centrifugation at 14,100 × g at 4 °C for 15 min. Protein concentration
was estimated by a colorimetric assay (660 nm protein assay; Pierce; Rockford, IL,
USA) using bovine serum albumin as reference.
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Protein samples were digested using the filter-aided sample preparation
method56 Briefly, 250 μg of each tumor and cell line protein extract dissolved in
lysis buffer was reduced with 10 mM DTT for 20 min at 56 °C and alkylated using
50 mM IAA solution for 20 min at 25 °C in the dark. The excess of reduction and
alkylation reagents were washed with 8M urea in 100 mM Tris (pH 8). The
proteins were digested at 37 °C in wet chamber for 4 h using endoproteinase Lys-C
at a 1:50 enzyme-to-protein ratio. After Lys-C digestion, urea was adjusted to 2 M
with 50 mM triethyl ammonium bicarbonate. Trypsin (Promega) was added at a
1:50 (enzyme-to-protein ratio) and samples were subjected to a second digestion at
37 °C overnight in wet chamber. The digestion was quenched by acidification with
formic acid (0.1% final concentration). Prior to phosphopeptide enrichment,
digested samples were cleaned up with reversed phase-based solid-phase extraction
(SPE). Phosphopeptide enrichment was performed using Ti4+-IMAC GELoader
spin tips by centrifugation57. Briefly, Geloader tip microcolumns packed with
Ti4 ± IMAC beads were created using a C8 plug at the constricted end. An aliquot
of the Ti4 ± IMAC beads suspension was packed in the tip at the ratio 2:1 of beads:
peptides. Max 250 µg of each digested tumor or cell line sample was loaded onto
the column and centrifuged at 50 g for 30 min to allow the binding of
phosphopeptides to the Ti4+ -IMAC beads (~3 µl/min). Bound phosphopeptides
were washed with 80% acetonitrile (ACN) in 6% trifluoroacetic acid (TFA) by
centrifugation at 170 g (~3 µl/min). Afterwards two additional washing step were
performed, first one with 50% ACN/ 0.5%TFA in 200 mM NaCl and second one
with 50% ACN/0.1% TFA. Both washing steps were performed by centrifugation at
170 g (~3 µl / min). Phosphopeptides were eluted from the column with 10%
ammonia into 25% formic acid (FA) and centrifuged at 100 g (~1 µl/min). Finally, a
second elution was carried out with 80% ACN/2%FA and centrifuged at 100 g
(~1 µl/min). Phosphopeptides were acidified by adding 3 µl of 100% FA. The
eluated was directly injected and analyzed by LC-MS/MS.

Peptides were subjected to reverse phase nano-LC-MS/MS analysis using a
Proxeon EASY-nLC 1000 (Thermo Scientific) with an analytical column heater
(40 °C) and an LTQ-Orbitrap Elite (Thermo Fisher Scientific). Peptides were first
trapped (Reprosil C18, Dr Maisch, GmbH, Ammerbuch, Germany, 3 μm, 2 cm ×
100 μm) at a maximum pressure of 800 bar with 100% solvent A (0.1% formic acid
in water) before being separated on a 40 cm × 50 µm analytical column (Poroshell
120 EC-C18, 2.7 µm, Agilent, Santa Clara, CA). Peptides were chromatographically
separated by a 90-min gradient from 7 to 30% solvent B (0.1% formic acid in ACN)
at a flow rate of 100 nL/min. The total measurement time for each sample was 120
min. The eluent was sprayed via a distal coated fused silica emitter (360-μm outer
diameter, 20-μm inner diameter, 10-μm tip inner diameter; constructed in-house)
butt-connected to the analytical column. The electrospray voltage was set at 1.7 kV.
The mass spectrometer was operated in a data-dependent mode to automatically
switch between MS and MS/MS. Briefly, survey full-scan MS spectra were acquired
in the Orbitrap analyzer, scanning from m/z 350 to m/z 1500 at a resolution of
60,000 at m/z 400 using an automatic gain control setting of 1e6 ions. Charge state
screening was enabled, and precursors with either unknown or 1+ charge states
were excluded. After the survey scan, the 20 most intense precursors were selected
for subsequent decision-tree-based ion trap CID or ETD fragmentation58. The
normalized collision energy for CID was set at 35%, and supplemental activation
for ETD and dynamic exclusion were enabled (exclusion size list: 500; exclusion
duration: 40 s).

Proteomics data analysis and kinase prediction. The raw MS data were pro-
cessed with MaxQuant software suite version 1.3.0.559. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via the
PRIDE60 partner repository with the dataset identifier PXD008012The fragmen-
tation spectra were searched against the Homo sapiens Uniprot database (down-
loaded on 23-12-2013), using Andromeda as the search engine. The precursor mass
tolerances were set to 20 ppm for the first search and 4.5 for the main search. Also,
0.05 and 0.5 Da were used for FT and IT detectors. Carbamidomethylation of
cysteine was considered as fixed modifications, whereas oxidation of methionine
(M); phosphorylation on serine (S), threonine (T) and tyrosine (Y); and protein N-
terminal acetylation were chosen as a variable modification, and up to two tryptic
missed cleavages were allowed. The match between run function was enabled. A
target-decoy database searching strategy was used to evaluate the false-discovery
rates (FDRs) at the peptide and protein level.

The identification of kinase specific substrates was evaluated using linear
sequence motifs analysis implemented in MaxQuant59. For the identification of
phosphorylated motifs Maxquant used the PhosphoMotif Finder search tool at
Human Protein Reference Database was used (http://www.hprd.org/
PhosphoMotif_finder)61.

We applied the Consensus Clustering module using ConsensusClusterPlus
package available in Bioconductor (http://www.bioconductor.org/) for class
discovery and clustering validation. This method facilitates the discovery of
biologically meaningful clusters assessing the stability for the discovered clusters by
means of resampling techniques. Briefly, a clustering method chosen by the user is
applied to each of the resampled data sets and, the consensus among the multiple
runs, is assessed and summarized in a consensus matrix. This matrix is used as a
visualization tool to estimate the cluster composition and number. For this study
the Consensus Clustering analyses were run with hierarchical clustering algorithm,
and Pearson correlation using 1000 resampling iterations.

Differentially expressed phosphopeptides were obtained by applying linear
models with R limma package62 (Bioconductor project, http://www.bioconductor.
org). To account for multiple hypotheses testing, the estimated significance level
(p value) was adjusted using Benjamini & Hochberg False Discovery Rate (FDR)
correction. Those phospho-sites with FDR < 0.15 were selected as differentially
phosphorylated between classes under comparison. Representative Heat-Map was
depictured using GENE-E software. (www.broadinstitute.org/cancer/software/
GENE-E/)

A gene Set Enrichment Analysis (GSEA) was used to define set of kinase
substrate motifs that shows statistically significant, concordant differences between
relapsed and cured cases and aggressive and indolent triple-negative cell lines,
herein termed Kinase-set enrichment analysis (KSEA). To this end, KSEA was
applied using annotations for motifs extracted from Perseus software. Leading
proteins were ranked based on their intensities. After Kolmogorov-Smirnoff
testing, those kinase sets showing FDR < 0.05 were selected as significant17.

GO pathways. Gene-ontology pathway analysis was performed with Enrichr: a
comprehensive gene set enrichment analysis (http://amp.pharm.mssm.edu/
Enrichr/#)63,64.

Next generation sequencing. Massive parallel sequencing was performed using a
custom panel of 100 genes (Entire Transcribed Region) with a size of 844Kbp.
DNA was extracted from 113 FFPE samples using High Pure FFPET DNA isola-
tion kit (Roche Diagnostics). Quality of DNA samples was measured by OD 260/
280 ratio ranging from 1.8 to 2.0, and also by 2100 Bioanalyzer and DNA 1000
Assay (Agilent Technologies).

Processing of samples for sequencing was done using Sure Select XT Target
Enrichment System for Illumina Paired-end Multiplexed Sequencing Library
(Agilent Technologies). Genomic DNA was sheared to a fragment size between 120
and 150 bp using Covaris E-series. In total 400 ng of shared DNA were repaired the
ends, adenylated the 3′ end of the DNA fragments and ligated the pared–end
adapter according to manufacturer’s protocol. DNA were purified using
AMPureXP beads (Beckman Coulter Genomics).

The captured libraries were amplified with indexing primers containing 8 bp
indexes (Supplementary Data 4) and quality and quantity analysis were done using
2100 Bioanalyzer and DNA 1000 Assay (Agilent Technologies), selecting the DNA
with a fragment size peak of ~225–275 bp and the concentration was determined
by integration under the peak.

gDNA libraries were hybridized with a target-specific Capture Library in
75 samples out of 113 due to quality and quantity of DNA after DNA extraction
and sequential purification steps. The targeted molecules were captured with
streptavidin beads (Dynabeads MyOne Streptavidin T1, Life Technologies). Quality
analysis of indexed libraries were done using the 2100 Bioanalyzer and High
Sensitivity DNA Assay (Agilent Technologies) selecting the DNA with a fragment
size peak of approximately 250 to 350 bp, concentration was measure by Qubit
Assay (Qubit BR dsDNA Assay Kit, Life technologies). Libraries were combined
into pools of 10 nM. Samples were sequenced by a HiSeq 2500 powerful high-
throughput sequencing system. We used a flowcell rapid run in a format 100 bp
paired-end reads (2 × 100PE). 69 samples were correctly sequenced with an average
of coverage of 278×.

Fastq Data generated by the sequencing was aligned to the hg19 human
reference sequence. Data were analyzed using RUbioSeq65, additionally MuTect66

was executed in order to identify variants with low frequency undetectable with
RUbioSeq pipeline. Variants with sufficient coverage and good quality metrics were
annotated using the Ensembl Variant Effect Predictor (VEP)67 with Ensembl v83.
We also added information about pathogenicity from ClinVar database68 and
COSMIC69 frequencies and pathogenic prediction for each variant. Using the
annotations and visual inspection we removed possible artefacts that survived the
variant calling filters. Polymorphisms were also discarded using the population
frequencies of the 1000 Genomes Project and ExAC provided by VEP. From the
remaining set of variants we selected the most relevant using the pathogenic impact
and the clinical evidences (Variants described in ClinVar and COSMIC with
pathogenic prediction and also variants with a relevant high impact in SIFT,
PolyPhen or Condel).

Statistics. In order to study the impact of the enriched kinases, their H-scores
(continuous variables) were categorized to allow Kaplan-Meier analysis70. The
kinase scores were categorized as follows: patients with a kinase staining above the
75th percentile were encoded as “1”, whereas the remainder were encoded as “0”
(both for the Kaplan–Meier tests and the Cox models). The kinases with positive
association with relapse were grouped into a single variant (K-high); patients with a
staining in one or more (positively associated) kinases above the 75th percentile
were encoded as K-high= 1; in order to be encoded as K-high= 0, patients had to
have a staining below the 75th percentile in all six kinases. Both the prognostic
value of each candidate kinase and that of K-high was calculated in two ways: with
the Kaplan Meier method and the Log-Rank test (univariate), and with the Cox’s
proportionate hazards model (multivariate model, adjusting the hazard ratio
attributable to each kinase by the T and N status, age and grade), implementing a
multiple comparisons correction (Bonferroni) to the cut-off point of P < 0.05. In
addition, prognosis accuracy of K-high was compared with other variables (K-test)
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resulting from the combination of 2, 3, 4 or 5 kinases with staining above the 75th
percentile. Nine different variables (K-test1 to K-test9) were generated and
Kaplan–Meier curves, Log-Rank tests and multivariate Cox’x analysis were run for
each test variable corrected by multiple comparisons effect (Bonferroni). Kinase co-
linearity was investigated with the Pearson´s coefficient in a pairwise manner.

Tumor burden comparisons and survival benefit between treatment groups for
the in vivo experiments were performed with a t-test (average burden obtained
from at least 10 tumors per time point and condition) and the Kaplan–Meier
method (used to compare the time-to-sacrifice between treatment groups). The
minimum number of animals per group was calculated in order to detect a
minimum of 30% variation in the time to sacrifice (institutional guidelines set
mandatory sacrifice when tumors grow >1000 mm3), based on the medium time to
sacrifice and standard deviation of the vehicle-treated animals and setting alpha
and beta errors in 5% and 20%, respectively. All tests were performed with the SPSS
Statistics V.19.0 software.

Data availability
The proteomics data have been deposited to the ProteomeXchange Consortium via the
PRIDE partner repository with the dataset identifier PXD008012. Genomics data have
been deposited in the database of the NCBI Sequence Read Archive under the accession
code SRP152502. All other data supporting the findings of this study are available from
the corresponding author on reasonable request.
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