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Palladium prompted on-demand cysteine
chemistry for the synthesis of challenging
and uniquely modified proteins
Muhammad Jbara 1, Shay Laps1, Michael Morgan2, Guy Kamnesky1, Guy Mann1, Cynthia Wolberger 2 &

Ashraf Brik 1

Organic chemistry allows for the modification and chemical preparation of protein analogues

for various studies. The thiolate side chain of the Cys residue has been a key functionality in

these ventures. In order to generate complex molecular targets, there is a particular need to

incorporate orthogonal protecting groups of the thiolated amino acids to control the direc-

tionality of synthesis and modification site. Here, we demonstrate the tuning of palladium

chemoselectivity in aqueous medium for on-demand deprotection of several Cys-protecting

groups that are useful in protein synthesis and modification. These tools allow the

preparation of highly complex analogues as we demonstrate in the synthesis of the copper

storage protein and selectively modified peptides with multiple Cys residues. We also report

the synthesis of an activity-based probe comprising ubiquitinated histone H2A and its

incorporation into nucleosomes and demonstrate its reactivity with deubiquitinating enzyme

to generate a covalent nucleosome–enzyme complex.
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Organic chemistry has revolutionized the field of protein
science by contributing efficient synthetic tools to prepare
various protein analogues, such as proteins labeled with

fluorophores, D-amino acids and posttranslational modifications
(PTMs)1–3. These analogues have been utilized in various bio-
chemical, structural, and functional studies. Much of what has
been done in the area of modifications of expressed proteins is
based on the chemistry of the thiolate side chain of the Cys
residue;1–5 either by employing direct alkylation/arylation or by
transforming it to other functionalities, such as dehydroalanine
(DHA)6. The latter approach has expanded the chemistry for
modifications and the ability to generate protein activity-based
probes7–9. The chemistry of the Cys side chain has also been
critical in both the total chemical synthesis and semisynthesis of
proteins1,10,11. For example, native chemical ligation (NCL)12,
which is the most utilized approach for assembling the desired
polypeptide sequence, relies on the presence of N-terminal Cys,
β-, γ- and δ-thiolated amino acids1, or a thiol modified
auxiliary13–16. The thiol handle in these derivatives promotes
trans-thioesterification with a peptide thioester for the subsequent
S-N acyl transfer and formation of an amide peptide bond at the
ligation site.

When considering the multistep synthesis of different protein
analogues, there is an intrinsic requirement for incorporating
orthogonal protecting groups (PGs) of the thiolated amino
acids17. The site-specific removal of a particular PG makes it
possible to control the direction of synthesis (e.g., side chain
branching) and/or the modification site. Several reports have
demonstrated the usefulness of NCL coupled with orthogonal
protection for the synthesis of highly complex analogues18–20.
Examples include the synthesis of branched proteins, such as
ubiquitinated proteins;21–23 proteins containing multiple Cys
residues (e.g., analogues of EPO protein);18,24,25 and site-specific
antibody–drug conjugates26. In these cases, orthogonal protection
of Cys residues, mainly by using thiazolidine (Thz)27 and acet-
amidomethyl (Acm)28, is a critical step in obtaining the product
in the desired form29,30. Despite the utility of the current toolbox
for Cys protection/deprotection, there are still limitations to these
strategies. The need for harsh removal conditions, prolonged
reaction times and additional HPLC-purifications steps all limit
the application of these approaches to more challenging systems.
Therefore, expanding the available toolbox to manipulate Cys
PGs in an orthogonal manner would enable the synthesis and
study of complex protein targets. We recently reported that pal-
ladium complexes can remove multiple Cys PGs within minutes
in a fully aqueous medium31–34, which also could be coupled
in situ with NCL conditions to provide excellent yields of the
desired products35,36. Although these conditions have resulted in
important advances in chemical protein synthesis31–34, the utility
of these approaches is limited by the lack of chemoselectivity of
the palladium complexes when applying more than one PG in the
synthesis.

Here we demonstrate palladium chemoselectivity in a fully
aqueous medium for on-demand deprotection of Thz and Acm
protections. We also show efficient removal of Cys t-butyl PG
using palladium in a fully aqueous medium and demonstrate its
stability under the removal conditions of Thz and Acm. The
chemistry reported here is used for the one-pot and site-specific
modification of peptides containing multiple Cys residues, as well
as for the total chemical synthesis of copper storage protein 1
(CSP-1), which contains 13 Cys residues. We also show the total
chemical synthesis of an activity-based probe of ubiquitinated
histone H2A at Lys119 to prepare ubiquitinated nucleosome core
particle probes (NCP-(H2A-UbDHA)). This probe exhibits reac-
tivity with the Calypso/ASX heterodimer deubiquitinase (DUB)
to form a stable covalent nucleosome–enzyme complex.

Results
Palladium prompted on-demand deprotection of Thz and
Acm. We recently found that glutathione (GSH) as an additive
can accelerate the cleavage of peptides and proteins connected via
a Thz linkage using [Pd(allyl)Cl]2 under physiological pH32.
Notably, when GSH was used in a 1:1 molar ratio to [Pd(allyl)
Cl]2, we found that breaking the Thz linkage was more effective
compared to using 4-mercaptophenylacetic acid (MPAA) and tris
(2-carboxyethyl)phosphine (TCEP) additives31. This prompted us
to revisit the Thz and Acm deprotection via palladium, by syn-
thesizing the model peptide, Thz-LYRAGC(Acm)LYRAG (pep-
tide 1), bearing N-terminus Thz and internal Cys protected with
Acm. When this peptide was exposed to [Pd(allyl)Cl]2 and GSH
(1:1) in 6M Gn·HCl, pH~6.5 at 37 °C, we observed within 45 min
the full unmasking of the Thz to the free N-terminal Cys. Sur-
prisingly, the Acm under these conditions was completely stable.
Interestingly, upon addition of an extra 10 equiv. of [Pd(allyl)Cl]2
to the reaction mixture, the Acm was completely removed within
5 h (Fig. 1). When examining PdCl2, the more efficient palladium
complex for the Acm removal with GSH33, we observed the
complete removal of the Thz and a relatively lower stability of the
Acm compared to the reaction with [Pd(allyl)Cl]2 and GSH
(Supplementary Fig. 2).

The ability to control Cys deprotection with Acm and Thz
encouraged us to further investigate the effect of different
parameters on the removal of the two PGs. Previous studies
have shown the effect of guanidine as a ligand on the palladium
reactivity in Suzuki cross-coupling reaction under aqueous
conditions37. With this in mind, we decided to examine the
removal of the two PGs in the absence of guanidine. Here
we found that when exposing peptide 1 to PdCl2 in water
only, we observed reversed and efficient removal of the Acm
within 30 min, while the Thz remained completely stable (Fig. 1b).
In situ addition of [Pd(allyl)Cl]2 and GSH in 6M Gn·HCl to the
reaction mixture enabled subsequent efficient Thz opening within
45 min (Fig. 1c).

To examine the origin of chemoselectivity of the deprotection
we kept the two reactions shown in Fig. 1b, after the first removal,
for additional time. After 2 h we observed the removal of the Acm
or Thz (< 10%). Nevertheless, even after overnight the deprotec-
tion of the second protecting group did not reach completion and
only 50–60% of the fully deprotected peptide was observed in
both cases. This could suggest that these reactions are kinetically
controlled. However, one could not exclude the formation of
different palladium complexes along the reaction pathway that
could eventually affect the reaction chemoselectivity.

Palladium-mediated Cys(t-butyl) deprotection. The impressive
on-demand deprotection that was observed between Thz and
Acm PGs prompted us to search for additional Cys PGs that
could be removed under mild treatment with palladium and in an
orthogonal manner to the Thz and Acm. Such a development
would further expand the toolbox for complex peptide and pro-
tein synthesis and modification. We decided to explore the Cys(t-
butyl) PG38, which has been used for regioselective disulfide bond
formation in peptides and proteins. This PG can be removed
under extremely harsh conditions, such as trifluoroacetic acid and
2,2-dithiobis(5-nitropyridine), hydrofluoric acid or by using
mercury metal in organic solvents38,39. We wondered if palla-
dium could assist the removal of the t-butyl in an aqueous buffer.
In order to test this, we synthesized the model peptide AC
(t-butyl)LYRAGLYRAG (peptide 2) and exposed it to various
removal conditions employing different palladium complexes,
additives, and temperatures (Table 1, Fig. 2). We found that the
t-butyl PG was highly stable in all these conditions, as long as the
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reaction was performed in a Gn·HCl buffer. However, when
screening different buffers, efficient t-butyl deprotection was
observed within 1.5 h using PdCl2 in a 50 mM Tris buffer at 37 °C
(Table 1). We also found that performing the same reaction in a
urea buffer gave similar results (Table 1), which supports the
critical role of guanidine in palladium reactivity.

To examine the stability of the three PGs with different
palladium complexes on a multi-Cys protected peptide, we
synthesized the model peptide Thz-LYRAC(Acm)LYRAC
(t-butyl)LYRAG. By exposing this peptide to [Pd(allyl)Cl]2 and

GSH in 6M Gn·HCl, followed by the addition of an extra
equivalent of [Pd(allyl)Cl]2, we were pleased to observe the
sequential removal of Thz and Acm while keeping the t-butyl
intact (Supplementary Fig. 7).

Palladium-enabled peptide modifications at selected sites.
Encouraged by these results, we turned our efforts to selectively
modify a Cys residue within a peptide containing multiple Cys
residues by employing selective removal of Cys PGs coupled with
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Fig. 1 On-demand deprotection of Thz and Acm PGs via palladium complexes. a Analytical HPLC and mass traces for protected peptide 1 with the observed
mass 1427 ± 0.6 Da, calcd 1427 Da (average isotopes). b Analytical HPLC and mass traces for Thz or Acm deprotection via palladium with the observed
masses 1415 ± 0.3 Da, and 1355 ± 0.5 Da, calcd 1415 Da and 1356 Da (average isotopes), respectively. c Analytical HPLC and mass traces for Acm or Thz
deprotection via palladium with the observed masses 1343 ± 0.6 Da, calcd 1344 Da (average isotopes)
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alkylation. In principle, this could enable the rapid synthesis of
peptide libraries from a common scaffold, which might find
useful applications in various areas such as in medicinal chem-
istry26. To explore this concept, we synthesized a model peptide
bearing three different Cys residues, Thz-LYRAGC(Acm)LYRCA
(peptide 3) for sequential alkylation. To alkylate the free Cys first,
we treated peptide 3 with halogenated-acetyl derivative, which
was completed within 30 min (Fig. 3b). For the second alkylation,
we performed selective Thz deprotection followed by in situ
coupling with a second halogenated-acetyl derivative. In this case,
however, no alkylation was observed, most likely because the Cys
remained bound to palladium in a Pd–S bond, renders it
unreactive for the alkylation step. While quenching the reaction
with dithiothreitol (DTT) is useful for both the precipitation of
excess palladium and for breaking the Pd-S bond31 such a step
can be problematic for the alkylation reactions, as DTT can react
with the halogenated-acetyl derivative. To overcome this obstacle,
we utilized a Cys-PEGA resin, which is a water-compatible solid
support, to capture any excess of palladium from the reaction
mixture, where we can easily separate the reaction mixture from
the remaining palladium and without interfering with the
halogenated-acetyl derivative applied in the next step (Supple-
mentary Fig. 9). Hence, after Thz deprotection we treated the
reaction mixture with the Cys-PEGA resin to capture all the free
palladium (Fig. 3c). The reaction mixture was then separated
from the resin and treated with one equiv. of DTT, which we
found to be more powerful in releasing the bound palladium to
the sulfur and enable a second alkylation step (Fig. 3d). In
addition, the Cys-PEGA resin could quench any residual
halogenated-acetyl derivative in the reaction mixture. Following
this step the Acm was removed and the quenching step with the
resin was repeated to enable a third alkylation reaction with the
iodoacetamide (Fig. 3f). Using this approach, we were able to

selectively modify the three Cys residues in peptide 3 in a one-pot
operation within 7 h for the 11 steps. The above described
sequential deprotection and Cys alkylation on peptide 3 was also
attempted in reversed order for the deprotection of the two
groups, i.e., first Acm followed by Thz removal for sequential
modification. Such an approach was also successful and provided
tri-alkylated peptide 3 (Supplementary Fig. 10).

Palladium-mediated total chemical synthesis of CSP-1. With
the results described above, we then tested the applicability of
palladium-mediated selective chemistry on Cys residues for the
synthesis of complex proteins. We chose the Cys-rich protein
CSP-1 as a model system, which contains 13 Cys residues. CSP-1
was very recently discovered as a copper storage protein for
particulate methane monooxygenase from the methanotroph,
Methylosinus trichosporium OB3b40. Our efforts to prepare this
protein by the synthesis of three peptide fragments coupled with
NCL were unsuccessful despite several attempts (Supplementary
Fig. 11-13). This is probably due to the protein hydrophobic
sequence and the presence of many Cys residues, which renders
the peptide fragments hardly soluble during the ligation reactions.
To overcome this obstacle, we used the same three fragments,
CSP-1-1, CSP-1-2, CSP-1-3 but each was modified temporarily
with a phenylacetamidomethyl (Phacm) as a cleavable solubiliz-
ing tag34,41, bearing three Arg residues to enhance the solubility
of the fragments (Fig. 4). The tags were incorporated into the
different peptide fragments at positions Cys26, 62, and 117. The
three-Arg tags dramatically improved the peptides’ solubility and
enabled their preparation in good yields as compared to the
standard approach (Supplementary Fig. 14-16). Indeed, the pre-
sence of the tags enabled efficient NCL of CSP-1-1 and CSP-1-2.
For the second ligation with CSP-1-3, selective Thz opening was
necessary, keeping in mind that the solubilizing tags should
remain intact until the end of synthesis despite the use of palla-
dium to deprotect the Thz. Since the NCL step requires MPAA
and TCEP additives the reactivity of the palladium will be affected
and interfere with the desired selectivity, i.e., deprotecting the Thz
without cleaving the Phacm linker. To neutralize the effect of
MPAA and TCEP on palladium reactivity, we envisioned the use
of MgCl2 to chelate these additives33. Indeed, when we performed
NCL between the CSP-1-1 and CSP-1-2 peptides in the presence
of MPAA and TCEP, followed by MgCl2 treatment and [Pd(allyl)
Cl]2/GSH, this enabled selective Thz removal without affecting
the three Phacm tags to provide CSP-1–4. Subsequently, the
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PdCI2

50 mM Tris, 37 °C

HSS

Peptide 2 Peptide 21. Hg(OAc)2 0 °C
2. H2S

Fig. 2 Removal conditions of Cys(t-butyl). Schematic representation of
t-butyl deprotection via PdCl2 in aqueous buffer compared to the previous
conditions

Table 1 Examining t-butyl deprotection under various conditions

Entry Catalyst Equiv. Buffer Additive Temperature Time Yield

1. [Pd(allyl)Cl]2 20 6M Gn·HCl GSH 37 °C 5 h 0%
2. [Pd(allyl)Cl]2 10 6M Gn·HCl MPAA 37 °C 5 h 0%
3. [Pd(allyl)Cl]2 10 6M Gn·HCl TCEP 37 °C 5 h 0%
4. [Pd(allyl)Cl]2 10 6M Gn·HCl MPAA/TCEP 37 °C 5 h 0%
5. [Pd(allyl)Cl]2 10 6M Gn·HCl – 65 °C 5 h 0%
6. PdCl2 20 6M Gn·HCl GSH 37 °C 5 h 0%
7. PdCl2 10 6M Gn·HCl MPAA/TCEP 37 °C 5 h 0%
8. PdCl2 10 6M Gn·HCl TIS 37 °C 5 h 0%
9. PdCl2 10 6M Gn·HCl – 37 °C 5 h 0%
10. PdCl2 10 6M Gn·HCl – 65 °C 5 h 0%
11. PdCl2 10 0.5 M Gn·HCl – 37 °C 5 h 0%
12. PdCl2 10 5 M Urea – 37 °C 2 h 100%
13. PdCl2 10 50 mM Tris – 37 °C 1.5 h 100%
14. – – 5 M Urea – 37 °C 2 h 0%
15. – – 50 mM Tris – 37 °C 2 h 0%

TIS triisopropylsilane, Tris 2-Amino-2-(hydroxymethyl)propane-1,3-diol
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second ligation with fragment CSP-1-3 was performed to give
CSP-1-5. Finally, the three tags were removed using PdCl2 for 1 h
to provide the native CSP-1 protein, which showed by circular
dichroism (CD) the expected secondary structure (Fig. 4).

Palladium-mediated chemical synthesis of H2AK119DHAUb.
Ubiquitin activity-based probes have found great utility in
understanding the function and structure of deubiquitinases42,43.
We aimed to use the on-demand palladium chemistry to prepare
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probes based on ubiquitinated proteins. We focused on probes
that are based on ubiquitinated H2A at Lys119 (H2AK119Ub)
where the ubiquitin carboxyl terminus is covalently linked to the
ε-amino group of lysine via an isopeptide bond. In this probe,
Gly76 is replaced with DHA to trap the DUB catalytic Cys, as we
previously reported for diubiquitin activity-based probes9. Ubi-
quitination of H2A is a hallmark of heterochromatin, which is
dynamically regulated by Calypso/ASX in Drosophila44, and plays
an important role in cell cycle control, DNA damage response,
and gene regulation45. We anticipate that this type of chemistry

could provide useful reagents that would assist in understanding
the structural and functional mechanisms of Calypso/ASX DUB
in chromatin context.

For the total chemical synthesis of the H2AK119Ub probe, we
prepared three peptide fragments based on the H2A sequence
(H2A-1, H2A-2, and H2A-3) in addition to Ub(1-75)-thioester
(Fig. 5)36,46. To enable ubiquitination through Lys119 and latent
DHA formation, fragment H2A-1 was prepared bearing also Cys
(t-butyl) on Lys119. This Cys, which replaces Gly76 of Ub would
serve after H2A polypeptide assembly for the ligation with Ub
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and DHA formation. Here we envisioned selective removal of the
Thz for sequential backbone ligation in the presence of the
orthogonally protected Cys. In this synthesis, Ala at positions 86
and 48 in H2A-2 and H2A-3 fragments were temporarily
mutated to Cys to enable NCL. With this design in mind, we
performed the first ligation between H2A-1 and H2A-2, followed
by MgCl2 treatment to enable Thz removal via [Pd(allyl)Cl]2.
Subsequently, this enabled a second NCL step with fragment
H2A-3 to provide H2A(1-129)K119-C(t-butyl). At this stage, we
performed a desulfurization step in a one-pot operation without
affecting the t-butyl protection to give the full-length H2A-5. The
purified intermediate H2A-5 was dissolved in urea or Tris buffer
at pH 7.5 and treated with PdCl2 to unmask the Cys(t-butyl) to
give H2A(1–129)K119Ub-Cys and was ligated with Ub(1–75)-
thioester to furnish the ubiquitinated H2A-6. Subsequently,
treatment with the bisamide1,4-dibromobutane47 converted the
Cys side chain at the ligation site to DHA to provide the desired
H2AK119DHAUb probe (Fig. 5).

Calypso/ASX DUB labeling with NCP-(H2A-UbDHA). Having
the synthetic probe in hand, we sought to demonstrate that the
reactive probe could crosslink with the deubiquitinating enzyme
complex known to cleave ubiquitin from H2A, Calypso/ASX44.
We reconstituted the H2A-Ub probe, H2B, H3, H4 and the 146
base pair Widom 601 DNA sequence48 into nucleosome core
particles (NCP) using standard methods49. Under these condi-
tions, we observed negligible labeling with Calypso/ASX DUB,
perhaps suggesting that chemical modification of the DHA
moiety may be producing an inactive species. To test this, we then
moved to examine the probe stability in the presence of several
solution components present during NCP reconstitution,
including different buffers (Tris and HEPES), additives (TCEP),
and temperatures (4 °C, room temperature and 37 °C). To study
this, we synthesized a ubiquitinated C-terminal H2A peptide
probe (H2A(116-129)K119DHAUb) (Supplementary Fig. 25).
HPLC and mass analysis showed that under standard conditions,
TCEP reacts with the DHA residue such that > 50% of the probe
is deactivated within 24 h, probably via the formation of a stable
C-P bond (Supplementary Fig. 27-30)50,51. We reasoned that
excluding TCEP from the buffer would provide greater stability of
the probe for several weeks.

With the insight that TCEP inactivates DHA reactivity, we
reconstituted the H2A-UbDHA probe together with recombinant
Xenopus laevis histones H3, H4, H2B and the Widom 601 DNA
sequence as described above, but in the absence of reducing agent.
Histones were reconstituted into octamers and purified by size-
exclusion chromatography to remove incorrectly folded histone
complexes52. The histone octamers were further reconstituted
into NCPs by gradient salt dialysis in the presence of the Widom
601 DNA purified by standard methods to provide NCP(H2A-
UbDHA) probe (Fig. 6a). The NCP(H2A-UbDHA) probe was
incubated for 1 h at 25 °C with Calypso/ASX at concentrations of
3 µM and 6 µM, respectively. The resultant products were
analyzed by electrophoretic mobility shift assay (EMSA), SDS-
PAGE, and Western blot. Taken together, these results indicate
the formation of a unique covalent complex was formed between
Calypso/ASX and NCP-UbDHA. The EMSA experiment showed
the formation of a band corresponding to nucleosomal DNA
migrating at a higher apparent molecular weight than NCP-
UbDHA alone. We also observed no dissociation of this complex
after serial dilution of the reaction mix supporting the formation
of enzyme stably bound to the nucleosome probe (Fig. 6b). In
addition, an SDS-PAGE denaturing gel similarly showed the
formation of a high-molecular-weight species appearing after
Calypso/ASX was incubated with NCP(H2A-UbDHA), consistent

with the formation of Calypso/ASX-H2A-UbDHA complex
(Fig. 6c). To further validate this band in Fig. 6c was, in fact, a
reaction product resulting from labeling by the probe, we
performed immunoblotting with an antibody against ubiquitin,
which confirmed that the ubiquitin is migrating with an high
molecular weight due to covalent cross-linking of NCP(H2A-
UbDHA) to the Calypso/ASX DUB (Fig. 6d).

Discussion
In conclusion, we have introduced synthetic approaches to
expand the chemical toolbox for synthesizing and modifying
peptides and proteins. The reported approaches make possible
on-demand palladium-mediated decaging of various Cys PGs to
facilitate peptide modification and protein synthesis of complex
targets. Remarkably, the selectivity has been achieved by simple
variation of the additives and the solvent in the reaction mixture
containing commercially available palladium complexes. The
palladium tunability that has been achieved here should also
initiate other research directions in aqueous-based chemistry of
small molecules and trigger mechanistic studies. The synthesis of
protein targets, such as the CSP-1 and the activity-based probes
based on ubiquitinated H2A, pave the way for answering fun-
damental questions related to these systems. Of particular interest
is the Calypso/ASX-NCP(H2A-UbDHA) complex, which has
opened up the opportunity for structural studies that would
otherwise be very difficult to attempt.

Methods
Palladium prompted Thz removal in presence of Acm. 0.5 mg of peptide 1
(0.35 × 10−3 mmol, 2 mM) was dissolved at 175 µL, 6 M Gn·HCl, 200 mM
Na2HPO4 buffer pH 6.5, and treated with 10 equiv. of [Pd(allyl)Cl]2 and GSH (1:1)
and incubated at 37 °C for 45 min to observe complete Thz opening. Subsequent
addition of extra 10 equiv. of [Pd(allyl)Cl]2 to the reaction mixture led to complete
removal of the Acm within 5 h.

Palladium prompted Acm removal in presence of Thz. 0.5 mg of peptide 1
(0.35 × 10−3 mmol, 2 mM) was dissolved at 175 µL, H2O, and treated with 10
equiv. of PdCl2 and incubated at 37 °C for 30 min to observe complete Acm
deprotection. Subsequent addition of [Pd(allyl)Cl]2 and GSH (1:1) in 6 M Gn·HCl,
200 mM Na2HPO4 buffer pH 6.5 to the reaction mixture at 37 °C led to complete
Thz removal within 45 min.

Sequential modification of peptide 3. 2 mg of peptide 3 (1.35 × 10−3 mmol,
2.7 mM) was dissolved at 500 µL, 6 M Gn·HCl, 200 mM Na2HPO4 buffer pH 8, and
treated with 1 equiv. of N-(bromoacetyl)glycine-ethyl ester, which pre-dissolved as
a stock solution in MeOH. 100 equiv. of NaI was added to accelerate the alkylation
reaction. The reaction was monitored by HPLC-MS, which showed completion
within 30 min. Then, the reaction mixture was treated with 10 equiv. of [Pd(allyl)
Cl]2 and GSH (1:1) and incubated at 37 ° for 45 min to observe complete Thz
removal. For the second alkylation, the solution mixture was treated with Cys-
PEGA resin for 1 h at 37 °, followed by the addition of 1 equiv. of DTT. Subse-
quently, 11 equiv. of the N-(bromoacetyl)alanine-methyl ester dissolved in MeOH
and 100 equiv. NaI were added and incubated at 37 °. The reaction was completed
within 30 min. For Acm removal, 10 equiv. of PdCl2 was added to the reaction
mixture and incubated for 30 min at 37 ° for a complete Acm removal. Then the
solution mixture was treated with 40 equiv. Cys-PEGA resin for 1 h at 37 ° and 1
equiv. of DTT. Finally, 2 equiv. of iodoacetamide at 37 ° were added to give the tri-
alkylated peptide 3.

Total chemical synthesis of CSP-1. The peptides CSP-1-1 (3.5 mg, 8.5 × 10−4

mmol) and CSP-1-2 (4.3 mg, 9.5 × 10−4 mmol) were dissolved in 6M Gn·HCl, 200
mM Na2HPO4 buffer, pH ~7.2 (400 µL, 2 mM) containing 20 equiv. of MPAA and
10 equiv. of TCEP. The reaction was incubated at 37 °C for 2 h. Progress of the
reaction was monitored by analytical HPLC using C4 analytical column and a
gradient of 0–60% buffer B (Acetonitrile mixed with 0.1% TFA) over 30 min. After
completion of the ligation reaction, the product was treated with 100 eq. of MgCl2
dissolved in 100 µL of 6M Gn·HCl, 200 mM Na2HPO4 buffer, pH ~7.2 at 37 °C for
10 min. For Thz removal, [Pd(AllylCl)]2 (4.1 mg, 1.3 × 10−2 mmol) and GSH
(3.8 mg, 1.3 × 10−2 mmol) were dissolved in 100 μl of 6 M Gn·HCl, 200 mM
Na2HPO4 buffer, pH ~7.2, and added to the reaction mixture, which was incubated
at 37 °C for 1.5 h. Progress of the reaction was monitored by analytical HPLC using
C4 analytical column and a gradient of 0–60% B over 30 min. After completion of
the reaction, 60 equiv. of DTT was added to quench and precipitate the palladium
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from the reaction mixture. After centrifugation, the supernatant solution was
collected and purified using semi-preparative HPLC, C4 column and gradient of
20–60% B to give the desired product in ~45% yield (Supplementary Fig. 17). For
the second ligation, the peptides CSP-1–4, (3.2 mg, 3.8 × 10−4 mmol) and CSP-1-3
(2.5 mg, 4.2 × 10−4 mmol) were dissolved in 100 μl of 6 M Gn·HCl, 200 mM
Na2HPO4 buffer, pH ~7.2, containing 20 equiv. MPAA and 10 equiv. of TCEP at
pH ~7.2 and incubated at 37 °C for 6 h. Progress of the reaction was monitored by
analytical HPLC using C4 analytical column and a gradient of 0–60% B over 30
min. After completion of the ligation reaction, CSP1-5 was isolated using semi-
preparative HPLC, C4 column and a gradient of 20–60% B to give the desired
product in ~50% yield, (Supplementary Fig. 18A).

Palladium-mediated tag removal. Stock solution of 10 eq. PdCl2 was prepared in
6M Gn·HCl, 200 mM Na2HPO4 buffer, pH~7.2. Subsequently, the palladium
solution was added to the pre-dissolved CSP-1–5, (2.5 mg, 1.7 × 10−4 mmol) in 6 M
Gn·HCl, 200 mM Na2HPO4 buffer, pH~7.2 (180 µL, 1 mM) and incubated at 37 °C
for 2 h. Progress of the reaction was monitored by analytical HPLC using C4
analytical column with a gradient of 0–60% B over 60 min. After completion of the
reaction, 40 equiv. of DTT was added to quench and precipitate the free palladium
from the reaction mixture. After centrifugation of the reaction, the supernatant
solution was collected purified using semi-preparative HPLC, C4 column and
gradient of 20–60% B to give the desired product in ~50% yield, (Supplementary
Fig. 18B).

H2A-5 synthesis. H2A-1 (5 mg, 1.0 × 10−3 mmol) and H2A-2, (4.7 mg, 1.0 ×
10−3 mmol), were dissolved in 6M Gn·HCl, 200 mM Na2HPO4 buffer, pH~7.2
(500 µL, 2 mM) containing 20 equiv. of MPAA and 10 equiv. of TCEP. The
reaction was incubated at 37 °C for 4 h. Progress of the reaction was monitored by

analytical HPLC using C4 analytical column and a gradient of 0–60% B over 30
min. After completion of the ligation reaction, the product was treated with 100
equiv. of MgCl2, dissolved in 100 µL of 6 M Gn·HCl, 200 mM Na2HPO4, pH ~7.2 at
37 °C for 10 min. For Thz removal [Pd(AllylCl)]2 (4.9 mg, 1.5 × 10−2 mmol) was
dissolved in 100 μl of 6 M Gn·HCl, 200 mM Na2HPO4, pH~7.2. and the reaction
mixture was incubated at 37 °C for 1.5 h. Progress of the reaction was monitored by
analytical HPLC using C4 analytical column and a gradient of 0–60% B over
30 min. After completion of the reaction H2A-3 fragment (5.7 mg 1.1 × 10−3

mmol), dissolved in 100 μl of 6 M Gn·HCl, 200 mM Na2HPO4, pH~7.2 containing
100 equiv. of MPAA and 50 equiv of TCEP was added to the reaction and incu-
bated at 37 °C for 8 h. Progress of the reaction was monitored by analytical HPLC
using C4 analytical column with a gradient of 0–60% B over 30 min. After com-
pletion of the final ligation, 60 equiv. of DTT was added to quench and precipitate
the palladium from the reaction mixture. After centrifugation of the reaction, the
supernatant solution was collected and dialyzed 500 ml of 6M Gn·HCl, 200 mM
Na2HPO4 buffer at pH~7.2, using Slide-A-Lyzer dialysis cassettes for 16 h. After
the dialysis, radical desulfurization reaction was performed by adding 70 mg of
TCEP (0.25 M), 32 mg of VA-044 (50 equiv. per sulfur) and 100 μl of t-butyl thiol
(10% of the total volume) to the reaction mixture and incubated in 42 °C for 4 h.
Progress of the reaction was monitored by analytical HPLC using C4 analytical
column with a gradient of 0–60% B over 30 min. After centrifugation, the super-
natant solution was collected and isolated via semi-preparative HPLC, C4 column
and a gradient of 20–60%B was used to isolate the product in ~17% yield, (Sup-
plementary Fig. 22).

t-Butyl removal followed by chemical ubiquitination of H2A. PdCl2 (3 mg, 1.7 ×
10−3 mmol) was dissolved in 100 µL H2O and 10 µL of this solution was added to
the pre-dissolved H2A-5 (2.5 mg, 1.7 × 10−4 mmol) in 50 mM Tris buffer, pH 7.5
(190 µL, 2 mM) and incubated at 37 °C for 2 h. Progress of the reaction was
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monitored by analytical HPLC using C4 analytical column and a gradient of 0–60%
B over 30 min. After completion of t-butyl removal, Ub(1–75)-thioester, (2.2 mg,
2.55 × 10−3 mmol), was dissolved in 100 µL of 6 M Gn·HCl, 200 mM Na2HPO4

buffer containing 100 equiv. of MPAA and 50 equiv. of TCEP, pH ~7.2. The
reaction was incubated at 37 °C for 4 h. Progress of the reaction was monitored by
analytical HPLC using C4 analytical column and a gradient of 0-60% B over 30
min. After completion of the final ligation reaction, 40 equiv. of DTT was added to
quench and precipitate the palladium from the reaction mixture. After cen-
trifugation, the supernatant solution was collected and isolated via semi-
preparative HPLC, C4 column and a gradient of 20–60% B was used to isolate the
product in ~45% yield, (Supplementary Fig. 23).

H2A-6 conversion to (H2AK119DHAUb) probe. 100 equiv. of bisamide1,4-
dibromobutane dissolved in DMF were added to H2A-6, (1.2 mg, 8.5 × 10−5

mmol) dissolved in 6M Gn·HCl, 200 mM Na2HPO4 buffer, pH ~8 (85 µL, 1 mM)
and the reaction mixture was incubated 1 h at room temperature, followed by 3 h at
37 °C. Progress of the reaction was monitored by analytical HPLC using C4 ana-
lytical column and a gradient of 0-60% buffer B over 30 min. After completion of
elimination reaction, the product (H2AK119DHAUb) was purified using semi-
preparative HPLC, C4 column and a gradient of 20-60% B was used to give the
product in ~55% yield, (Supplementary Fig. 24).

Nucleosome reconstitution. Histone octamers were reconstituted and purified as
described previously52 from recombinant Xenopus Laevis histone sequences
(H2AK119DHAUb, H2B, H3, and H4). The octamers bearing the H2AK119DHAUb
were then reconstituted into nucleosomes with salt gradient dialysis and purified
using a DEAE-5PW HPLC column (TOSOH). After purification, nucleosomes
were dialyzed into NCP storage buffer (10 mM Tris-HCl pH 7.5, 50 mM KCl) and
stored at 4 °C.

Nucleosome labeling. Reaction of Calypso/ASX with the NCP-(H2A-UbDHA)
probe was accomplished by reacting each component at concentrations of 6 µM
and 3 µM, respectively. The reaction was done in the absence of reducing agent to
avoid modification of the DHA group at 25 °C for 1 h in NCP storage buffer.
Samples were then analyzed by EMSA (6% TBE gel stained with SYBR Gold), SDS-
PAGE (NuPage 4–12% Bis-Tris gel stained with Sypro Ruby), and western blot
(antiUb-p4d1 primary (Santa Cruz Biotech Cat # B1512) and anti-mouse IgG
HRP-linked secondary (Cell Signaling Cat #: 7076) were diluted at 1:5000, (Sup-
plementary Fig. 31).

Antibodies. AntiUb p4d1 primary (Santa Cruz Biotech Cat # B1512) and anti-
mouse IgG HRP-linked secondary (Cell Signaling Cat #: 7076) were diluted at
1:5000.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information Files, and
from the corresponding author upon reasonable request.
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