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Low irradiance multiphoton imaging with alloyed
lanthanide nanocrystals
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Multiphoton imaging techniques that convert low-energy excitation to higher energy emis-

sion are widely used to improve signal over background, reduce scatter, and limit photo-

damage. Lanthanide-doped upconverting nanoparticles (UCNPs) are among the most

efficient multiphoton probes, but even UCNPs with optimized lanthanide dopant levels

require laser intensities that may be problematic. Here, we develop protein-sized, alloyed

UCNPs (aUCNPs) that can be imaged individually at laser intensities >300-fold lower than

needed for comparably sized doped UCNPs. Using single UCNP characterization and kinetic

modeling, we find that addition of inert shells changes optimal lanthanide content from Yb3+,

Er3+-doped NaYF4 nanocrystals to fully alloyed compositions. At high levels, emitter Er3+

ions can adopt a second role to enhance aUCNP absorption cross-section by desaturating

sensitizer Yb3+ or by absorbing photons directly. Core/shell aUCNPs 12 nm in total diameter

can be imaged through deep tissue in live mice using a laser intensity of 0.1W cm−2.
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Light microscopy is the primary means of studying complex
living systems, enabling real-time analysis with ever-
increasing spatial and temporal resolution. Increasingly

powerful imaging techniques and lasers have raised concern over
light toxicity1,2, which is most acute with high laser intensities at
shorter wavelengths in the ultraviolet and visible regions3,4. Near-
infrared (NIR) excitation is more benign than these higher energy
wavelengths4,5, and nonlinear multiphoton techniques that use
NIR excitation have been widely adopted6–10. Both scatter and
absorption by cellular components are much lower for NIR light
than for visible light8,11,12, and this steep wavelength dependence
has been shown in direct comparisons to reduce photodamage
using NIR-based techniques4,5,13,14. Multiphoton probes excitable
at reduced laser intensities in the NIR would enable powerful
high-resolution and deep-tissue imaging techniques in sensitive
systems without associated phototoxicity.

Lanthanide-doped upconverting nanoparticles (UCNPs) are
phosphors that absorb multiple photons in the NIR and emit at
higher energies in the NIR or visible spectral regions. The lumi-
nescence efficiencies of UCNPs are orders of magnitude higher
than those of the best two-photon fluorophores15–18, and they
exhibit no on-off blinking, no overlap with cellular auto-
fluorescence, and no measurable photobleaching under prolonged
single-particle excitation5,19,20. UCNPs make use of energy
transfer upconversion between neighboring lanthanide ions
(Ln3+), in which sensitizer ions with relatively large absorption
cross-sections sequentially transfer absorbed energy to lumines-
cent emitter ions, both of which are doped into a low-phonon-
energy nanocrystal host. For many applications, β-phase NaYF4
nanocrystals doped with 20% Yb3+ sensitizer and a low percen-
tage of Er3+ or Tm3+ emitter are most efficient17,18,21. Addition
of inert epitaxial shells to these UCNPs has been shown to
enhance emission at low excitation powers by reducing Yb3
+-mediated energy migration to high-vibrational-frequency
modes of surface oleate ligands or solvent19. For UCNPs with
high Ln3+ content, this has been attributed to suppression of
concentration quenching22,23, an observation that encompasses a
number of known as well as unexplored energetic pathways that
reduce the quantum yield (QY) of upconverted emission22,24–28.

Here, we use single-nanoparticle characterization and kinetic
models of Ln3+ energy transfer to develop antibody-sized
(approximately 12–15 nm diameter) alloyed UCNPs that can be
imaged at the single-particle level at laser intensities below 300W
cm−2, over 300-fold lower than needed for comparably sized
doped UCNPs. Core/shell aUCNPs are brighter than comparably
sized doped UCNPs at all laser intensities tested, over a range
of four orders of magnitude. Addition of inert epitaxial
shells radically changes optimal lanthanide content from Yb3+,
Er3+-doped NaYF4 nanocrystals to fully alloyed compositions,
and at high levels of the emitter Er3+, these ions can adopt a
second role to enhance the effective aUCNP absorption. This leads
to a revised UCNP design in which there is no need to dope Ln3+

ions into an inert NaYF4 (or other) host matrix. In live mice,
aqueous 12-nm core/shell aUCNPs can be imaged with strong
contrast (signal:background >25) through several millimeters of
tissue with a laser intensity of just 0.1W cm−2. aUCNPs open up
the possibility of using both low irradiance and low-energy exci-
tation wavelengths for non-destructive bioimaging experiments.

Results
Characterization of small NaLnF4 core/shell nanoparticles. To
better understand how inert epitaxial shells affect UCNP emis-
sion, we analyzed emissions of single nanocrystals to compare
absolute brightness at different laser intensities. UCNP emission
is deeply power-dependent and size-dependent, and single-

nanocrystal characterization allows quantitative comparison of
non-aggregated nanocrystals under identical environments over
four orders of magnitude excitation power density8,13, a range
that spans imaging experiments from single-molecule studies to
imaging of highly light-sensitive samples. We synthesized a series
of 8-nm diameter β-phase NaYF4 cores19, and overcoated them
with NaYF4 shells using a layer-by-layer protocol29 (Fig. 1
and Methods). Several NaLnF4 alloys of heavy lanthanides (e.g.,
Yb3+-Er3+, Yb3+-Tm3+, and Yb3+-Ho3+, as well as NaErF4)
have been reported22,25,28,30,31, including sub-20-nm NaYbF4:Tm
core/shell nanopoarticles32, although none of these compositions
have not been characterized by quantitative single-particle ima-
ging or systematically over a large range of power densities.
Characterization of our nanocrystals by electron microscopy
(EM) and X-ray diffraction (XRD) showed monodisperse β-phase
nanocrystals for both 8-nm core and core/shell UCNPs (Fig. 1e
and Supplementary Figs. 1–3). High-angle annular dark-field
scanning transmission EM (STEM), which is sensitive to atomic
number Z, confirms the core/shell structure, showing clear
boundaries between alloyed cores and 20% Gd3+-doped shells
(Fig. 1f).

Upconverted emission spectra of single core/shell UCNPs have
similar transitions as seen for unshelled UCNPs (Fig. 1d and
Supplementary Fig. 4), but laser power density studies show large
increases in emission dependent on both the lanthanide content
and laser power densities. At laser intensities above 106W cm−2,
core UCNPs doped with 20% Yb3+ sensitizer show maximum
emission with 20% Er3+ emitter (Fig. 2a), while higher Er3+

doping leads to apparent Er3+-Er3+ cross-relaxation or enhanced
surface losses18,25. Once shells are added, additional Er3+

increases emission, with fully alloyed UCNPs almost an order
of magnitude brighter (Fig. 2b) than the most efficient doped
cores18. In contrast to unshelled UCNPs, where power depen-
dence is critical and the brightest compositions at high laser
intensities are not even luminescent at low intensities18, here the
brightest aUCNP compositions are superior over a 10,000-fold
range of excitation intensities. At the highest excitation
intensities, shells provide almost a twofold emission increase for
2% Er3+ doping and increase up to 30-fold for aUCNPs (Fig. 2a
and Supplementary Fig. 5), suggesting that at laser powers used
for single-particle imaging, any quenching typically associated
with high Ln3+ content25,26 can be suppressed by the addition of
inert shells22. Single UCNP analysis of shell thickness (Fig. 2b and
Supplementary Fig. 1) shows larger emission enhancements at
lower powers, and with enhancements diminishing above 4-nm
shell thickness16. Power series show little difference in single
aUCNP brightness with either a majority of Yb3+ sensitizer or
Er3+ emitter ions (e.g., NaEr0.6Yb0.4F4 vs. NaEr0.2Yb0.8F4;
Supplementary Fig. 5), suggesting more complex behaviors than
the traditional roles assigned to these ions.

Imaging aUCNP nanoparticles at low irradiances. We observed
an even greater effect of inert shells at the lowest intensities
(Fig. 3a). While the best cores require >105W cm−2 to image
single sub-20-nm nanocrystals at signal-to-background ratios
(SBR) above 3 (corresponding here to 100 c.p.s. above back-
ground18), most individual core/shell UCNPs can be imaged at
irradiances below 1000W cm−2 (Fig. 3b and Supplementary
Fig. 6). We observe that increasing the fraction of Yb3+ (Sup-
plementary Fig. 5) enables single core/shell NaEr0.2Yb0.8F4
aUCNPs to be imaged as low as 290W cm−2 (Fig. 4a–e and
Supplementary Fig. 7), >300-fold lower than the best previous
sub-20-nm compositions17,18. For confocal imaging of ensembles
of nanoparticles, intensities as low as 4W cm−2 can be used to
image these same aUCNPs loaded into polystyrene beads
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(Fig. 4f–j and Supplementary Fig. 7), and intensities <0.1W cm−2

can be used for imaging aUCNPs injected into live mice, as dis-
cussed below. From these experiments, a revised UCNP design
emerges in which there is no need to dope lanthanides into an
inert matrix, as fully alloyed lanthanide UCNPs are brighter at all
laser intensities.

Mechanisms of improved aUCNP brightness. To understand
why the brightest core/shell compositions are alloyed, we deter-
mined single-nanocrystal absorption cross-sections and QYs
(Supplementary Fig 8) and used these data with rate equation
models18,33 to uncover how high Ln3+ content alters photo-
physical processes in UCNPs. At irradiances above the saturation
intensity, Is, at least 25% of Yb3+ ions are populated in their 2F5/2
excited state and thus are not able to absorb additional incident
980 nm photons. Calculations of Is based on Yb3+ and Er3+

absorption cross-sections at 980 nm (σabs; Supplementary Fig. 8a
and Methods) show that core/shell aUCNPs reach saturation at
3000W cm−2, and kinetic models of UCNP Ln3+ populations13

find that ≥75% of Yb3+ are in the excited state at intensities above
106W cm−2. Although the calculated σabs for Yb3+ at 980 nm is
14-fold larger than that of Er3+ (see Methods), at high laser
intensities, the contribution of the remaining ground state Yb3+

to total UCNP absorption should be sharply diminished, and
even eclipsed by the Er3+ contribution in NaEr0.8Yb0.2F4

aUCNPs. However, with increasing Er3+ levels, Yb3+ ET to
nearby Er3+ ions is enhanced, as ET rates scale with R−6 (where
R is the distance between ions) and with the product of the ion
concentrations. This suggests that nearby Er3+ ions offer new
pathways to return Yb3+ to its ground state, and this desaturation
would then enhance the effective absorption cross-section of the
aUCNP (Fig. 5).

New roles of Er3+ in enhanced aUCNP absorption. To deter-
mine whether desaturation and direct Er3+ absorption lead to
the enhanced emission of aUCNPs, we determined single
UCNP QYs based on single UCNP emissions (Fig. 2a) relative
to a well-established doped UCNP standard13 (Fig. 3c). UCNP
absorption cross-sections were calculated (Supplementary
Fig. 8) for the saturating intensities of the single UCNP mea-
surements (2 × 106W cm−2). For UCNPs with 20% Yb3+, QY
values rise sharply from 2 to 20% Er3+, but above 20% QY
values plateau while relative single UCNP emission continues to
rise. This suggests relief from quenching is most important at
lower Er3+ content, while Er3+ above 20% leads to increasing
emission by enhanced absorption. Comparing the brightest
aUCNPs to doped UCNPs with the same Er3+ content, addi-
tional Yb3+ leads to unchanged or decreased QY values (e.g.,
compare 20% Yb3+, 60% Er3+, and NaEr0.6Yb0.4F4 in Fig. 3c).
In contrast with previous discussions of high Ln3+ UCNPs,
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these single UCNP experiments suggest it is not relief from
concentration quenching that drives increases in aUCNP
emission, but rather concentration enhancement in effective
absorption cross-section due to the close proximity and larger
ground state populations of of Ln3+ able to absorb incident
photons (Fig. 5). Concentration enhancement presents a second

role for the emitter ion Er3+, in increasing absorbance directly,
or indirectly, by desaturating Yb3+ and enabling it to absorb
more photons per unit time. This unexpected role of Er3+ in
absorption also answers the question of why aUCNPs are
brighter in cases where neither number of absorbing Yb3+ ions
nor the QYs change significantly.

Yb/Er

0.4/0.6 core/shell

0.2/0.6 core/shell

0.2/0.2 core/shell

0.2/0.2 core

500 1000

200

400

600

0

a b

c
Power density (W cm–2)

0

4

8

12

16

Er3+ fraction

S
ingle U

C
N

P
 Q

Y
 (%

)R
el

at
iv

e 
em

is
si

on

0

2

4

6

8

10

0

5

10

Emission
UCQY

15

0 0.2 0.4 0.6 0.8 1

2000

In
te

ns
ity

 (
c.

p.
s.

)

Power density (W cm–2)

106105104103

In
te

ns
ity

 (
c.

p.
s.

 ×
 1

03 )

Fig. 3 UCNP emission as a function of laser intensity. a Single 8-nm UCNP emission (496–745 nm) as a function of 980 nm laser excitation density. b
Emission at low intensities from highlighted area (green dash) in a. c Emission (circles) and QYs (triangles) of single core/shell UCNPs (solid symbols) and
aUCNPs (open symbols) relative to 20% Yb3+ 2% Er3+ core/shell UCNPs13. Values are based on averages of between 50 and 300 single UCNPs excited
at a power density of 2 × 106W cm−2. Relative QYs are calculated as in Methods

a b

Power density (W cm–2)
106105104103

In
te

ns
ity

 (
c.

p.
s.

 ×
 1

03 )

0

4

8

12

10

6

2

0.40.20 1.00.80.6

Er3+ fraction

0

5

10

15

20

No shell

2-nm shell

4-nm shell
8-nm shell

Fig. 2 Enhancement of single UCNP emission. a Single-particle emission (496–745 nm) as a function of Er3+ content. Blue and red circles are 8 nm NaY(0.8

−x)ErxYb0.2F4 cores and with 4 nm shells, respectively. Blue and red squares are NaErF4 and NaErF4 core/shells, respectively. Excitation density is 2 × 106

W cm−2. Error bars are one standard deviation from the mean (n≥ 50). b Laser intensity-dependent effects of inert shell thickness on single
NaYb0.4Er0.6F4 aUCNP emission

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05577-8

4 NATURE COMMUNICATIONS |  (2018) 9:3082 | DOI: 10.1038/s41467-018-05577-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


To examine whether the higher Ln3+ content of aUCNPs lead
to the faster Er3+-Yb3+ ET rates that underlie concentration
enhancement, we examined lifetime decays of doped and alloyed
UCNPs as a function of excitation intensity (Supplementary
Fig. 9). At saturating intensities (Is > 3000W cm−2), weighted
lifetimes of core/shell aUCNP green and red emission decrease
with increasing Er3+ fraction, from ~400 μs at 100W cm−2 to
~10 μs at 106W cm−2 (Supplementary Fig. 8b, c), without
associated quenching manifested as decreases in QY or brightness
(Fig. 3c). Above Is, models of time-resolved luminescence18,34

have found strong correlations between decays of emitting Er3+

levels and excited Yb3+ ions, which act as reservoirs that rapidly
repopulate Er3+ emitting levels via ET. Shortened aUCNP
lifetimes are therefore consistent with the onset of rapid Yb3+

desaturation pathways mediated by close Er3+–Yb3+ pairs. In
contrast, at sub-saturation intensities, UCNPs show similar
decays regardless of Er3+ content (Supplementary Fig. 9), again
suggesting that lifetimes of emitting Er3+ ions are influenced
more by the kinetics of the Yb3+ excited state than by other
relaxation processes23,25. This unusual combination of brighter
emission with shorter radiative lifetimes may be useful for fast-
scanning techniques such as confocal imaging, where the long
lifetimes of doped UCNPs can lead to blurring35.

The sharp power dependence of aUCNP lifetimes suggests
different mechanisms of emission enhancement above and below
Is (Fig. 5). At higher powers that saturate Yb3+ absorption,
enhanced aUCNP emission depends on rapid ET to proximal
Er3+ ions, desaturating Yb3+ excited states so that the Yb3+ ions
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are freed to absorb incident photons. Below Is, UCNPs show
similar lifetimes regardless of Er3+ content. At these low
excitation intensities, most Yb3+ ions are already in their ground
states, enhancement in aUCNPs is driven primarily by increased
absorption due to the larger number of absorbing Ln3+ ions per
aUCNP. Small increases in total aUCNP σabs at 980 nm
(Supplementary Fig. 8a) are significant because of the quadratic
dependence of emission on the photon absorption rate. For
example, the calculated 980-nm σabs of NaYb0.4Er0.6F4 aUCNPs is
twice that of UCNPs doped with 20 Yb3+ and 20% Er3+, which
suggests a fourfold higher emission and which aligns well with the
experimentally measured 4.2-fold enhancement at 490W cm−2

(Fig. 3b). Combined with calculations and lifetime decays,
quantitative single UCNP measurements across a broad range
of Ln3+ content and excitation intensities have allowed us to
distinguish the critical mechanisms of aUCNP emission enhance-
ment that dominate at different imaging conditions.

Deep-tissue imaging of 12-nm aUCNPs. To determine how
aUCNPs can be imaged in biological systems at low laser inten-
sities, we transferred 8-nm NaEr0.6Yb0.4F4 aUCNPs with 2-nm
shells (12 nm total diameter) to water via polymer encapsula-
tion36 and injected them into mammary fat pads 3–4 mm beneath
the skin of 5-week-old mice (Fig. 6 and Methods). Images of
green emission acquired with 980-nm excitation at 0.1W cm−2

all show SBR ≥25, with signal decreasing from 2 to 6 h, likely
owing to a slow extravasation of aUCNPs from the mammary
glands into draining lymph nodes. By comparison, the maximum
permissible exposure for 980 nm continuous-wave lasers to
human skin is 0.73W cm−2 28,37, and previous deep-tissue
experiments with doped UCNPs have typically required far larger
doped UCNPs to achieve similar SBR values at these low
irradiances28,38. These experiments demonstrate that protein-
sized aUCNPs can be locally injected and imaged without notable
toxicity, and demonstrate a robust aUCNP signal from deep tis-
sue, even with visible emission.

Discussion
Increasingly complex multi-shell and multi-Ln3+ designs for
UCNPs have been successfully deployed for super-resolution
imaging, lasing, and sensitized emission21,39–41. Here we find a

new role for Er3+ in enhancing absorption, leading to simple
core/shell designs with just Yb3+ and Er3+ as optically active ions
that can yield superior nanoparticles over the entire range of
useful UCNP imaging intensities. The addition of inert shells
radically changes the brightest compositions from doped UCNPs
to alloyed, dispensing with the need for a host matrix. These
newly optimized compositions show >300-fold emission
enhancements compared to doped UCNPs, and aUCNPs just 12
nm in diameter can be imaged deep in tissue at excitation
intensities well below those known to cause physiological
damage4,5,28,37. While we have focused on aUCNPs similar in size
to antibodies to maintain biocompatibility, increasing the sizes of
these same aUCNPs would further decrease the minimum
required intensities, as brightness scales with the number of Ln3+,
which increase as d3. Larger aUCNPs may limit certain applica-
tions in confined or crowded systems, but open up other appli-
cations where extremely low intensities of low-energy NIR light
are required to minimize phototoxicity, such as with stem cells,
embryos, or human tissue.

Methods
Synthesis of alloyed β-NaErxYbyF4 nanocrystals. aUCNP nanocrystals were
synthesized using a previously described method19 for Ln-doped β-NaYF4 with
some modifications. For NaEr0.2Yb0.8F4 aUCNPs: to a dry 50-mL round bottom
flask, YbCl3 hydrate (0.32 mmol, 127 mg) and ErCl3 hydrate (0.08 mmol, 22 mg)
were added, followed by oleic acid (3.25 g, 10.4 mmol) and 1-octadecene (ODE,
4 mL). The flask was stirred, placed under vacuum, and heated to 110 °C for 1 h,
causing the solution to become clear. The flask was cooled and filled with N2, and
sodium oleate (1.25 mmol, 381 mg), NH4F (2 mmol, 74 mg), oleylamine (1.25 mL,
0.38 mmol), and ODE (1.75 mL) were added. The flask was again placed under
vacuum and stirred at room temperature for 20 min, and then flushed three times
with N2. The reaction was heated to 315 °C, stirred for 45 min under N2, and then
cooled rapidly by a strong stream of air to the outside of the flask following removal
of the heating mantle. When the reaction had cooled to 75 °C, ethanol (20 mL) and
acetone (20 mL) were added to precipitate the nanocrystals. The reaction was
transferred to a centrifuge tube and centrifuged at 3000 × g for 5 min to precipitate
the nanocrystals completely. The supernatant was discarded and the white solid
(80 mg) was resuspended in minimal hexanes (5 mL) to break up the pellet. The
nanocrystals were then precipitated again with the addition of ethanol (45 mL) and
centrifuged at 3000 × g for 5 min. The nanocrystals were resuspended and stored in
10 mL of hexanes with 0.2% (v v−1) oleic acid to give a 10 μM dispersion.

Similar procedures were used for all NaErxYbyF4, NaErF4, and doped NaYF4
cores, except that no oleylamine was required for nanocrystals with <40% Yb. All
nanocrystals showed pure β phase by powder XRD and TEM.

Synthesis of core/shell aUCNPs. Epitaxial NaY0.8Gd0.2F4 shells were grown on
NaErxYbyF4, NaErF4, and doped NaYF4 cores using a method modified from that
of Li29. The added Gd3+ was found to be necessary for pure β-phase shell growth13.
Precursors were prepared by heating YCl3 (0.40 mmol, 78 mg) and GdCl3 (0.10
mmol, 26 mg) to 110 °C in oleic acid (2 mL) and ODE (3 mL) and stirred for 15
min under vacuum. The flask was filled with N2 and heated to 160 °C for 30 min to
allow the GdCl3 to dissolve, which was followed by another 15 min at 110 °C under
vacuum, to give a 0.10M solution of 80:20 Y/Gd oleate (Y/Gd-OA). In a separate
flask, a Na/F precursor was prepared by dissolving sodium trifluoroacetate (1.20
mmol, 163 mg) in oleic acid (3 mL) and applying vacuum at room temperature for
20 min, giving a 0.40M Na-TFA-OA solution.

For 4-nm shells grown on 8-nm cores: a stock dispersion of NaErxYbyF4 cores
(27 μmol in hexane) was added to 4 mL of oleic acid and 6 mL of ODE. Hexane was
removed by applying vacuum at 70 °C for 30 min, N2 was introduced, and the flask
heated to 280 °C. Injection cycles of Y/Gd-OA and Na-TFA-OA precursor
volumes29 (Supplementary Table 1) were followed 5 min after the reaction reached
to 280 °C. Every cycle began with the Y/Gd-OA solution, followed by the Na-TFA-
OA solution 15 min later to form single 0.5-nm unit cell layer. After the last
injection, the reaction was maintained at 280 °C for 30 min to allow for complete
shell growth. Then, the reaction was cooled rapidly, and 15 mL of ethanol and
15 mL of acetone were added when the reaction reached 75 °C. Nanoparticles were
precipitated, cleaned, and stored as described for the UCNP cores.

Nanocrystal characterization. For XRD, 1 mL of a stock solution of the nano-
particles in hexane was precipitated with the addition of 2 mL of EtOH. The
nanoparticle slurry was spotted onto a glass coverslip or silicon wafer multiple
times until an opaque white film formed, and the sample was allowed to air
dry completely. XRD patterns were obtained on a Bruker AXS D8 Discover
GADDS X-ray diffractometer system with Co Kα radiation (λ= 1.78897 Å)
from 2θ of 15 to 65°.

a b c

12.5 kcps
SBR = 44

7.6 kcps
29

5.8 kcps
25

Fig. 6 Deep-tissue imaging of aUCNPs at low excitation intensity. Imaging
of 12-nm core/shell NaEr0.6Yb0.4F4 (8-nm core wth 2-nm shell) aUCNPs
injected into mammary fat pads 3–4mm below the skin at a 2 h, b 4 h, and
c 6 h after injection. Laser intensity is 0.1W cm−2 focused at or near the
injection site, and emission is from the Er3+ 4S3/2 band (530–550 nm). SBR:
signal-to-background ratio
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Nanocrystal size was determined by dynamic light scattering measurements on
a Malvern Zetasizer. Samples were prepared from hexane stocks by dilution with
hexane to ~50 nM. The diameters of the nanoparticles in each sample were
determined based on the fitting by volume according to instrument software.

For EM, UCNPs were precipitated from hexane with EtOH, washed with EtOH,
and resuspended in hexane to 10 nM; 7 μL was dropped onto ultrathin carbon film/
holey carbon grid, 400 mesh copper (Ted Pella). Images of the nanoparticles were
obtained using a Zeiss Gemini Ultra-55 analytical scanning electron microscope.
Dark-field images were collected in transmission (STEM) mode with 30 kV beam
energy. TEM images were also obtained using a JEOL 2100-F 200 kV field-emission
analytical transmission electron microscope. For single-particle determination,
samples deposited on silicon nitride windows (Ted Pella) were used and imaged in
STEM mode at 30 kV.

Single UCNP imaging. For emission spectra and power series, UCNPs were
diluted in hexane to ~1 fM before dropcasting onto No.1 glass coverslip or silicon
nitride grid (Ted Pella). Laser scanning confocal imaging was performed in
ambient conditions using a lab-built pinhole confocal18 (Supplementary Fig. 10)
with 980-nm continuous-wave laser (Thorlabs TCLDM9, 300 mW diode). Because
the diffraction-limited beam spot is larger than individual nanoparticle size,
emission single particles was confirmed on SiN TEM-grid samples by correlation
with subsequent SEM imaging on a Zeiss Ultra-55, operating in transmission
mode. Single-particle determination was also confirmed by intensity histograms
compiled from 50–300 individual UCNPs for each composition (Supplementary
Fig. 11). From the confocal laser scanned images, the Gaussian distribution peaks
were adopted as the single-particle upconversion emission intensity. Samples with
ambiguous distributions or ones not correlating with SEM images were discarded.
Excitation power series were created by rotating a series of neutral density filters in
the path of the laser beam while monitoring power simultaneously.

Excitation power density (PD) was calculated as PD= P/S, where P is the laser
power on the sample and S is the laser spot area. Laser powers at the sample were
measured in-line by an NIST-traceable power meter (Thorlabs) with S120C sensor,
covering 400–1100 nm and 50 nW–50 mW with 1 nW resolution. To calculate
power densities (W cm−2), the beam spot area was determined by fitting the UCNP
emission profile to a Gaussian distribution, where the diameter is the full-width at
half-max in the form FWHM= 2

ffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

σ of 580 nm, giving a laser spot area of
2.64 × 10−9 cm2.

Absorption cross-sections and QYs. Representative Er3+ absorption cross-
sections (σabs) at 980 nm were calculated using Judd–Ofelt theory in conjunction
with experimental absorption measurements;33 the Yb3+ σabs value was determined
from literature values as in Supplementary Methods. Whole-UCNP σabs values
were determined by calculating number of Yb3+ and Er3+ ions per UCNP
according to average TEM diameters (Supplementary Fig. 2c), Ln3+ fractions, and
hexagonal phase NaLnF4 dimensions. Single UCNP QYs were determined relative
to the standard value (QY= 0.49%)13 of core/shell 8-nm 20% Yb3+ 2% Er3+

UCNPs measured at 10W cm−2, which was converted to a high-intensity value
using calculated power dependence curve in Supplementary Fig. 8b. Single UCNP
emissions from Fig. 2a were used, and all compositions were taken to be at 75%
saturation based on kinetic simulations described in Supplementary Methods,
Supplementary Tables 1 and 2, and Supplementary Fig. 12.

Ensemble UCNP imaging. To image aUCNP ensembles in beads, as described
previously13, UCNPs were loaded into 0.5 μm polystyrene beads (Aldrich) by
swelling 0.5 mg of beads in 250 μL of a 5% (v v−1) CHCl3 solution in n-BuOH.
aUCNPs (2 mg in 15 μL of hexane) were added to the bead suspension and briefly
vortexed. After stagnant incubation at 25 °C for 4 h, the beads were washed two
times with EtOH, centrifuged at 3000 × g for 4 min, and stored in EtOH. Based on
single-bead and single UCNP intensities, we estimate there are 70 UCNPs and 200
aUCNPs per bead in Fig. 4.

Aqueous passivation of core/shell aUCNPs. Hydrophobic 8-nm NaEr0.6Yb0.4F4
aUCNPs with 2-nm NaY0.8Gd0.2F4 shells were dispersed in hexane with 0.2%
(v v−1) oleic acid to 5 μM. For aqueous dispersions36, 6 mg of poly(maleic anhy-
dride-alt-1-octadecene) amphiphilic copolymer (MW 20–25k, Aldrich) was dis-
solved to 17 μM in 0.5 mL of acetone and 15 mL of CHCl3. aUCNPs (0.5 nmol) in
100 μL of hexane were added with stirring, and the solvents were removed under a
gentle stream of N2 overnight. aUCNP/polymer residue was then resuspended in a
solution of methoxy-PEG8-amine (Thermo Fisher, 10 μmol) in 10 mL of 100 mM
NaHCO3 buffer, pH 8.2, with 1% (v v−1) dimethyl sulfoxide. This suspension was
sonicated for 60 min, heated in an 80 °C water bath for 60 min, slowly cooled to
room temperature, and then sonicated for 30 min. Excess polymer was removed by
extensive spin dialysis (Amicon, 100 kDa MWCO), washing with 7 × 15 mL of
100 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.4.
The retentate was concentrated to 680 μL and filtered through a 0.2-μm filter into a
sterile glass vial. Final concentration (200 nM) was determined using an emission
vs. concentration curve measured for the parent hydrophobic aUCNPs.

Live animal imaging. Animal experiments were conducted according to protocols
approved by the UCSF Animal Care and Use Committee. Nude/nude homozygous,
female, 5-week-old mice (Taconic Farms) were anesthetized and injected with 25 μL
of 200 nM 12-nm core/shell NaEr0.6Yb0.4F4 (8-nm core with 2-nm shell) dispersions
into mammary fat pads 3–4mm below the skin. Mice were imaged with an IVIS
Spectrum In Vivo Imaging System (Perkin Elmer) equipped with a 4.5mW 980-nm
continuous-wave laser (Thorlabs) and 780-nm longpass filter (Chroma). The beam
was focused to 0.1W cm−2 and emission was collected from 530–550 nm in the green
Er3+ band using 2.5-s integration times at 2, 4, and 6 h after injection. Dark counts
were measured in the absence of laser excitation, and background was measured in
uninjected areas with laser excitation. SBR values were calculated as the ratio of
emission to background with dark counts subtracted from each.

Statistical analysis. Where indicated, results are presented as mean ± one stan-
dard deviation.

Data availability. All relative data are available from the corresponding authors
upon request.
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