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Learning auditory discriminations from observation
is efficient but less robust than learning from
experience

Gagan Narula® "2, Joshua A. Herbst'2, Joerg Rychen' & Richard H.R. Hahnloser'2

Social learning enables complex societies. However, it is largely unknown how insights
obtained from observation compare with insights gained from trial-and-error, in particular in
terms of their robustness. Here, we use aversive reinforcement to train “experimenter” zebra
finches to discriminate between auditory stimuli in the presence of an “observer” finch. We
show that experimenters are slow to successfully discriminate the stimuli, but immediately
generalize their ability to a new set of similar stimuli. By contrast, observers subjected to
the same task are able to discriminate the initial stimulus set, but require more time for
successful generalization. Drawing on concepts from machine learning, we suggest that
observer learning has evolved to rapidly absorb sensory statistics without pressure to
minimize neural resources, whereas learning from experience is endowed with a form of
regularization that enables robust inference.
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eralize their acquired knowledge to new examples and

situations!~4. For example, they can learn to discriminate
threatening from harmless stimuli and they can generalize this
knowledge to new instances of a threat. They are also capable of
learning from few examples®®, presumably because brains have
evolved under the pressure of fatal consequences when threats are
not immediately recognized. Two ethologically relevant learning
metrics are thus the acquisition time and the transferability of
acquired information. Which forms of learning focus more on the
former and which more on the latter of these metrics?

We propose a comparative approach towards disentangling
rapid learning from robust generalization, exploiting the fact that
many animals are not only capable of learning from aversive
or appetitive cues through trial-and-error type processes’-, but
also from observing cues produced by conspecifics and other
animals involved in learning or doing the same task®~!!. In what
way does sensory discrimination learning depend on whether the
learning cue is experienced or observed, keeping all other para-
meters fixed?

We study cue dependence of an auditory stimulus dis-
crimination task involving pairs of zebra finches!2~15,

Using aversive air-puffs, we trained one of the two birds
in a pair to behaviorally discriminate short from long
renditions of a zebra finch song syllable (Go-NoGo avoidance
conditioning, Fig. la; spectrograms of stimuli in Fig. 1b, dur-
ations in Fig. 1c). We refer to these birds as “experimenters”.
Simultaneously, we allowed a paired zebra finch to observe
the entire training phase of the experimenter, including the
acoustic stimuli and the experimenter’s actions. These latter
birds are referred to as “observers”; they could engage in
unrestricted visual and auditory interactions with experimenters,
but did not perform the task until after experimenters completed
their training phase.

I I umans and animals have the remarkable ability to gen-
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The acoustic stimuli in such experiments are fully predictive of
whether an air-puff is imminent or not. Experimenters reveal
their ability to discriminate the stimuli by escaping from the
perch before they get struck by the air-puff'>. We refer to this
form of learning as experience learning because birds learn to
discriminate based on experience of the air-puffs. By contrast,
observers could not learn from air-puff experiences, but they
could learn from observing the air-puffs’ direct and indirect
effects on experimenters’ behaviors. We refer to this form of
learning as observation learning (which is not meant to imply
that observers learn by imitating the actions of experimenters,
which is commonly known as ‘observational learning’).

We expected that observers would be able to demonstrate their
learned discrimination ability in a separate testing phase in which
they were exposed to air-puffs. Here, we investigate the perfor-
mance tradeoffs between experience learning and observation
learning using two important metrics of learning: learning
speed and generalization performance. We find that observation
learning is fast but less robust than experience learning.

Results

Observation learning induces rapid auditory discrimination.
During a pre-training phase, experimenters (EXP) were accus-
tomed to air-puffs that followed one of two auditory stimuli of
different duration. Then a training phase followed, during which
we exposed EXP to the full training set of 10 auditory stimuli
(Fig. 2a left panel and Supplementary methods). Gradually, EXP
learned to escape from the perch more often in puffed trials; their
escape probabilities (cumulated from trial onset to trial end)
became larger on puffed trials than on unpuffed trials (Fig. 2b left
and right). We quantified the birds’ ability to discriminate sti-
mulus class by the difference in (cumulative) escape probabilities
(dPesc) between puffed and unpuffed trials (Fig. 2b, ¢, d, e). EXP

b Training

Fig. 1 A Go-NoGo auditory discrimination task. a When the experimenter (EXP) was on the perch continuously for 3.5 s, an acoustic stimulus

Si (i =1,..,10) was randomly chosen and played through a loudspeaker. In this example, the long stimuli (S¢ to S10) were followed by an air-puff aimed at the
experimenter. Experimenters were expected to learn to avoid the air-puffs by escaping the perch in puffed trials, and staying on the perch in unpuffed trials.
b Log-power spectrograms of all ten stimuli in the training set (S; to Sqo, left) and in the generalization set (S'; to S'10, right). All stimuli were composed of a
string of six renditions of a particular song syllable. ¢ Syllable durations for the ten stimuli in the training set (blue) and generalization set (red, dots indicate
individual syllable renditions). Either the long stimuli or short stimuli were followed by an air-puff
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Fig. 2 Rapid learning in observers. a Experimental design: Observers (OBS) were separated from experimenters (EXP) by a screen that restricted visual
interactions to the perch equipped with the air-puff delivery mechanism. During a training phase (left panel), OBS watched EXP perform the task.
Thereafter, the knowledge learned by OBS was tested in the same paradigm with a new (naive) OBS (right panel). b On the first training day (left), this
example EXP showed roughly equal densities of escapes (rasters) for unpuffed (light blue) and puffed trials (black). The air-puff sounds are visible in
spectrograms of microphone recordings (red arrows). On the last day of training (right), the cumulative escape probabilities (black and blue lines, bottom)
discriminate puffed from unpuffed trials (z-test of individual proportions, p < 0.01). ¢ Difference of escape probabilities (dPesc) during training of an EXP
(blue) and during testing of its OBS (green). Solid curves are smoothing spline fits (parameter: 5*10~>). d Bar plot of dPesc, showing that OBS (green
diamonds, n = 9) discriminate significantly better in the first 3 blocks of their testing than EXP (blue circles, n =10) in the first 3 blocks of their training
(EXP # OBS, p = 0.013, Wilcoxon ranksum). e Upon reaching the learning criterion, the average dPesc (3-block average) in OBS is significantly larger than
in EXP (EXP # OBS, p = 0.005, Wilcoxon ranksum). f OBS reach the learning criterion in fewer trials than EXP (EXP # OBS, p = 0.015, Wilcoxon rank sum).
The bars indicate the median across birds in each group, the black line indicates the lower bound (800 trials)

attained a statistical performance criterion (based on the perching
behavior in the most recent 800 trials, see Methods and Supple-
mentary Figure 1d) after 4700 [800, 10500] trials (median
[range], n=10 birds). This criterion defined the end of the
training phase, at which time EXP displayed a dPesc of 0.35 [0.27,
0.46] (median [range], dPesc averaged over the last 3 blocks of
training, including the criterion block). After the training phase
(or observation phase for observers), the experimenter was
replaced by the observer (OBS) and a naive bird was placed in the
observer’s cage. Then we began testing the OBS using the same
pre-training and training paradigms it was previously allowed to
observe. We refer to the training of observers as testing, Fig. 2a
right panel.

At the beginning of the testing phase (first 3 testing blocks),
OBS displayed a significantly higher discrimination performance
than EXP at the beginning of their training phase (dPesc in first
300 trials: EXP (1= 10) 0.2 [0 0.32], OBS (1 =9) 0.4 [0.16 0.64];
EXP - OBS, median difference=—0.22, p=0.013, test
statistic = 15; two-sided Wilcoxon rank sum test; 95% CI=

[-Inf —0.1]), Fig. 2d. Surprisingly, OBS’ initial performance was
no worse than that of EXP who had reached the learning criterion
(average initial dPesc = 0.40 in n =9 OBS vs average final dPesc
=0.36 in n =10 EXP). OBS reached the performance criterion
nearly instantaneously, in only 900 [800, 5600] trials (median
[range], n =9 birds), less than a third of the trials required by
EXP (two-sided Wilcoxon rank sum test with alternative
hypothesis: EXP # OBS, median difference = 3100, p=0.015
(not exact), test statistic = 75; 95% CI not computed because of
ties), Fig. 2f. After reaching the criterion, OBS showed a
significantly higher discrimination performance than EXP (dPesc
at criterion in OBS=0.46 [0.29, 0.65]; EXP - OBS, median
difference= —0.17, p =0.005, test statistic = 12; two-sided Wil-
coxon rank sum test; 95% CI =[—0.2 —0.031]), Fig. 2e.

Observers generalize poorly compared to experimenters. To
compare generalization in experimenters and observers, first,
we allowed generalization observers (GENOBS) to watch
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Fig. 3 Observers are poor generalizers. a Generalization experimenters (GENEXP) undergo the same training phase as EXP (training set of stimuli, S, top),
after which they are exposed to the generalization set of stimuli S’ during the testing phase (bottom left). Generalization observers (GENOBS) first observe
the training set of stimuli (S, top) and then are tested on the generalization set (S, bottom right). b Scatter plot of dPesc on the generalization set as a
function of block number (100 trials per block) in all birds (n =9 GENEXP, blue dots; n =9 GENOBS, green diamonds), the criterion block is represented by
larger solid symbol. € GENEXP discriminated stimuli in the generalization set better than GENOBS (GENEXP # GENOBS; p = 0.019, Wilcoxon ranksum).
Symbols indicate dPesc averaged across the first 3 blocks of the testing phase, bars represent medians across animals. d GENEXP reached the criterion
faster than GENOBS (GENEXP # GENOBS; p = 0.006, Wilcoxon ranksum). Symbols indicate trials to criterion, bars represent medians

generalization experimenters (GENEXP) learn to discriminate the
stimuli in the training set, after which we tested both groups of
birds on the generalization set of stimuli, Fig. 3a. Contrary to our
findings on the training set, GENOBS initially showed sig-
nificantly poorer discrimination on the generalization set (average
dPesc over the first 3 blocks (median [range]) in GENEXP: 0.41
[0.34, 0.6] and in GENOBS: 0.2 [—0.02, 0.54]; GENEXP -
GENOBS, median difference = 0.24, p = 0.019, test statistic = 67,
two-sided Wilcoxon rank sum test, 95% CI=[0.016, 0.36]),
Fig. 3b, c. GENOBS also took more time than GENEXP to reach
criterion (3600 [800, 13300] trials in # =9 GENOBS versus 800
[800, 2200] trials in n =9 GENEXP; GENEXP—GENOBS med-
ian difference = —2800, p =0.006 (not exact), test statistic = 10,
two-sided Wilcoxon rank sum test; 95% CI not computed because
of ties), Fig. 3d.

GENOBS needed more trials to reach the learning criterion
than did OBS (GENOBS—OBS, median difference = 2100 trials,
p=0.044, test statistic =63.5, two-sided Wilcoxon rank sum
test), demonstrating that observers reacted to small differences
between stimuli from the training and generalization sets. Thus,
overall, observers seemed to associate the perch-escape behaviors
by experimenters much more exclusively with the presented
auditory stimuli than did the experimenters themselves, who
associated the air puffs inclusively with the stimuli (to include
similar stimuli from the generalization set).

We inspected the escape behaviors of observers and experi-
menters. We found that after reaching the learning criterion, EXP
and OBS displayed similar perch escape strategies. That is, they
tended to abruptly increase their perch escape rates just before
air-puff onsets (Supplementary Figure 2a, b), suggesting that
birds responded by learning to escape the air puffs rather than by
learning to stay when no puff was imminent.

Observers do not learn through passive perceptual processes.
We set out to characterize the requirements for observation
learning. To test whether observers learned from experimenters’
actions in response to the air-puffs, we allowed experimenter and
observer pairs to experience several thousand (mean * standard
deviation = 7.5+ 3.6*10%) stimulus playbacks including the
sound of air-puffs, but not the tactile sensation of the puffs. We
realized this perceptual paradigm by directing the air outlet away
from the experimenters, Fig. 4a. Consequently, experimenters
never experienced the air-puff as a force against their body.
We refer to observers in such pairs as perceptual learners (PLs),
because they could potentially learn from the pairing of stimuli
with air-puff sounds.

Experimenters in this perceptual paradigm never produced
dPesc values different from 0 (average dPesc after 5000 training
trials in 3 experimenters: [—0.065, —0.002, 0.007], p=0.81,
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Fig. 4 Observers learn from behaving experts even in the absence of vocal interactions. a Perceptual Learners (PLs, n =7 birds) first observed a naive
experimenter trigger several thousand trials in which the air-puff was directed away from the experimenter's body (left). Thereafter, they were tested
using air puffs (right). b Valence Learners (VLs, n=>5 birds) observed experimenters that never reached the criterion (left). Additionally, three VLs
were exposed to stimulus-contingent air puffs prior to observation. Thereafter, VLs were tested just like OBS (right). ¢ Spectrograms of microphone
recordings of puffed (top) and unpuffed (bottom) trials. Vocal exchanges (calls, red rectangles) frequently occurred during the task. Wing flaps were
also audible (yellow rectangle). d Difference in the probability of observing a call in the delay period and stimulus period (Delay - Stimulus) for the ten
stimuli (n =6 observers). Here, ST - S5 are unpuffed. Error bars show standard deviation around mean. e Both PLs (circles) and VLs (squares) required
significantly more trials than observers (light green diamonds) to reach criterion during the testing phase (OBS # PL, p=0.016; OBS # VL, p=0.006).
Observers deprived of acoustic communication with experimenters during trial times are as quick as OBS (-TCOM = OBS, p = 0.776, Wilcoxon rank

sum test). Bars represent medians

p =0.25, p=0.64, respectively; z-test of individual proportions),
hence they did not show the discriminative behavior that we
suspected would drive learning in observers. When we tested
PLs (n =7 birds) with air-puffs directed at them, they needed
significantly more trials to reach criterion than OBS (4200 [1800,
20,300] trials in PLs versus 900 [800, 5600] in OBS; OBS - PL
median difference = —2400; two-sided Wilcoxon rank sum test of
alternative hypothesis PL # OBS, p=0.016 (not exact), test
statistic = 8.5; 95% CI not computed because of ties), Fig. 4e.
PLs were slower than OBS even after removing an outlier
bird (trials to criterion =20300) in the PL group (median
difference = - 2389, p = 0.032 (not exact), test statistic = 8.5, 95%
C.I not computed). PL performance at criterion was comparable
to OBS performance (0.33 [0.064, 0.63] in PL versus 0.46 [0.29,
0.65] in OBS; OBS- PL; median difference = 0.16, p = 0.142, test
statistic = 46, two-sided Wilcoxon rank sum test, 95% CI=
[-0.077 0.338]) and was not statistically different from

performance in EXP (EXP - PL; median difference =0.06,
p=041, test statistic=26, 95% CI=[-0.2 0.2], two-sided
Wilcoxon rank sum test). The absence of rapid learning in PLs
suggests that learning in OBS required an experimenter engaged
in the task and responding to air puffs.

Observers do not learn from naive experimenters. We expected
observation learning to be most effective when information is
provided by an expert. To probe for sensitivity to experimenter
performance, we tested a group of Valence Learners (VLs, n =5)
that observed naive experimenters who did not reach the per-
formance criterion within (on average) 5600 [4360, 11436]
trials. These naive experimenters were hit by air puffs on average
539 times out of 1000 puffed trials, and escaped in unpuffed
trials on average on 400/1000 trials. In addition, to give VLs
direct experience of the reinforcer (its valence), 3/5 of these VL
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birds were initially exposed to air puffs (approximately
500 strong 1-s air puffs, see Methods). When tested, VLs
were much slower than OBS to reach the learning criterion (trials
to criterion in VL [n = 5], median [range]: 6700 [6200, 12,100]
versus OBS [#=09]:900 [800, 5600]; OBS—VL median
difference = —5500, two-sided Wilcoxon rank sum test of alter-
native hypothesis VL # OBS, p=0.006 (not exact), test
statistic = 0, 95% CI not computed), Fig. 4e. The performance of
VLs at criterion was lower than the performance of OBS (dPesc
for VL [n =5]: 0.26 [0.13, 0.45] versus for OBS [n = 9]:0.46 [0.29,
0.65], median difference = 0.21, p = 0.007, test statistic = 42, two-
sided Wilcoxon rank sum test, 95% CI = [0.034 0.355]), and there
was a trend of lower performance in VL compared to EXP (VL—
EXP, median difference = —0.11, p = 0.07, test statistic = 10, 95%
CI=[-0.21 0.05], two-sided Wilcoxon rank sum test). The
poor testing results in VLs suggest that OBS did not learn
by predicting the reward value experienced by EXP and by
converting this prediction into an optimal action during
testing. Instead, VL behavior suggests that OBS focus on
experimenters’ discriminative actions, which must necessarily
contain the information required for observation learning.
In combination, PLs and VLs emphasize the importance of
experimenters’ discriminative actions for observation learning.

Vocal exchanges are not required for observation learning.
Given the importance of experimenter actions, we speculated
that rapid learning in OBS could depend on vocal exchanges
between EXP and OBS through calls occurring during and
following stimulus presentation, Fig. 4c. Indeed, on the last
day of the training phase, when EXP had reached the learning
criterion, we found a difference in calling behavior between
puffed and unpuffed trials. In six EXP-OBS pairs (on one day
each), we inspected calling rates (defined as the probability of
observing at least one call) during the stimulus period (from
stimulus onset to stimulus offset) and during the delay period
(defined from stimulus offset to air-puff onset), Fig. 4d. In puffed
trials, the calling rate was lower in the delay period than in the
stimulus period: stim call probability 0.44 [0.14, 0.88] vs delay call
probability 0.27 [0.07, 0.45], median difference (Delay - Stim)
—0.15, p=3.8*1075, test statistic =0, two-sided Wilcoxon sign
rank test, n =6 EXP-OBS pairs. In unpuffed trials, there was
merely a trend of reduced calling during the delay period:
stim call probability 0.35 [0.08, 0.65] vs delay call probability 0.36
[0.16, 0.91], median difference 0.08 (Delay - Stim), p =0.052,
test statistic = 327, two-sided Wilcoxon sign rank test, n==6
EXP-OBS pair. In combination, the reduction in calling rate was
much more pronounced during puffed trials: difference in med-
ian call probabilities for puffed (Delay - Stim) — unpuffed (Delay
- Stim) = —0.23, p= 1079, test statistic =592, two-sided Wil-
coxon rank sum test, n =6 EXP-OBS pairs). Hence, the sig-
nificant reduction in calling rates during puffed trials could signal
the imminent arrival of an air puff.

To test whether observers used calls as a learning cue, we
housed experimenters and observers (n =5 pairs) in separate
soundproof boxes and gave them visual access to each other by
virtue of two adjacent windows. Moreover, to trigger social
interest, we allowed birds to vocally interact with each other using
a custom digital communication system composed of two
microphones and loudspeakers and an echo cancellation filter
(Supplementary methods). We suppressed vocal exchanges
during stimulus presentation by interrupting the communication
system from stimulus onset to air-puff offset. We termed the
observers in this paradigm no-trial-communication learners
(-TCOM). Despite elimination of vocal interactions during the
discrimination task, we found that -TCOM acquired stimulus-

discriminative information in amounts comparable to OBS (trials
to criterion: -TCOM (n=>5): 800 [800, 4900]; OBS (n=9):
900 [800, 5600]; OBS - TCOM median difference = 0.00001,
p=0.77, test statistic =25, two-sided Wilcoxon rank sum test,
95% CI = [—1200 2300]), Fig. 4e. Hence, it follows that OBS did
not require immediate vocal interactions. They could learn from
visual displays only or from vocal exchanges following trials.

Regularized logistic regression differentiates OBS from EXP.
Observer behavior was reminiscent of a machine learning system
that overfits the training data and generalizes poorly because
it contains too many parameters and is trained on too few
examples. In this sense, observers seemed to lack regularization,
which is an umbrella term for all kinds of processes that prevent
overfitting by introducing additional information, for example
to use as few nonzero parameters as possible during fitting.
Essentially, regularization methods improve generalization per-
formance by dynamically regulating the use of parameters and
of training datal®17.

In the context of our findings, these insights from statistical
learning theory suggest that direct experience of the reinforcing
learning cue is associated with regularization whereas observation
is not. We tested the hypothesis that regularization could set the
divide between experimenter and observer behaviors, by training
a simple artificial neuron with a logistic activation function to
discriminate between the two stimulus sets, Fig. 5a. The neuron
received input from a group of at least 22 input neurons tuned to
diverse sound features such as amplitude, pitch, duration, and
Wiener Entropy, collectively defining the feature set used in
Sound Analysis Pro (SAP), a popular birdsong analysis software!8
(Supplementary Figure 4 and Supplementary Table 1). To model
observers, we trained the neuron to fire during puffed stimuli and
to remain silent during unpuffed stimuli. We used a gradient
descent learning rule that maximizes the likelihood of correct
discrimination (Methods). We found that the discriminative
performance of the ‘observer’ neuron increased rapidly to the
theoretical limit on the training set, but when we interrupted the
training at any time and evaluated the neuron’s performance on
the testing set, we found poor generalization, Fig. 5b. The reason
for poor generalization was that the neuron based its classification
on exceedingly many sound features that by chance were slightly
informative about the reinforcing air-puff, Fig. 5e and Supple-
mentary Figure 4.

We then modeled experimenters by endowing the learning
rule with L1 regularization. L1 regularization implements a
conjunctive minimization of summed absolute synaptic weights!”
that we implemented at each synaptic weight update as a small
reduction of synaptic weights by an amount A1°. We used L1
regularization because it is very simple (subtractive) and because
it allowed us to formulate a mechanism that dynamically
regulates the regularization parameter A in proportion to reward
prediction error (Methods), known to be signaled in the
vertebrate brain by a class of dopaminergic neurons?9-22,
According to our proposal, regularization (weight reduction)
increases when the bird suddenly receives less reward than
expected, as in experimenters that get hit by an air puff for the
first time. Our proposed mechanism is such that when
experimenters reach a high rate of success, the reward prediction
error reaches zero in expectation, which settles the value of A,
Fig. 5c. The observer brain would not modulate A because
observers do not directly experience rewards and punishments
during the experimenter training phase.

We found that interrupting the training process of the
regularized neuron at any time resulted in roughly equal
performances on both training and testing stimulus sets, Fig. 5d,
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Fig. 5 Regularization can explain the performance differences between experimenters and observers. a The model neuron triggers escapes from the perch
based on the logistic response to a set (here 6) of auditory features. b When an ‘observer’ neuron responding to 42 auditory features is modeled without L1
regularization (1 = 0), the percent correct classification (PCC) on the training set (black line) increases rapidly but the PCC on the generalization set (blue
line) increases much more slowly. Adding an extra 100 auditory features of frozen white noise (dashed lines) accentuates the contrast between

fast learning and slow generalization. ¢ The dynamics of the regularization penalty A under the reward prediction error rule (each color is one simulation
run, n =20 simulated birds). d When the ‘experimenter’ neuron is trained with L1 regularization (with dynamic estimation of 4, the final value of A (on
average) = 0.0127), the curves reporting PCC on training and generalization sets increase slowly but at roughly matched rates. Increasing the number of
frozen noise inputs by 100 has almost no effect on PCC curves (dashed lines). e In observer neurons, the log absolute synaptic weights (green) are roughly

uniformly distributed. In experimenter neurons, the synaptic weights (blue) are all near zero except the weight corresponding to syllable duration
(auditory feature 21, black arrow). Thus, the experimenter neuron turns into a duration detector. Curves show averages across 50 simulation runs.

Features 23 onwards were frozen noise features

similar to experimenters’ behavior. However, the excellent
generalization performance came at a cost: Because of the
repeated reductions of synaptic weights in modeled experimen-
ters, their synaptic weights and performance on the training
set grew only slowly. The main effect of regularization was to
concentrate the final synaptic weights on the duration feature,
corresponding with our design of stimulus class, Fig. 5e.

We tested other explanations for the differences between
experimenters and observers, such as assuming that observers
learned from noisy experimenter actions, but found regulariza-
tion to be the only mechanism that achieved satisfactory
simulations results (Supplementary Figure 5).

Discussion

We introduced a new comparative approach to observation
learning of a discrimination task. We quantified task performance
in terms of learning speed and ability to generalize, analogous to
studies on observational learning of motor tasks, in which per-
formance is quantified in terms of reaction times and general-
ization across motor effectors?>24,

We found that zebra finches can learn to discriminatively
respond to auditory stimuli by observing expert performers.
Experimenter and observers’ behaviors were subject to a tradeoff
that depended on whether the learning cue was experienced
or observed. We inferred this cue dependence thanks to our
experiment design in which the stream of auditory stimuli was

identical for experimenters and observers. Therefore, any differ-
ences in their abilities to learn and to generalize must have
been entirely due to the learning cue, which was an aversive
air-puff for experimenters and an observable action for observers.
Our findings suggest that an experienced cue favors robust
generalization, whereas an observed cue favors rapid learning.

Part of our findings are in line with social learning
theories which suggest that to learn from others is a successful
strategy with high payoff under a wide range of conditions?>2°.
However, our findings also suggest a limitation to the
ubiquitous success of social learning strategies. Namely, we find
that social learning can lack robustness when environmental
conditions even slightly change. As in the case of children who
perform poorly in exams after neglecting their homework,
insights gained through observation seem not to transfer well
to new task instances.

Currently, there is no reason to think that all forms of obser-
vation learning will be subject to lack of robustness. For example,
it is not clear that male zebra finches would exhibit similar
behaviors given the known sex differences in social learning?’
also in airpuff paradigms®8. Furthermore, it is not clear whether
our findings will generalize to other reinforcers including reward
and strong punishment (e.g. by electric shock). It is even uncer-
tain whether to be observed played a role for experimenters’
robust learning. In the light of all these possibilities, our work
raises the question as to whether there exist some forms of
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observation learning that promote robust transfer to new task
instances.

Our work raises many interesting questions on the behavioral
and neurobiological mechanisms used by observers to acquire
stimulus-discriminative information. Behaviorally, observers
could learn through social mechanisms of action imitation, of
observational conditioning, and of stimulus enhancement, or
a combination of these. Note that the definitions of these
mechanisms are not strict enough to allow a discrete
categorization of social learning in any one study?®. Our findings
de-emphasize some known social learning mechanisms such
as perceptual learning (evidenced by PL learners) and simple
stimulus enhancement (evidenced by lack of discriminative
behavior during pre-testing, Supplementary Figure 3). Our
experiments also de-emphasize vocal communication as a
mechanism but reveal the importance of vision (-TCOM lear-
ners). Overall, the importance of a demonstrating expert suggests
that experimenters signal statistical differences between puffed
and unpuffed stimuli via their perching behavior such as
their rates of leaving the perch. Possibly, observers focused their
attention more on the diverse actions of experimenters and their
relationships with the stimuli, which is why observers apparently
failed to identify the simplest environmental signal that can
explain experimenters’ behavior, which in our case was syllable
duration.

Similar speed-robustness learning tradeoffs as the one we find
exist in rapidly evolving artificial systems, in which high dis-
crimination performance tends to be associated with slow
learning as an unwanted side effect®’. The tradeoff we find
between robustness in one learning paradigm and speed in
another is most closely paralleled by regularization methods that
control inference through synaptic weight subtraction. Excellent
generalization of experimenters agrees with strongly regularized
classifiers whereas fast learning in observers agrees with weakly
regularized classifiers. Our work suggests that the benefits of
regularization may be inherent to experimenting but not to
observing3!.

It is far from clear how a brain could implement dynamic
regularization. Our speculative proposal is that the balance
between learning and regularizing is controlled by a neuro-
modulatory signal. Such signals are ubiquitous in the animal
kingdom and are well suited to convey the amount of reg-
ularization, given that they respond sensitively to external
reinforcements and their prediction errors3>-3¢. One possibility
is that air-puff reinforcers drive changes in regularization via
experimenters’ escape actions, which is supported by the
representation of action-specific reward values in brain areas
innervated by neuromodulatory neurons’. This proposal
delineates a possible neural system for comparative studies of
learning from experience and from observation. It has been
shown that reward prediction error and reinforcement learning
algorithms in general, may be utilized by humans in order
to understand the social value of others’ behavior®33%, to feel
vicarious rewards from their success or failure*? or from
their approval*l. We believe that the computational role
of reward prediction error can be extended to that of regular-
ization of learning, mediated by neuromodulator systems
such as acetylcholine or dopamine. Furthermore, subtractive
weight depression through heterosynaptic competition has
been observed in the amygdala!, which provides biological
plausibility to L1 regularisation in the brain. We hypothesize
that some form of synaptic depression is seen in zebra finches
when they are experimenting, but not when they are observing.

The speculative implications of our simulations are that
a prerequisite for the evolution of observation learning was
a sufficiently large brain capacity that provided rich sensory

representations and put few constraints on usable neural
resources for sensory processing. Evolution might have chosen
traits in observers that are complementary to those associated
with experimenting, explaining the apparent differences in what
these learning strategies extract from the sensory environment.

Methods

In this section, we summarize our experimental procedures, details are provided
in Supplementary Note 1.

Experimental animals. We used adult (older than 90 days post hatch, dph) female
zebra finches (Taeniopygia guttata, N =51 females) raised in our colony. All
experiments were licensed by the Veterinary Office of the Kanton of Zurich.

Experimental setup. We adapted an operant conditioning paradigm using social
reinforcement!415. An experimenter and observer pair were placed adjacent to
each other in separate cages. The birds could interact from a restricted window
in one corner of the cage, forcing them to sit on their respective perches, Fig. la.
The experimenter perch had a sensor to detect presence or absence and trigger
stimulus playback through a speaker. We used strong air-puffs directed toward
the experimenter as an aversive reinforcement agent. The puffs motivated the
experimenter to escape from its perch during ‘puffed’ class trials. Details of
housing, perch and nutritional requirements are detailed in the Supplementary
Information.

Stimuli. We created a set of 10 stimuli from the songs of an adult male zebra
finch (07r14) from our colony, Fig. 1c. We computed syllable durations via
thresholding of sound amplitude traces. Each stimulus S; in this set (i = 1,2, ...,10)
was made of a string of six syllable renditions, wherein each rendition was
longer than the six renditions in stimulus S;.;, Fig. 1b, c. Based on the ten stimuli
we defined two stimulus classes: the class ‘short’ was formed by stimuli S;

to Ss, and the class ‘long’ was formed by stimuli S¢ to S;o. We counterbalanced
the air-puff contingency across birds and found no significant difference in
performance between “long-puffed” and “short-puffed” groups, Supplementary
Figure 3. We use the terms’puffed” and ‘unpuffed as class labels, irrespective

of whether short or long stimuli were reinforced. We refer to the stimulus set
{S1>..., S1o} as the training set. To create a generalization set we formed another
set of 10 stimuli {S’;,...,8’10} from renditions of the same syllable recorded on the
very next day, Fig. 1b, c.

Bird groups and experimental hypothesis. We used seven different groups of
experimenters and observers, as follows:

1.  Experimenters (EXP, n = 10 birds): These birds were trained to escape from
the perch prior to arrival of air-puffs. The birds first underwent a pre-training
phase in which they were accustomed to the setup, followed by a training
phase (see Procedure in the Supplementary Information). Three out of nine
experimenters were also tested on a generalization set of stimuli (General-
ization phase) once the training phase was completed, Fig. 2a left panel. Each
phase ended when the bird’s performance reached a set criterion (see
Performance measures and statistical criterion).

2. Observers (OBS, n =9 birds): Observers were subjected to three phases: an
observation phase in which they observed the entire pre-training and training
phases of an experimenter, a pre-testing phase (identical to the experimenter’s
pre-training phase), and a testing phase (identical to the experimenter’s
training phase), Fig. 2a right. When the EXP finished training, the OBS was
moved to the EXP cage, a naive observer was added to the OBS cage and the
EXP was removed.

3. Generalizing Experimenters (GENEXP, n =9 birds): these birds were tested
on the generalization set of stimuli after they had finished the pre-training and
training phases on the training set, Fig. 3a. GENEXP birds were moved to
another chamber (a new cage with a naive observer in the adjacent cage).
Note: During the training phase, the experimental group GENEXP is a
biological replicate of the EXP group. As expected, there was no difference
between EXP and GENEXP in learning time or discrimination accuracy on
the training set (Trials to criterion, median [range]: EXP = 4700 [800, 10500],
GENEXP = 5900 [800, 13600]l, p=0.45, test statistic=90.5, two-sided
Wilcoxon rank sum test; dPesc at criterion: EXP =0.35 [0.27, 0.46],
GENEXP = 0.5 [0.21, 0.46], p = 0.37, test statistic = 88.5, two-sided Wilcoxon
rank sum test).

4. Generalizing Observers (GENOBS, n =9 birds): These birds underwent the
same observation and pre-testing phases as OBS. Thereafter, during the
testing phase, GENOBS were tested on the full generalization set, Fig. 3a.
After reaching the learning criterion, GENEXP were moved to another
chamber (a new cage with a naive observer in the adjacent cage) while
GENOBS were transferred to the previous cage of the GENEXP with a
naive observer in the GENOBS cage. Therefore, GENOBS and OBS were not
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treated differently (however GENEXP were moved to an entirely new
chamber unlike EXP).

5. Perceptual Learners (PLs, n=7 birds): First, PLs could watch an
experimenter trigger several thousand stimuli and air-puffs. However, in
their case the air-puffs were directed away from the experimenter (oriented
downwards outside the cage, Fig. 4a) so PLs never experienced or saw the
effect of an air-puff against a bird prior to entering the pre-testing phase.
Following this, PLs then underwent the same pre-testing and testing phases
as OBS.

6. Valence Learners (VLs, n =5 birds): To test for sensitivity on demonstrator
performance, we allowed n =5 VLs prior to their pre-testing to observe naive
experimenters (who had not reached the learning criterion). After completion
of the pre-testing phase, VLs were subjected to the testing phase, Fig. 4b.
Three of these five VLs were given an additional several hundred
(approximately 500 on average) stimulus-puff pairings (same protocol as
EXP training phase) prior to observing the naive experimenter. The reason
for exposing these 3 VLs to air-puffs was to let them learn the aversive
nature of the air-puff prior to observing the naive experimenter. However,
we limited the number of pre-testing stimulus-puff pairings to about
500. Too many pairings would be counterproductive because VLs would
start to learn as do experimenters.

7. No Trial Communication Learners (-TCOM, n=5 birds): To test
against learning in observers from vocal cues (or the lack thereof,
Fig. 4c, d) we separated five observers from their experimenters (pre-training
and training phases) into an adjacent, acoustically isolated box. These
observers (-TCOM) could view the EXP through a window and communicate
vocally through a custom (software controlled) communication channel
(see Supplementary Methods) except during trial periods defined from
stimulus onset to air-puff offset. During trial periods, the observers could
only hear the stimuli and the sounds of air-puffs, but no sounds triggered
by the experimenter. After completion of the EXP training phase, -TCOM
were subjected to the pre-testing and testing phases as for OBS.

Performance measures and statistical criterion. For each bird, we

partitioned the trials into non-overlapping bins of 100 trials. In each bin we
computed the True Positive Rate (Pr) as the probability of escape on puffed
trials and the False Positive Rate (Pg) as the probability of escapeon unpuffed
trials. Our single measure of performance in each bin is the difference in

escape probabilities dPesc = Pr — P;. Within a bin, to decide whether a bird
escaped significantly more on puffed trials than on unpuffed trials, we performed
a z-test of independent proportions of the following null hypothesis Hy and

alternative hypothesis H,:
Hy: Py = Py, H, : Py #Pg

For the z-test of independent proportions, we computed in each bin the z-test
statistics as follows (applying Yates™ continuity correction):

1Py — Pl — (3522)

Oc

- Pt e
%= pq( nphg )

p:(”TPTﬁL”FPF)’ g=1-p
nr + ng

Z. . =

stat

where ny is the number of puffed trials in that bin and ng is the number of
unpuffed trials. The p-value Pr[z > z,,,| was computed with the normedf function
in MATLAB (Mathworks Inc); a bin was “statistically significant” if the p-value in
that bin was smaller than 0.01 (two-sided test).

Criterion and trials to criterion. We used two statistical measures to analyze
learning speed: the first measure was used during the experiment to switch the
experimental phase of the birds, the second was used to estimate, on a much
finer scale, when a bird achieved high and stable discrimination accuracy.

Our criterion for determining when the pre-training/training phases of an
EXP ends (pre-testing/testing for OBS) was the following: we performed the z-test
based significance test (with significance at p <0.01) on dPesc over an entire
day. If daily dPesc was significantly greater than zero for two consecutive days,
we switched the phase. This “coarse” criterion allowed us to check performance
in a logistically tractable manner and provided high power to the test because
the sample size was large (average daily number of trials for n =10 EXP: 722.14 +
317.5).

For analyzing the data post-hoc, we used the following criterion: z-tests in 8
consecutive bins (of 100 trials each) and checking for 7/8 bins significant.

This latter criterion was used because we wanted to analyze the data on a finer
temporal scale and still make sure that the performance was stable. Accordingly, we
computed the fraction of 100 trial bins with significant dPesc in a sliding window
of 8 bins, Supplementary Figure 1d. When this fraction crossed 90% (= 0.875), we
took the last bin in the window as the bin at which the performance criterion was
reached (“criterion bin”). “Trials to criterion’ is then simply the number of all trials
performed by the bird up to and including the criterion bin. Our conclusions of
fast learning and poor generalization in observers were robust to changes in the
definition of the learning criterion: For example, results were unchanged when we
changed the criterion from 7/8 significant bins to 4/4 bins, or when we computed
the criterion in 200-trial bins instead of 100-trial bins (Supplementary methods,
Robustness of statistics).

Group level statistical tests. No explicit power analysis was used for this study.
Our main experimental groups (EXP vs OBS in the article) have a sample size of
n =29 (one extra EXP was included because its observer was not tested). We
believed this to be an appropriate sample size considering the statistical test we
planned on using (non-parametric Wilcoxon test, which is conservative but has
higher power for low sample sizes than a parametric test) and the time it took for
preliminary experiments to finish.

To compare birds between two groups, we used Wilcoxon rank sum tests
(wilcox.test() in R), either one-sided (when there was a concrete alternative
hypothesis, e.g trials to criterion in OBS vs EXP, alternative: EXP > OBS) or two-
sided (when there was no concrete alternative hypothesis, e.g. trials to
criterion in GENOBS vs GENEXP). We first checked (for all bird groups)
whether the trials to criterion were significantly non-Gaussian using the Shapiro
Wilk test of normality (shapiro.test in R). Because only the EXP and VL trials
to criterion were sufficiently Gaussian, we chose to perform non-parametric
Wilcoxon tests instead of t-tests. All group level statistical tests and effect
size calculations were performed using the R package (R Studio, https://www.R-
project.org/).

Logistic regression with L1 regularization. We modeled experimenter and
observer behaviors using logistic regression, which is a simple machine

learning classifier that learns linear decision boundaries. In this model, the bird’s
behavior (leave or stay on the perch) is computed from the input to the logistic
neuron, formed by 21 syllable features provided by Sound Analysis Pro (SAP)'$, a
popular software tool for characterizing birdsong and its development (SAP
features include mean Wiener Entropy, mean pitch goodness, mean frequency
modulation, pitch variance, etc., where mean and variance are computed across
syllable duration). Syllable duration formed the 21st feature. Feature 22 was
formed by a vector of 1’s, endowing the logistic neuron with a bias term. Features
23 and beyond were formed by frozen noise that was randomly drawn from a
Gaussian distribution and held fixed for a given syllable. In combination, the total
dimensionality of sound-feature vectors X was n =22 + nr, where nr is the
dimensionality of frozen noise. The auditory input z; to the logistic neuron asso-
ciated with syllable rendition i presented during trial t was the z-transformed

_Xi—m,, _ . .
feature vector z; = = where m, = (1 — &)m,_, + &(X;),_, ¢ is the running

mean feature vector and v, = (1 — &)v,_, + &((X; —m,))>, . is the running
variance vector. Both the running vectors were updated after each trial (here ¢ is a
small integration rate constant and (.) denotes averaging over the six syllables in a
given trial).

The partial output of the logistic neuron in response to syllable i signals the
probability f(z;) of an imminent air-puff, given by f(z;) = 1r5{ =, Where W is
the synaptic weight vector that forms a scalar product with the auditory input.
The bird decides to leave the perch (or to not return to it) if (Zle f(z))>3
(majority vote).

The probability that all six syllables correctly (and independently) predict
arrival (u= 1) or absence (u=0) of an air puff (under a Binomial model) is given
by Pogmee = 11, (z:)"“(1 — f(z;))' ™. We trained the synaptic weights by
maximizing 1ogP, ... using gradient ascent (maximum likelihood),

AW = 3V (1ogP. . et )» Where 7 is a small learning rate. Replacing the definition of
f(z;) into this expression, we find for observers the simple perceptron-like learning
rule that enforces after each trial the weight update AW ;. = #>", (u — f(z;))z;. In
simulations, we randomly picked a stimulus at each trial followed by the synaptic
weight change. The only two parameters in this model are the integration rate

& =10.01 and the learning rate # = 0.007.

To model experimenters, we used the same weight update as for
observers and applied an additional weight subtraction Wy, — Wy, —
sign(Wy,)A on successful trials (leave if puffed and stay if non—puffgd),
provided the individual synaptic weight was of sufficient magnitude, |W,
(to prevent small synaptic weights from changing sign).

We dynamically regulated A in the following manner:

[>A

exp

A = max[0, 4, +a(r, —7,_)],

where the reward signal r, was given by
N +1 if the decision was correct in trial ¢
71 -1 otherwise
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and where 7, = y7,_, + (1 — y)r, is a running average estimate of past rewards
obtained by the bird. Decisions are correct when birds leave the perch on puffed
trials and stay on the perch on unpuffed trials. We set the learning
rate @ = 0.00025, y = 0.99 and the initial value A,_;, = 0.0005.

For the experimenter, the learning cue u is the occurrence (u=1) or
absence of an air-puff (u = 0). For the observer, we hypothesized that u
could be either a) the air-puff cue (u =1 during air-puffs and u =0 otherwise) to
which the observer’s attention is drawn through the experimenter’s behavior
(Fig. 5b, d solid lines), or b) the action of the experimenter (= 1 during escapes
and u =0 otherwise). In this latter scenario, the observer is provided a noisy
supervisory signal due to false positive and false negative decisions of the
experimenter (average EXP false positive rate ~ 30%, average false negative rate
~ 35%, n =10 EXP birds). To test hypothesis b, we simulated an observer neuron
that on randomly chosen 30% of learning (Training set) trials was driven by
erroneous learning cues (i.e. escapes on unpuffed trials and no-escapes on puffed
trials), with and without regularization (Supplementary Figure 5 dashed and dot-
dashed curves, respectively).

Note that how to set the degree of L1 penalty defined by the regularization
parameter A is a common problem in machine learning. This parameter is most
often selected using grid search or random search methods, to localize the value
that minimizes a cross-validation or held-out validation set error42. More
sophisticated techniques, such as estimating a Gaussian process regression model
between the hyperparameter (such as 1) and the validation error have recently been
developed . However, all these techniques require an evaluation of the validation
error for optimization®3, for which there is currently no support in animals and
their brains.

Data availability. We have uploaded the data and Matlab scripts for our

experiment on the data repository ETH Research Collections: https://www.

research-collection.ethz.ch/handle/20.500.11850/238568.
https://doi.org/10.3929/ethz-b-000238568
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