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Viral regulation of host cell biology by hijacking
of the nucleolar DNA-damage response
Stephen M. Rawlinson1,2, Tianyue Zhao1,2, Ashley M. Rozario3, Christina L. Rootes4, Paul J. McMillan2,5,

Anthony W. Purcell 6,7, Amanda Woon6,7, Glenn A. Marsh 4, Kim G. Lieu1, Lin-Fa Wang 8,

Hans J. Netter9, Toby D.M. Bell3, Cameron R. Stewart4 & Gregory W. Moseley1,2

Recent studies indicate that nucleoli play critical roles in the DNA-damage response (DDR)

via interaction of DDR machinery including NBS1 with nucleolar Treacle protein, a key

mediator of ribosomal RNA (rRNA) transcription and processing. Here, using proteomics,

confocal and single molecule super-resolution imaging, and infection under biosafety level-4

containment, we show that this nucleolar DDR pathway is targeted by infectious pathogens.

We find that the matrix proteins of Hendra virus and Nipah virus, highly pathogenic viruses of

the Henipavirus genus in the order Mononegavirales, interact with Treacle and inhibit its

function, thereby silencing rRNA biogenesis, consistent with mimicking NBS1–Treacle inter-

action during a DDR. Furthermore, inhibition of Treacle expression/function enhances

henipavirus production. These data identify a mechanism for viral modulation of host cells by

appropriating the nucleolar DDR and represent, to our knowledge, the first direct intranu-

cleolar function for proteins of any mononegavirus.
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The DNA-damage response (DDR) comprises a complex
network of pathways that monitor and repair damage to
genomic DNA to prevent deleterious mutations1. The

mechanisms underlying the DDR are only partially resolved, but
recent studies implicated nucleoli as having critical roles2–5. The
canonical function of nucleoli is ribosome biogenesis, where they
support ribosomal RNA (rRNA) synthesis, processing, and
assembly into pre-ribosomal subunits. However, numerous stu-
dies have indicated that nucleoli are highly multifunctional and
dynamic structures involved in processes including stress
responses, cell-cycle regulation and signal recognition particle
assembly6. These functions derive from a large nucleolar pro-
teome, by which nucleoli are considered to act as integrators of
complex cellular signals, the full extent and mechanisms of which
are only beginning to be understood6.

Recent studies of the roles of nucleoli in stress responses have
identified Treacle protein, a nucleolar regulator of rDNA tran-
scription and pre-rRNA processing that localizes to subnucleolar
compartments, as a critical mediator of rRNA silencing that is
induced by the DDR2,4,7–10. Specifically, DDR-induced rRNA
silencing involves Nijmegen Breakage Syndrome 1 (NBS1) pro-
tein, a key effector protein of the DDR that forms part of the
MRN complex1. NBS1 interacts with Treacle and, during a DDR,
accumulates in Treacle-enriched compartments to induce rRNA
synthesis silencing2,4. Under normal conditions, Treacle main-
tains basal levels of rRNA biogenesis such that depletion of
Treacle expression results in reduced rRNA synthesis4,9. During
the DDR, the extent of rRNA inhibition observed is equivalent to
that following Treacle depletion, and induction of the DDR in
cells depleted for Treacle causes no additional inhibition4. Thus,
DDR-induced silencing of rRNA synthesis is Treacle-dependent,
and the data appear consistent with a model whereby Treacle’s
normal function in rRNA biogenesis is inhibited via the
NBS1–Treacle complex; however, the precise mechanism has not
been confirmed2,4. Notably, reduced Treacle expression and
consequent effects on rRNA biogenesis are associated with the
genetic disorder Treacher-Collins Syndrome (TCS), a severe
craniofacial developmental disorder wherein mutations of the
Treacle-encoding TCOF1 gene account for the majority of
cases11. Haplo-insufficiency of Treacle is thought to result in
insufficient ribosome biogenesis in highly proliferative neuroe-
pithelial cells during development, leading to nucleolar stress and
activation of apoptosis12.

Other than its roles in genetic disorders such as TCS, neuro-
degenerative diseases13, and cancers14, the nucleolus is targeted
by proteins expressed by diverse viruses, potentially enabling viral
modulation of intranucleolar processes controlling host cell
biology15,16. However, this aspect of viral biology remains poorly
characterized, particularly with respect to viruses of the order
Mononegavirales, which comprises non-segmented negative-
strand RNA viruses including the highly pathogenic Hendra
(HeV) and Nipah (NiV) viruses (genus Henipavirus, family
Paramyxoviridae), rabies virus, Ebola virus, measles virus, and
mumps virus. Almost all mononegaviruses mediate transcription,
replication, and assembly exclusively within the cytoplasm, but
several recent reports indicate that certain proteins of mono-
negaviruses can localize to the nucleolus and bind to specific
nucleolar proteins17–19.

The henipavirus matrix (M) protein is perhaps the best char-
acterized of the nucleolar proteins expressed by mononegaviruses.
The key henipavirus members are HeV and NiV, which are
zoonotic viruses that have emerged from bat reservoirs to cause
multiple outbreaks in humans and domesticated animals, with
mortality rates between 40 and 75%, and no human vaccine or
therapeutic commercially available20. Henipavirus M protein
plays essential roles in virus particle assembly in the cytoplasm

and budding at the plasma membrane, and can self-assemble into
secretion-competent virus-like particles (VLPs)21,22; these func-
tions are broadly conserved among paramyxoviruses and other
mononegaviruses23,24. However, M protein also enters the
nucleus and accumulates within nucleoli in NiV- and HeV-
infected cells19,25. Recent studies reported a requirement for M
protein to traffic to the nucleolus prior to fulfilling its role in
budding19,26. Furthermore, certain proteomic data suggest that M
protein can interact with multiple nucleolar factors, supporting
the possibility of an intranucleolar role26,27. However, it has also
been proposed that the principal role of nuclear/nucleolar loca-
lization of proteins of mononegaviruses might be to sequester
inhibitory proteins from the cytoplasm during replication prior to
budding15,24,28, and importantly, no direct nucleolar function has
been reported for M protein or for nucleolar proteins expressed
by any mononegavirus; thus, the potential significance of such
interactions remains unresolved.

Here, we show that Henipavirus M proteins specifically targets
Treacle protein and inhibits rRNA biogenesis. The data indicate
that M protein enters Treacle-enriched compartments in the
nucleolus and exploits the DDR-Treacle pathway by a mechanism
consistent with mimicking DDR-activated NBS1. This identifies a
novel viral strategy to subvert the biology of the host cell.

Results
HeV M protein accumulates in a subnucleolar compartment.
Nucleoli comprise multiple compartments with discrete functions
such that protein localization to particular subnucleolar regions
enables different regulatory roles29,30. The nucleolus is classically
divided into three major subcompartments, the inner fibrillar
center (FC), dense fibrillar component (DFC) and granular
component (GC), which appear to mediate specific stages of
ribosome biogenesis through distinct proteomes. Although HeV
M protein is known to target the nucleolus17,19,26 its specific
subnucleolar localization has not been described. To examine this,
we used confocal laser scanning microscopy (CLSM) to image
nucleoli in cells infected by HeV and immunostained for M
protein (Fig. 1a), or in living cells transfected to express HeV M
protein fused to green fluorescent protein (GFP-HeV M) (Fig. 1b
and Supplementary Movie 1). Rather than being diffuse within
nucleoli, M protein accumulated strongly within discrete sub-
nucleolar compartments in both infected and transfected cells,
indicating an intrinsic capacity of M protein to interact with
specific compartments, which is independent of other viral pro-
teins. Immunofluorescence (IF) labeling for nucleolar markers
indicated co-localization of HeV M with compartments con-
taining UBF (a marker for FC/DFC) and FBL (a marker for DFC),
while NCL (a marker for GC) appeared to surround HeV M
compartments (Fig. 1c)29–31. Thus, the subnucleolar compart-
ments containing HeV M likely correspond to FC/DFC.

K258A mutation of M prevents subnucleolar accumulation.
Henipavirus M protein contains at least one nuclear localization
sequence (NLS) and one nuclear export sequence (NES)19,21, but
the requirements for nucleolar targeting are unknown. Since
NLSs and nucleolar localization sequences (NoLSs) are often
proximal or overlap32 we examined the impact on nucleolar
localization of mutation of K258 to alanine (K258A), which was
reported to inhibit nuclear localization of NiV M protein, sug-
gesting that K258 forms part of a C-terminal NLS19,26.

GFP-fused M proteins of HeV and NiV showed a similar
phenotype, with clear nuclear and nucleolar localization, and
accumulation into subnucleolar compartments in c. 91% (HeV M
protein) and 80% (NiV M protein) of nucleoli examined (Fig. 2a,
b). Both proteins also displayed localization to the plasma
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membrane/membrane extensions in 100% of cells, consistent with
previous observations for NiV M and known roles in budding19,
which results in VLP formation in M-protein-expressing
cells19,21. Mutation of K258 to A did not prevent accumulation
of HeV or NiV M protein within nucleoli, but strongly impaired
accumulation within subnucleolar compartments, such that no
compartmental localization was observed in nucleoli of cells
expressing mutated HeV or NiV M proteins (Fig. 2a, b). This
suggested that mutation of K258 inhibits localization of M
protein to subnucleolar compartments and, consistent with this,
we were able to detect clear exclusion of K258A-mutated M
protein from regions consistent with these compartments (see
Zoom panels Fig. 2). As previously reported for NiV M19, the
membrane localization/extension phenotype was entirely pre-
vented by K258A mutation, and this effect was also observed for
HeV M protein (Fig. 2a, b) indicating impaired budding function.

This was directly confirmed using VLP budding assays (Supple-
mentary Fig. 1A).

Interestingly, despite similar effects of K258A mutation on
the localization of HeV M and NiV M proteins to subnucleolar
compartments and plasma membrane, K258A had markedly
different effects on the nuclear localization of these proteins,
producing a more cytoplasmic localization of NiV M (as
previously reported19), but having little to no effect on nucleo-
cytoplasmic localization of HeV M protein (Fig. 2)19. Thus, it
appears that the requirements for subnucleolar localization and
budding are conserved between HeV and NiV M proteins,
while those for nucleo-cytoplasmic localization differ, in spite
of high sequence conservation between the proteins (c. 90%
amino acid identity). Importantly, the finding that K258A
mutation did not prevent nucleolar localization of HeV M
protein, but resulted in a failure to accumulate within
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Fig. 1 HeV M protein localizes to discrete subnucleolar compartments in HeV-infected cells and cells transfected to express HeV M protein. a HeLa cells
infected with HeV (multiplicity of infection (MOI) of 5) were fixed 24 h post-infection (p.i.) and immunostained for HeV M protein before imaging by
CLSM. b HeLa cells transfected to express GFP-HeV M protein were imaged live 16 h post-transfection (p.t.) by CLSM. Images are representative of ≥5
independent experiments, in each of which ≥10 fields of view were captured. c HeLa cells transfected to express GFP-HeV M protein were fixed 16 h p.t.
and immunolabeled for the indicated nucleolar proteins, using AlexaFluor-568-conjugated secondary antibodies. Images are representative of cells in ≥20
fields of view. Arrowheads indicate nucleoli. Nuclei (DNA) were labeled using Hoechst 33342 (blue in merged images). Yellow boxes highlight regions of
images magnified in the Zoom panel. Scale bars correspond to 15 μm
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subnucleolar compartments, provided the opportunity to
examine the specific roles and interactions associated with
subnucleolar localization.

M protein interacts with Treacle protein in compartments. To
identify cellular factors associated with the subnucleolar localiza-
tion of M protein we performed comparative immunoprecipita-
tion/mass spectrometry (IP/MS) to compare the prevalence of
nucleolar proteins in the interactome of wt and K258A-mutated
GFP-HeV M proteins. The most pronounced nucleolar interactors
of wt M protein, according to the number of significant peptides,
included nucleolar proteins Treacle, nucleolar and coiled-body
phosphoprotein 1 (NOLC1) and UBF1 (Fig. 2c and Supplemen-
tary Data 1). Notably, none of these proteins were detected in IP/
MS in the interactome of K258A-mutated HeV M protein. Since
wt and K258A-mutated HeV M protein interacted similarly with
other nucleolar proteins, including nucleophosmin (NPM1), NCL
and RNA-binding protein 14 (RMB14), it appeared that K258A
specifically impacts interactions with a subset of nucleolar

proteins, indicating that these interactors are relevant to sub-
nucleolar compartment localization.

The most pronounced nucleolar interactor was Treacle, which
is known to localize to a subnucleolar compartment, where, in
common with HeV M (Figs. 1, 2), it colocalizes with factors such
as FBL indicative of association with FC/DFC33. We thus selected
Treacle for further analysis. To assess the impact of Treacle on the
production of infectious HeV, we transfected cells with control
(scr) siRNA or siRNA targeting Treacle, before infection with
HeV. The depletion of Treacle expression (Supplementary Fig. 2)
resulted in a significant increase in virus production (Fig. 3a).
These data suggested that M protein might target Treacle to
suppress its function to benefit the virus, such that depletion of
Treacle enhances this proviral effect. Alternatively, Treacle might
have intrinsic antiviral function through binding to M protein,
which is relieved by Treacle depletion.

Using IP and immunoblot (IB) analysis, we further confirmed
that GFP-HeV M interacts with endogenous Treacle and with co-
transfected HA-Treacle, and that mutation of K258 prevents
these interactions (Fig. 3b). Similar analysis indicated a lack of
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any effect of K258A mutation on interaction of HeV M with FBL
(Supplementary Fig. 3), which was previously shown to bind HeV
M17; this confirmed the specificity of the effect of K258A on
interaction with certain nucleolar proteins. Co-localization of
HeV M with endogenous Treacle within the subnucleolar
compartments was also confirmed by CLSM analysis of infected
cells (Fig. 3c) and cells expressing GFP-HeV M (Fig. 3d upper
panels). HeV M-K258A did not accumulate with Treacle in
compartments (Fig. 3d lower panels). Notably, siRNA depletion
of Treacle also inhibited the compartmental accumulation of
GFP-HeV M (Fig. 4a, b). Thus, it appears that M protein interacts
with Treacle protein in Treacle-enriched subnucleolar
compartments33.

To determine whether HeV M interaction with the Treacle-
enriched compartments results in gross effects on their structure
or distribution, we employed super-resolution microscopy using
single molecule localizations (dSTORM)34,35 to analyze cells
immunostained for Treacle. This achieved spatial resolution at
least as good as 40 nm in xy and 80 nm in z, enabling, to our
knowledge, the first super-resolution measurement of the
dimensions of Treacle-containing compartments within the

nucleolus. 3D super-resolution images indicated that the
compartments are largely spheroidal structures (Fig. 5a and
Supplementary Movie 2), with axial cross-sections similar to the
feature size detected in 2D super-resolution images (Fig. 5b), for
which the mean area of compartments was 0.077 µm2 (n=
1959 subnucleolar compartments in 226 nucleoli, 59 cells).
Importantly, the mean area was not significantly affected by
expression of wt or mutated GFP-HeV M protein (Fig. 5c),
compared with expression of GFP alone. Furthermore, there was
no difference in the mean number of nucleoli per cell (Fig. 5d), or
compartments per nucleolus (Fig. 5e) detected by dSTORM.
Thus, HeV M protein does not appear to affect either the number
of Treacle-enriched subnucleolar compartments or their dimen-
sions, such that any functional effect of HeV M protein
subnucleolar localization is likely to result from specific
intranucleolar protein interactions.

Treacle interaction and budding function of M are distinct. It
has been proposed that M protein enters nuclei/nucleoli prior to
transport to the plasma membrane for budding, dependent on

a

HeV M

Merge

K
25

8A

b

c

W
T

Zoom

Zoom

d
ZoomZoom

IP Treacle

In
pu

t

Treacle

GFP

HA (Treacle)
GFP

HA (Treacle)
GFP

IB:

GFP

IP
In

pu
t

IB:

GFP-HeV M

GFP-HeV M

W
T

K
25

8A

GFP-HeV M

W
T

K
25

8A

T
C

ID
50

/m
l

**107

106

105

104

103

Mock

siRNA

250

250

(kDa)

70

70

70

70

(kDa)

180

180

Treacle

Treacle

Merge

PLK1scr Treacle

Fig. 3 Treacle impacts HeV production and interacts with wt but not K258A HeV M protein. a HeLa cells were transfected with scrambled siRNA (scr),
Treacle siRNA, or mock-transfected, before infection with HeV (MOI 0.5); siRNA for polo-like kinase 1 (PLK1) is a positive control known to inhibit HeV
production17. HeV titer was measured at 48 h p.i. (mean TCID50/mL, ± s.e.m., n= 3). Statistical analysis used Student’s t-test; **, p= 0.003. b IPs of the
indicated proteins from HEK-293T cells were analyzed by immunoblotting (IB) with the indicated antibodies; results are representative of three
independent experiments. c HeV-infected cells were fixed 24 h p.i. and immunostained for HeV M protein and Treacle. Nuclei were labeled using Hoechst
33342 (blue in merged image). Images are representative of ≥20 fields of view, capturing >100 cells over two experiments. d HeLa cells transfected to
express the indicated proteins were fixed and immunostained for Treacle; images are representative of ≥30 fields of view over three experiments. Scale
bars correspond to 15 μm

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05354-7 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3057 | DOI: 10.1038/s41467-018-05354-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


K25824. Since K258A mutation of HeV M protein impacted both
Treacle binding/localization to subnucleolar compartments and
budding at the plasma membrane, we tested whether these pro-
cesses are linked by examining effects of Treacle depletion on
budding. In contrast to K258A mutation, which entirely pre-
vented budding, Treacle knockdown had no apparent inhibitory
effect on budding in microscopy or VLP assays (Fig. 4b and
Supplementary Fig. 1B). As described above, Treacle depletion
and K258A mutation had comparable effects on subnucleolar
localization. Thus, it appears that M protein-Treacle interaction
and M protein-mediated budding are distinct processes, sug-
gesting that K258 is important in at least two independent
functions in HeV M, as well as impacting nuclear localization in
NiV M.

M inhibits rRNA biogenesis by hijacking the nucleolar DDR.
The above data indicate that M protein-Treacle interaction does
not affect the classical role of M protein in virus budding, sug-
gesting that M protein targets Treacle to modulate host cell
function. Treacle regulates rRNA production and is required for
efficient ‘basal’ synthesis of rRNA, providing a molecular target
for cellular regulation of rRNA, as suggested by its role in the
DDR2,4,9. To examine whether M protein targets Treacle-
enriched compartments to exploit such a regulatory mechan-
ism, we assessed the effect of HeV infection on rRNA synthesis,
by performing in situ detection of rRNA in the nucleolus using
the Click-iTTM RNA Imaging Kit, which was previously used to
identify the role of Treacle in the DDR4. A significant (p < 0.0001)
reduction in rRNA synthesis was observed in HeV-infected cells
compared with mock-infected cells (Fig. 6a, b) indicating that
HeV infection can inhibit a Treacle-related function. Expression
of GFP-HeV M alone also significantly (p < 0.001) reduced rRNA
synthesis, with the extent of reduction (c. 35%, Fig. 7a, b) similar

to that reported following knockdown of Treacle4. Notably,
treatment of cells with actinomycin D (ActD), which arrests
rRNA synthesis globally by inhibiting RNA Polymerase I (RNA
Pol I), reduced rRNA production to a greater extent (>90%
reduction of rRNA synthesis, Fig. 7b). Thus, the effect of HeV
infection and HeV M protein expression is consistent with spe-
cific inhibition of Treacle-dependent processes. Consistent with
this idea, no effect on rRNA production was observed following
expression of GFP-HeV M-K258A, which does not bind to
Treacle (Fig. 7a, b).

Since the effect of HeV M protein on rRNA biogenesis was
consistent with that observed during a DDR4, we sought to define
whether the same molecular pathway is being utilized by testing
the impact of HeV M protein expression on the inhibition of
rRNA synthesis that is induced by DNA damage. Using
etoposide, we confirmed that DNA damage inhibits rRNA
biogenesis, and found that it does so to a similar extent as HeV
M protein expression (Fig. 7c, d). Importantly, combination of
these stimuli produced no additional effect, suggesting that HeV
M exploits the same pathway of rRNA silencing that occurs
during the DDR, which is Treacle-dependent2,4 (Fig. 7c, d). To
directly examine the role of Treacle in HeV M protein-mediated
suppression of rRNA biogenesis, we analyzed rRNA synthesis in
cells depleted of Treacle (as above) and/or transfected to express
HeV M protein, detecting no additive effect by combining these
stimuli (Fig. 7e, f). Together, these data confirm that the effect of
M protein on rRNA biogenesis is Treacle-dependent, and,
furthermore, indicate that viral subversion of this process is
highly potent, being equivalent to the effect observed following
either genuine DNA damage or depletion of Treacle.

DNA damage is induced by HeV infection but not by M pro-
tein. Our data indicated that HeV M protein specifically activates
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the nucleolar DDR via interaction with Treacle. To confirm that
the effect of M protein is independent of DNA damage (i.e., that
M protein expression does not cause DNA damage), we measured
the effect of GFP-HeV M protein expression on phosphorylation
of the histone variant, γH2AX, at residue S139 (γH2AX-p, a

standard indicator of DNA damage). Analysis of IF-labeled cells
by CLSM, or of cell lysates by IB (Fig. 8a, b), clearly indicated an
increase in γH2AX-p following treatment with etoposide, but no
increase in γH2AX-p could be detected following expression of
GFP-HeV M protein (Fig. 8a, b), despite comparable effects of wt
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HeV M protein expression and etoposide treatment on rRNA
production (Fig. 7c, d). Thus, it appears that M protein affects the
nucleolar DDR via interaction with Treacle rather than through
an indirect effect involving DNA damage.

One possible explanation for our finding that HeV M protein
modulates the nucleolar DDR is that HeV infection might induce
DNA damage, such that alteration of specific DDR pathways/
responses by M protein might protect the infected cell from
deleterious effects. We thus examined the effect of HeV infection
on γH2AX, identifying a clear increase in levels of γH2AX-p
levels, suggesting induction of DNA damage (Fig. 8c, d).

HeV M protein disrupts Treacle–NBS1 complexes. The prop-
erties of HeV M protein with respect to Treacle are analogous to
those of DDR-activated NBS1, including the dependence of their
subnucleolar localization and rRNA-inhibitory function on the
expression of Treacle2,4,9. Since HeV M protein appears to
appropriate the DDR-Treacle pathway, we reasoned that M
protein might bind at the same or overlapping site(s) in Treacle as
NBS1, thereby mimicking the DDR-activated response but in the
absence of DNA-damage. Such competitive binding would be
consistent with the lack of additional effects of DNA-damage on
rRNA biosynthesis in M-protein-expressing cells (Fig. 7d). To
examine this we used IP to detect Treacle–NBS1 complexes in
lysates of cells expressing mCherry, mCherry-HeV M wt or
mCherry-HeV M K258A. Previous reports indicate that
Treacle–NBS1 interaction is readily detected in IPs with or
without DNA damage4,8 and, consistent with this, we detected
Treacle–NBS1 complexes in co-IPs from control cells expressing
mCherry alone or mCherry-HeV M K258A (Fig. 9a and Sup-
plementary Fig. 4). However, detection of the complexes was
strongly impaired in IPs from wt HeV M protein-expressing cells,
indicating that HeV M protein efficiently prevents NBS1–Treacle
interaction.

Discussion
Here we identified the rRNA transcriptional regulator Treacle as a
novel target for subversion of the host cell by a microbial
pathogen. Treacle is a critical component in cellular mechanisms
to regulate rDNA transcription following DNA damage2,4. The
role of Treacle in this process appears to be due to interaction
with NBS1, an integral player in the DDR2,4. Current data on the
NBS1–Treacle complex are consistent with a model whereby
DDR-activated NBS1 inhibits rRNA biogenesis by suppressing
Treacle’s function in maintaining basal levels of rRNA (Fig. 9b
left panel). Following the finding that viral proteins can bind to
Treacle (Fig. 2c), we hypothesized that such a mechanism could
be exploited by viruses through the formation of a complex with
Treacle analogous to that formed by NBS1, thereby inducing the
DDR pathway without the requirement for a DNA-damage signal
(Fig. 9b right panel). Consistent with this, our data indicate that
M protein interaction with Treacle displaces NBS1 from the
complex, and appropriates the downstream pathway that is
activated during a DDR. These data indicate that binding of
specific proteins to Treacle can directly inhibit rRNA biogenesis,
consistent with the idea that specific regulation of Treacle func-
tion (and/or the function of Treacle-containing complexes),
rather than some alternative function of NBS1 in nucleoli/sub-
nucleolar compartments, is responsible for rRNA suppression in
the DDR. Notably, one prediction of our model is that, due to
competition with M protein, NBS1 would be expected to have
antiviral properties and, consistent with this, a previous genome-
wide functional genomics screen of HeV infection identified
NBS1 as antiviral (Z-score= 2.77)17. Thus, our data support both
the model for DDR-mediated rRNA silencing via direct inhibition
of Treacle-dependent rRNA biogenesis, and the proposed novel
mechanism for viral subversion of this process.

The precise mechanisms underlying Treacle function in rRNA
production are not fully resolved, but likely involve interaction
with other nucleolar components critical to rDNA transcription
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such as RNA Pol I and the RNA Pol I transcription factor
UBF19,36. Intriguingly, our IP/MS analysis suggested that HeV M
protein interactions within subnucleolar compartments include
UBF1, indicating that HeV M protein might form complexes
incorporating UBF1 and Treacle. Consistent with this, UBF1 was
previously identified as an interactor of NiV M protein, although
the subnucleolar localization of the interaction was not eluci-
dated26. Thus, it appears that M protein interaction with the
Treacle–UBF1 complex enables specific roles in the nucleolus to
suppress rRNA production; indeed, targeting of the
Treacle–UBF1 complex is not unexpected since Treacle’s reg-
ulation of rRNA appears to involve UBF1 interaction9. Impor-
tantly, however, our data using Treacle-depleted cells clearly
shows that the effect of M protein on rRNA synthesis is depen-
dent on Treacle, indicating that the targeting of Treacle specifi-
cally enables viral regulation of rRNA. This supports a role for
Treacle as an organizer/regulator of rRNA synthesis in dynamic
cellular responses. Notably, the interactions of Treacle, RNA Pol
I, UBF1 and rDNA appear to occur within Treacle-enriched
compartments (which our data and others9,33,36 indicate corre-
spond to FC/DFC). This suggests that the FC/DFC co-localization
facilitates specific interaction network(s) enabling roles in rRNA
production and stress responses2,4, which our data now indicate
are targeted by viruses. Delineation of the specific signaling
pathways/networks that underpin the diverse functions of
nucleoli and nucleolar compartments is hampered by their
molecular complexity. Based on the findings of the current study
with respect to NBS1–Treacle interaction, it is likely that further
analysis of virus-nucleolar targeting will provide additional
insights into the organization and functions of these compart-
ments, particularly given the availability of mutated viral proteins
that differ in their specific interactions with these structures.

Other than roles in rDNA transcription, Treacle also functions
in pre-rRNA processing, suggesting that the nucleolar DDR
pathway induced by DNA damage or by viral proteins is likely to

have important effects on rRNA and ribosome function beyond
suppression of rRNA synthesis. Notably, the roles of Treacle in
pre-rRNA processing involve association with the Box C/D small
nucleolar ribonucleoprotein (snoRNP) complex. The Box C/D
snoRNP complex methylates pre-rRNA and is composed of four
core proteins: FBL, NOP56, NOP58, and NHP2L137. Three of
these (FBL, NOP56 and NOP58) have been implicated as being
important to a henipavirus infection in a genome-wide functional
genomics screen17, and confirmed or proposed to associate with
M protein. However, no direct function for these interactions has
yet been demonstrated17,26,27 and, importantly, HeV M interac-
tion with FBL was unaffected by K258A (Supplementary Fig. 3).
Thus, the FBL interaction appears to be distinct from the role of
HeV M protein in Treacle-dependent modulation of rRNA pro-
duction. Taken together with the findings that other nucleolar
interactors including NPM1 and NCL were unaffected by K258A
mutation (Fig. 2c), that IP/MS analysis of henipavirus M protein
has identified multiple additional nucleolar interactors (our data
and others26,27), and that a functional genomics screen identified
several nucleolar factors that inhibit infection17, this suggests that
M proteins are likely to have additional nucleolar roles inde-
pendent of Treacle interaction.

Notably, our data not only indicate that HeV/NiV M proteins
manipulate the nucleolar DDR via M protein, but also show that
infection by virus produces DNA damage. Although DNA damage/
DDR modulation is well known for a number of DNA and retro-
viruses, roles in infection by RNA viruses, particularly mono-
negaviruses is less well defined38. The simplest interpretation of our
data is that henipavirus M proteins have evolved mechanisms to
modulate specific elements of the DDR enabling virus to replicate
efficiently within a hostile environment. For example, M protein’s
apparent modulation of the DDR in the absence of DNA damage
might produce a protective environment against virus-induced
DNA damage. Indeed, previous studies have indicated that NiV and
other mononegaviruses, such as rabies virus, can induce reactive
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oxygen species (ROS), which can cause DNA damage39,40. Intri-
guingly, sequencing of bat genomes, including Pteropodid bats (the
natural reservoir of HeV, NiV, lyssaviruses and many other highly
pathogenic viruses) revealed that many DNA-damage checkpoint
genes have been positively selected for41, perhaps to protect bat cells
against damage by the large amounts of ROS generated during
flight. It has been proposed that this might also be important to the
capacity of bats to ‘tolerate’ and act as reservoirs for many patho-
genic viruses41. Our novel identification of interactions of henipa-
viruses with the DDR support critical roles in the host–virus
interface, that potentially differ in bats and other host species.

Methods
Antibodies and reagents. Rabbit anti-TCOF1/treacle was purchased from Pro-
teintech (Cat #11003-1-AP) and used for immunofluorescence (IF; 1:100) and
immunoblotting (IB; 1:2000). Mouse anti-GFP (Sigma-Aldrich, Cat #11814460001
ROCHE; 1:2000), anti-β-tubulin (Sigma, Cat # T8328; 1:2000), and anti-β-actin
(Abcam, Cat# Ab3280; 1:2000) were used for IB. Mouse anti-HeV M (Generated at
AAHL; 1:10)42 was used for IF25. Anti-FBL (Abcam, Cat #Ab4566), anti-NCL
(CST, Cat#14574), anti-UBF1/2 (gift from Prof. Ross Hannan (Australian National
University), in-house generated antibody43, 1:100) and anti-Phospho-Histone
H2A.X (Ser139) (γH2AX; CST, Cat#2577; 1:800) were used for IF and/or immu-
noblotting. Secondary antibodies diluted 1:1000 were used for IF (goat anti-rabbit
Alexa Fluor 568 (Cat #A-11011), goat anti-rabbit Alex Fluor 647 (Cat #A-21245))
were purchased from Thermo Fisher Scientific. Secondary antibodies diluted
1:10,000 were used for IB (goat anti-rabbit (Cat #AP307P) and goat anti-mouse
(Cat #AP308P) IgG horse radish peroxidase (HRP)-conjugated-antibodies) were
purchased from Merck. rRNA synthesis was inhibited by treating cells with Acti-
nomycin D (ActD) (Thermo Fisher Scientific, Cat #11805017) for 1 h at 500 ng/
mL. DNA damage was induced by treating cells with 50 μM etoposide for 3 h.

Cell culture. HeLa (ATCC CCL-2) and HEK-293T (ATCC CRL-3216) cells were
maintained in Dulbecco’s Modified Eagle Medium (DMEM, ThermoFisher Sci-
entific, Cat# 11965092) supplemented with 10% Fetal Calf Serum (FCS) at 37 °C,
5% CO2.

Transfections. Plasmids for expression in mammalian cells of HeV-M protein
(Accession Number AEB21196.1), NiV-M (Accession Number AAY43914.1), and
mutants thereof, fused at the N terminus to GFP or mCherry, were generated by
directional cloning of M gene cDNA into the multiple cloning site of the pEGFP-
C1 vector, as previously described21. mCherry-NCL and NBS1-GFP were kind gifts
from Keiichi I. Nakayama (Kyushu University) and S. Elledge (Harvard Uni-
versity), respectively. siRNA targeting Treacle consisted of a pool of 3 Treacle-
specific siRNAs, synthesized by Bioneer Pacific® (Sequences (5′-3′): GGUCUC
CAUCCAAGGUGAAA(dTdT); CAGUAGUGAGGAGUCAUCA(dTdT); GCAA
GCUAAGAAAACCCGU(dTdT)).

Plasmids were transfected into HEK-293T cells and HeLa cells using
Lipofectamine 2000TM and Lipofectamine 3000TM, respectively, according to the
manufacturer’s instructions (Thermo-Fisher Scientific). siRNA (100 nM final) was
transfected into cells using DharmaFECT 1 Transfection ReagentTM (GE
Dharmacon) according to the manufacturer’s instructions.

Confocal laser scanning microscopy and image analysis. CLSM used a Leica
SP5 or Nikon C1 microscope with 60× oil immersion objective (NA 1.4), or a Leica
SP8 with Hyvolution, and a heated chamber (37 °C) for live-cell analysis. Image
analysis was performed using ImageJ freeware software. For IF staining, cells
seeded onto glass coverslips were fixed with 4% paraformaldehyde (37 °C, 10 min),
permeabilized with 0.25% Triton X-100 (room temperature (RT), 5 min), and
blocked with 1% bovine serum albumin (BSA) in PBS (RT, 1 h), before primary
and secondary antibody labeling (RT, 90 min each), and coverslips were mounted
onto glass slides with Mowiol.

dSTORM imaging and analysis. For dSTORM imaging, HeLa cells were fixed 24 h
p.t. using 4% paraformaldehyde (37 °C, 10 min), and permeabilized using 0.1%
Triton X-100 (RT, 10 min). Slides were then blocked with 2% BSA in PBS (RT, 30
min) before labeling using anti-Treacle (3 µg/ml, 1 h, RT) and Alexa Fluor-647-
conjugated anti-rabbit secondary antibodies (5 µg/ml, 45 min, RT). Labeled cells
were imaged in a switching buffer of 10% glucose, 100 mM mercaptoethylamine,
400 µg/ml glucose oxidase and 35 µg/ml bovine catalase in PBS, made to pH 8.5
using 1M KOH44. Imaging was performed on home-built super-resolution set-up
based on a previously described system35, comprising an inverted fluorescence
microscope (Olympus IX81, 100 × 1.49 NA TIRF objective), using a blue laser
(Toptica iBeam smart laser diode, 488 nm laser, ~50W cm2) to identify GFP-
positive cells in epifluorescence. A high power red laser (Oxxius Laser Box, 638 nm,
3–5 kW cm2) was used to induce photoswitching of Alexa Fluor-647 molecules in
highly inclined laminar optical (HiLo) illumination with the sample under

reducing buffer. Once single molecule ‘blinking’ events were sufficiently sparse,
frames were acquired at 100 Hz (10 ms/frame) for 1–3 min on an sCMOS camera
(pco. edge 4.2), as a TIF stack. Typically 10,000–20,000 frames of single molecule
emissions were recorded and imported into rapidSTORM45 to localize each
emission intensity profile, using a 2D Gaussian function, onto a 5 nm/pixel coor-
dinate point map. Each final reconstructed image contained at least 2 million
localizations. These images were analyzed to determine Treacle-enriched com-
partment area using ImageJ after first smoothing 2D super-resolution images with
a Gaussian Blur (r= 0.5) to account for localization precision error. Images were
colored based on increasing pixel density in grayscale (1–255) and subnucleolar
compartments identified as regions where pixel density was greater than that in the
nucleoplasm where no compartments were present by applying a pixel threshold
(≤2) to remove background fluorescence. 3D dSTORM imaging was achieved via
the method of point spread function engineering by astigmatism. A cylindrical lens
(f= 1000 mm) was placed into the imaging optical path and lateral PSF distortion
as a function of axial position was calibrated by scanning (in z) 0.1 µm Tetraspeck
spheres embedded in a water soluble gel matrix and fitting the changing lateral
distortions of emission intensity with a 2D Gaussian46. 3D super-resolution images
and movies of cells were generated using ViSP47 from 3D localization coordinates
determined in rapidSTORM. Subnucleolar compartments were color-coded for
relative 3D density to highlight spheroidal conformation.

Co-immunoprecipitation (co-IP). All co-IPs were performed using 6 cm dishes of
HEK-293T cells that were transfected to express the indicated proteins and lysed at
24 h p.t. with lysis buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA;
0.5% NP-40, 1 × Protease Inhibitor Cocktail (PIC; Sigma-Aldrich Cat
#11697498001)) for 30 min at 4 °C. Supernatants were collected by centrifugation
at 20,000 xg for 15 min at 4 °C and 10% of the cleared lysate was collected for
‘input’ analysis; the remaining lysate was subjected to IP using 10 µL of GFP-Trap®

beads (Chromotek)48. Beads were washed 3 times with dilution buffer (10 mM
Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA, 1 × PIC). Samples for IB analysis
were resuspended in 2 × SDS-PAGE sample loading buffer. Samples for mass-
spectrometry analysis were subjected to a final wash containing no PIC.

Mass spectrometry and analysis. Processing of co-IP samples was performed at
the Bio21 Mass Spectrometry and Proteomics facility (University of Melbourne).
Proteins bound to beads from IP assays were eluted using trifluoroacetic acid
(TFA) prior to readjustment of pH to ~8 with triethylammonium bicarbonate
buffer (TEAB) and trypsin digestion. LC MS/MS was performed on a QExactive
plus Orbitrap mass spectrometer (Thermo Scientific) with a nanoESI interface in
conjunction with an Ultimate 3000 RSLC nanoHPLC (Dionex Ultimate 3000). The
LC system was equipped with an Acclaim Pepmap nano-trap column (Dinoex-
C18, 100 Å, 75 µm x 2 cm) and an Acclaim Pepmap RSLC analytical column
(Dinoex-C18, 100 Å, 75 µm x 50 cm). Result files were searched against the Swis-
sProt database in a target decoy fashion using MASCOT (Version 2.4.1, Matrix
Science, UK). Proteins containing ≥2 significant peptides with mascot ion score
greater than the identity score (p < 0.05) were deemed significant. Interactions
identified were confirmed in ≥2 separate assays.

VLP assay. Transfected HEK-293T cells in six-well tissue culture plates were
processed 24 h p.t.; supernatant was collected and cleared by centrifugation at
1750 × g (10 min) in a benchtop centrifuge. Cleared supernatants were then
ultracentrifuged on a 20 % (w/v) sucrose cushion at 25,000 rpm at 4 °C (16 h) with
a SW41 rotor using a Beckman Coulter Optima L-90K ultracentrifuge. Pelleted
VLPs were resuspended in 50 μl sodium chloride/Tris/ EDTA buffer, and then
SDS-PAGE loading buffer was added. The cells were then lysed in lysis buffer (10
mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.5% NP-40, 1 × PIC). Lysates
and VLP samples were analysed by SDS-PAGE/IB. The budding index was
determined as previously19 for siRNA treated experiments, by measuring the
intensities of the bands by densitometry using Image LabTM (Bio-Rad) software for
VLP and lysate samples. The budding index was defined as the amount of M
protein in VLPs divided by the amount in the cell lysate, and calculated relative to
budding for siNEG transfected cells.

SDS-PAGE and immunoblotting. Samples were separated on 8, 10, or 12% dena-
turing gels by SDS-PAGE before transfer to a nitrocellulose membrane using a BioRad
Trans-Blot semi-dry apparatus. After blocking (5% non-fat milk in PBS with 1%
Tween20 (PBST)), the membranes were incubated with primary antibodies followed
by HRP-conjugated goat anti-rabbit or anti-mouse secondary antibodies, and imaged
on a Gel Doc™ XR+Gel Documentation System. Uncropped scans of critical
representative IBs are presented in Supplementary Fig. 5.

5-ethnyl uridine (EU) incorporation assays. Analysis of rRNA was performed as
previously4 whereby determination of nascent rRNA was detected using the Click-
iTTM RNA Alexa Fluor 594 Imaging Kit (Thermo-Fisher, Cat# C10330). Cells were
incubated for 1 h in the presence of EU before fixation in 4% paraformaldehyde at
RT for 12 min, and permeabilization in 0.25% Triton X-100 for 5 min at RT.
Samples were then processed according to the manufacturer’s recommendations to
label incorporated EU with Alexa Fluor 594. Cells were imaged by CLSM to detect
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labeling of nascent rRNA by measuring the fluorescence intensity of Alexa Fluor
594 within nucleoli. Quantitative analysis to determine EU fluorescence (arbitrary
units, a.u.) was performed using ImageJ software, with nucleoli identified using
differential interference contrast (DIC) microscopy and IF labeling of nucleoli by
anti-FBL or anti-Treacle/TCOF1.

Virus infections. Wild type HeV (Hendra virus/horse/1994/Hendra) was used for
all virus work. All work with infectious virus was conducted at the CSIRO Aus-
tralian Animal Health Laboratory (AAHL) in Biosafety Level (BSL)-4 laboratories.
For analysis by IF microscopy, HeLa cells were seeded onto coverslips and mock-
or HeV-infected (MOI 5) prior to fixation using 4% paraformaldehyde and per-
meabilization with 0.25% Triton X-100. IF labeling was performed using antibody
to HeV M alone or together with antibody to Treacle, followed by Alexa Fluor® 488
(for HeV M) and Alex Fluor® 568 (for Treacle) secondary antibody. For EU
analysis, HeLa cells were seeded into 8-well chambers and mock or HeV-infected
(MOI 5). EU was added to media 1 h prior to fixation at 24 h p.i. with 4% par-
aformaldehyde, and analysis as described above. In all cases, cells were deconta-
minated for 2 h using 4% paraformaldehyde before removal from BSL-4
laboratories.

Tissue culture infective dose (TCID50) analysis. HeLa cells were transfected
without siRNA, or with scr siRNA, Treacle siRNA or PLK1 siRNA (3 days) prior to
infection with HeV at MOI 0.5. siRNA to PLK1, which induces apoptosis and cell
death, was used as a transfection and indirect positive control17. Viral TCID50 was
determined as described previously49, in which samples were titrated in triplicate in
96-well plates and co-cultured with Vero cells for 3 days. The infectious titer was
calculated by the method of Reed and Muench50.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files, or are
available from the corresponding author upon request.
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