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Enhancer histone-QTLs are enriched on
autoimmune risk haplotypes and influence gene
expression within chromatin networks
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Genetic variants can confer risk to complex genetic diseases by modulating gene expression

through changes to the epigenome. To assess the degree to which genetic variants influence

epigenome activity, we integrate epigenetic and genotypic data from lupus patient lympho-

blastoid cell lines to identify variants that induce allelic imbalance in the magnitude of histone

post-translational modifications, referred to herein as histone quantitative trait loci (hQTLs).

We demonstrate that enhancer hQTLs are enriched on autoimmune disease risk haplotypes

and disproportionately influence gene expression variability compared with non-hQTL var-

iants in strong linkage disequilibrium. We show that the epigenome regulates HLA class II

genes differently in individuals who carry HLA-DR3 or HLA-DR15 haplotypes, resulting in

differential 3D chromatin conformation and gene expression. Finally, we identify significant

expression QTL (eQTL) x hQTL interactions that reveal substructure within eQTL gene

expression, suggesting potential implications for functional genomic studies that leverage

eQTL data for subject selection and stratification.
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A fundamental objective of human genetics is to under-
stand how genotypes influence phenotypes. To this end,
genome-wide association studies (GWAS) have success-

fully identified thousands of convincing and reproducible statis-
tical associations between genetic variants, phenotypic traits, and
diseases in humans1. GWAS data, however, do not carry funda-
mental information about how the flow of genomic information
from genotype to phenotype is acted upon by the epigenome,
potentially limiting the effectiveness of translating GWAS data
into actionable clinical knowledge for diagnosis, prognosis, and
prediction of complex diseases in patients. Thus, in the post-
GWAS era, significant effort has been directed toward char-
acterizing epigenetic states, and the mechanisms by which the
epigenome orchestrates the flow of genomic information in spe-
cific cellular contexts2–4. These studies have demonstrated that
much of the non-protein-coding genome is dedicated to epige-
nomic activity2, and that specific post-translational modifications
(PTMs) on histones can define the location and functional state
of enhancer elements and regions of the genome that are tran-
scriptionally activated or inhibited3. Moreover, the epigenome
coordinates information flow in three-dimensional (3D) space
through chromatin loops that facilitate long-range engagement of
enhancers with promoters of genes whose expression sustains or
modulates the cell state4.

From this framework, it follows that DNA mutations and
polymorphisms have the potential to modify cellular phenotypes
by inducing changes in the epigenome circuitry and how it
processes information, particularly for complex genetic diseases.
Accordingly, the majority of GWAS variants locate to regions of
non-protein-coding DNA5,6 and are enriched in enhancer ele-
ments that function as epigenome modulators of gene
expression4,6. Genetic variants can induce epigenetic “foot-
prints”—manifested as allele-specific imbalances in the magni-
tude of histone PTMs (histone quantitative trait loci (hQTLs))—
that identify functional states of enhancer elements7. These
hQTLs can disrupt transcription factor binding motifs leading to
enhancer dysfunction that is heritable from parent to offspring8,9.
These results suggest that a priori knowledge of epigenome
alterations induced by hQTLs could focus analysis of disease risk
haplotypes on enhancer elements most likely to harbor disease-
modifying variants, even within the context of strong linkage
disequilibrium (LD). In addition, knowledge of hQTLs and their
effects on quantitative gene expression traits (eQTLs), particularly
in the context of the 3D chromatin network, could improve the
precision of this widely used method of genotype-to-phenotype
analysis.

To quantify the impact of hQTLs on complex disease risk
haplotypes and gene expression traits, we performed a genome-
wide screen in 25 lymphoblastoid cell lines (LCLs) from
European-American patients with systemic lupus erythematosus
(SLE) to identify hQTLs in weak and strong enhancers defined by
the presence of H3K4me1 or H3K27ac, respectively10,11. Our
results show that enhancer hQTLs are significantly enriched in
autoimmune disease risk haplotypes and exert a disproportionate
influence on gene expression variability when compared with
non-hQTL variants in strong LD with them. We show that the
HLA class II locus is densely populated with enhancer hQTLs,
resulting in differential 3D chromatin conformation and gene
expression between the two most common HLA class II auto-
immune disease risk haplotypes—HLA-DR3 and HLA-DR15.
Finally, we identify statistically significant physical interactions
between eQTLs and hQTLs, in LD, that modify eQTL-based gene
expression and explain, in part, gene expression variability of
eQTL data, suggesting potential implications for functional
genomic studies that leverage eQTL data for subject selection and
stratification.

Results
Genome-wide scan identifies 6261 enhancer hQTLs. Chromatin
immunoprecipitation (ChIP) sequencing peaks that were repro-
ducibly measured across two technical replicates in at least 13 of
25 LCLs were used to construct a consensus peak map specific for
each chromatin mark. In total, we detected 33,437 H3K27ac and
39,613 H3K4me1 consensus peaks, of which 27,404 overlapped
both marks.

Genotyping each cell line using the Illumina HumanOmni 2.5
M SNP array resulted in 1,468,562 variants that passed quality
control. Imputation with the 1000 Genomes Phase 3 reference
panel12 produced a total dataset of 9,603,466 SNPs. Of these,
315,210 heterozygous SNPs were located within a H3K27ac or
H3K4me1 consensus enhancer peak. Following realignment of
ChIP-seq reads using WASP to control for reference genome
alignment bias7, the 315,210 SNPs were tested for allelic
imbalance on histone PTMs using the combined haplotype test
(CHT)8. Comparison of the observed read count distribution with
permuted read counts demonstrated that the CHT was well
calibrated for both histone marks (Supplementary Figure 1). In
total, we identified 6261 significant hQTLs (2007 with r2 ≤ 0.8)
distributed throughout the genome; 5829 significant at the 10%
family-wise error rate (FWER)-adjusted p-value (nominal
p-value < 8.9E−07), and 432 suggestive at 20% FWER (nominal
p-value < 9.8E−07) (Fig. 1a, b, Supplementary Data 1). H3K27ac
hQTLs were strongest in the HLA region, with greatest
significance located between HLA-DRB1 and HLA-DQA1 (p=
1.23E−142) (Fig. 1a). While strong H3K4me1 hQTLs were also
observed in the HLA region (HLA-DPB2; p= 3.13E−24), the
most significant H3K4me1 hQTLs were located at LRRC16A (p=
7.82E−40), ~4Mb upstream of the major histocompatibility
complex (MHC) locus (Fig. 1b). The most significant non-HLA
hQTLs (p < 1E−45) for H3K27ac were observed with CACNA1E
(chr 1), a region between SLMAP and FLNB (chr 3); TEC (chr 4);
ANTXRLP1 (chr 10); OAS1 (chr 12); and TSHZ1 (chr 18)
(Fig. 1a). Strong H3K4me1 non-HLA hQTLs (p < 1E−24) were
observed in a region between ZBTB18 and C1orf100 (chr 1);
RNASEH1 (chr 1); PNOC (chr 8); TIMM23B (chr 10); CHST11
(chr 12); and PLCG2 (chr 16) (Fig. 1b).

To replicate our findings, we utilized publicly available
genotyping data and LCL H3K27ac ChIP-seq data9,13 to identify
hQTLs in ten independent Caucasian subjects. Of the 6261
H3K27ac hQTLs in our discovery set, 5068 hQTLs in the
replication set had sufficient read depth to test for allelic
imbalance. Following our CHT analysis, we observed 2181
(43%) hQTLs in the replication set with evidence of allelic
imbalance at p < 0.05 (Supplementary Data 1; Supplementary
Table 1). Given that the replication dataset was only 40% the
sample size and had less than one third the sequencing read depth
of our discovery sample (Supplementary Figure 2), we interpret
these results as strong support for the reproducibility of our LCL
hQTLs.

We defined the effect size (ES) for hQTLs as the alpha
parameter/beta parameter ratio produced by the CHT, where
alpha was the maximum likelihood estimate of the reference allele
read count and beta was the maximum likelihood estimate of the
alternative allele read count. We observed an average log2(ES) of
0.89 for all hQTLs, with stronger effects observed with non-HLA
variants (log2(ESaverage)= 0.90; log2(ESmax)= 3.57) compared to
HLA variants (log2(ESaverage)= 0.83; log2(ESmax)= 2.47) (Fig. 1c;
Supplementary Data 1). These results demonstrate that our
hQTLs produced strong effects on allelic imbalance with variants
having, on average, almost two-fold more histone reads with one
allele versus the other.

The distribution of hQTLs was skewed such that 4858 (78%)
were unique to the H3K27ac mark and located in 879 of the
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Fig. 1 hQTL Manhattan plots and plot of hQTL effect sizes. Top effects for a the H3K27ac mark (p < 1E−30, vertical gray line), and b the H3K4me1 mark
(p , < 1E−15, vertical gray line) are indicated. Strongest effects for each mark are in bold. Red vertical line indicates the 10% FWER threshold (nominal
p , = , 8.9E−07); blue vertical line indicates the 20% FWER threshold (nominal p= 9.8E−07). Y-axis is the −log10 (p) from the CHT; chromosome position
is plotted on the x-axis. c Volcano plot of the hQTL effect sizes. The log2(effect size) is plotted on the x-axis where values >0 had more reference than
alternate allele specific reads and those with effect size values <0 had more alternate than reference allele specific reads. Y-axis is the −log10 (p) from the
CHT. hQTLs located in the HLA region are in yellow and non-HLA hQTLs are in blue
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H3K27ac consensus peaks, while 817 (13%) were unique to
H3K4me1 and found in 628 of the H3K4me1 consensus peaks.
Only 586 (9%) hQTLs were in consensus peaks shared by both
marks. Consensus peaks containing hQTLs were enriched, when
compared to the non-hQTL consensus peaks, for chromatin
states consistent with enhancers, as well as transcription factor
motifs found in the B lymphoid lineage (Supplementary Figure 4;
Supplementary Data 2).

hQTLs map to disease risk haplotypes and impact gene
expression. To add disease specific context to our hQTL dataset,
we utilized 1436 index SNPs from 21 autoimmune (AI) diseases
(Supplementary Table 2) reported in the NHGRI-EBI Catalog of
Published Genome-Wide Association Studies (October 17, 2016;
www.ebi.ac.uk/gwas) to construct risk haplotypes based on LD
(D, ′ ≥ 0.8). We found that our hQTLs were enriched on risk
haplotypes, likely identifying enhancers at risk for regulatory
dysfunction. A total of 386 hQTLs mapped to 44 reported AI
disease risk haplotypes (ppermutation= 4.9E−62; N= 180 hQTLs
expected by chance). Interestingly, 15 hQTL SNPs were the exact
index AI SNP reported in the catalog, while 344 hQTL SNPs were
strong proxies (r2 ≥ 0.8) of an AI index SNP. Considering only
SLE, we observed 68 hQTLs mapping to SLE risk haplotypes in
BLK, FAM167A, HCG27, HLA-DQA1, HLA-DRB1, PXK, and
SLC15A4 (ppermutation= 1.9E−4; N= 45 hQTLs expected by
chance). Altogether, 1520 hQTLs (24%) mapped to 550 risk loci
from 239 different genetic traits reported in the GWAS catalog
(ppermutation= 2.1E−90; N= 1007 hQTLs expected by chance).
To ensure our results were not driven solely by HLA loci, we
removed all HLA hQTLs from the analysis and still observed
significant enrichment with AI disease (ppermutation= 4.4E−3;
N , = 177 observed/146 expected by chance), and complex traits
reported in the NHGRI database (ppermutation= 4.2E−40; N=
1151 observed/839 expected by chance), and suggestive enrich-
ment with non-HLA SLE risk haplotypes (ppermutation= 0.073;
N , = 48 hQTLs observed/38 expected by chance).

We would expect hQTLs to produce measurable fluctuations
on target gene expression variance if the allelic imbalance results
in altered enhancer potency. To test this possibility, we first
calculated gene-level eQTLs in the gEUVADIS European LCL
dataset (N= 358)14 using the same methods described there but
with updated RNA-seq alignment and quantification
methods15,16 and identified 2403 (74%) of the 3259 eQTLs
originally reported by gEUVADIS14. Using these eQTLs as
functional surrogates of risk haplotypes, we identified 245
haplotypes of sufficient size (≥six variants) that contained an
hQTL in strong LD (D′ ≥ 0.8) with the eQTL but not highly
correlated (r2 < 0.6) in the genetic information it captured. We
calculated joint effect generalized linear models for each of the
245 haplotypes to determine if incorporation of the genotype at
the hQTL and each variant within the haplotype block
significantly contributed to expression variation of the eQTL
target gene (deviance, or D2). To generate the null distribution of
D2 and significance at each locus, we permuted the position of the
hQTL at each non-QTL variant position within the haplotype.
For 87 haplotypes (36%), the hQTL demonstrated significantly
increased ability to model expression variation (Pperm < 0.05) of
the eQTL target gene over the eQTL alone or any other non-QTL
variant on the haplotype (Fig. 2). These results suggest that
variants with strong allelic imbalance at histone marks can
produce measurable effects on gene expression variance, even
above that of known eQTLs or other non-QTL variants in tight
LD with them.

We then tested how RegulomeDB, an established functional
variant annotation method17, would rank hQTLs and non-hQTLs

using the 44 AI disease risk haplotypes that contained an hQTL in
strong LD (D′ ≥ 0.8) with the lead GWAS variant. We limited the
analysis to variants with low scoring RegulomeDB scores of 1 and
2, thus focusing on variants with high confidence for functional
impact (Supplementary Data 3). Among the 44 haplotypes, 63 out
of 386 total hQTLs (16%) compared with 424 out of 5351 total
non-hQTLs (8%) scored a 1 or 2, thus demonstrating a significant
enrichment of hQTLs versus non-hQTLs ranked for high
likelihood of functional impact (p= 1.88E−8). Although we
cannot rule out the functional contribution of non-hQTL putative
causal variants based on these analyses alone, our results suggest
that knowledge of hQTLs would be valuable in deconstructing LD
on risk haplotypes into component SNPs in enhancers that most
likely contribute to locus-specific causality.

HLA-DR3 and -DR15 hQTLs differentially regulate HLA
genes. The HLA region spans ~3.4 MB on Chromosome 6 and is
enriched for genes that orchestrate and regulate innate and
adaptive immune responses. Genetic variation in the HLA Class
II region remains the most reproducibly significant finding in
GWAS studies of autoimmune diseases18–27. Our hQTL analysis
revealed significant allelic imbalance within the HLA Class I and
II regions for both histone marks (N= 1063 hQTLs) (Supple-
mentary Figure 4), but no significant allelic imbalance in the Class
III region for either mark.

The region between HLA-DRB1 and HLA-DQB1, which
contains the XL9 regulatory sequence that epigenetically
coordinates HLA-D gene expression28, demonstrated the most
concentrated and significant evidence of H3K27ac allelic
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imbalance at 32.596 MB (p= 1.23E−142) (Fig 1a; Supplementary
Figure 4; Supplementary Data 1). For SLE, two HLA risk
haplotypes (HLA-DR3 and HLA-DR15 (historically named HLA-
DR2)) confer non-symmetrical risk for disease, with HLA-DR3
being a more potent risk factor29–31. In addition, eQTLs carried
on these haplotypes show increased expression of HLA-DR and
HLA-DQ genes compared to non-risk HLA haplotypes28;
however, it is not known if eQTL effects differ when the two
risk haplotypes are compared to each other. To determine if SLE
risk haplotypes contributed differential allelic imbalance in
H3K27ac enhancer marks, we imputed the HLA classical alleles
in our 25 LCL samples and performed haplotype specific hQTL
analyses (Fig. 3, Supplementary Figures 5-7); the majority of
individuals (N= 21) were heterozygous for either HLA-DR3
(N= 9) or HLA-DR15 (N= 12). Since the human reference
genome is homozygous for HLA-DR1532, we wanted to ensure
that any observed differences between the two haplotypes
reflected the true intrinsic effect of genetic variation and were
not due to alignment bias of sequencing reads. We constructed a
custom genome containing the COX (HLA-DR3) Major
Histocompatibility Complex (MHC) sequence in place of the
PGF (HLA-DR15) MHC sequence in the human reference
genome and mapped the sequencing reads from the HLA-DR3
and HLA-DR15 subjects to their respective HLA reference
genomes to evaluate haplotype-specific effects. Focusing on the
HLA-DRB1 to HLA-DQB1 region, we observed three strong
hQTL signals (A: 32.568–32.571 Mb, B: 32.578–32.582Mb and C:
32.588–32.606 Mb (Fig. 3; Supplementary Figure 5). Signals A
and B were produced primarily from the HLA-DR15 haplotype
with over three-fold more total allele-specific reads (ASR) than
the HLA-DR3 haplotype (mean ASR(Total)/SNP= 49 vs. 15% for
HLA-DR15 and HLA-DR3 subjects, respectively) (Supplementary
Data 4). Signal C, while exhibiting comparable total ASR between
the two haplotypes, had more hQTLs with highly significant CHT
p-values coming from the HLA-DR3 haplotype compared to the
HLA-DR15 haplotype (N= 261 vs. N= 110) (Supplementary
Data 5). To understand why the HLA-DR3 subjects had more
significant hQTLs when the total ASR between the two
haplotypes was comparable, we separated the total ASR into
reference and alternate ASR. When mapped to the COX reference
genome, the HLA-DR3 subjects had significantly higher ASR(ref)/
ASR(alt) ratios at strong hQTLs (ASR(ref)/ASR(alt)= 21.35)
compared to HLA-DR15 subjects mapped to the PGF genome
(ASR(ref)/ASR(alt)= 2.35) (Mann Whitney p= 1.4E-05). Since the
alternate allele on the PGF haplotype is the reference allele on the
COX haplotype for most of these variants, these results
demonstrate stronger allelic imbalance with the variant alleles
carried on the COX haplotype, which results in more significant
hQTLs within the DR3 subjects at signal C (Supplementary
Data 5).

To determine if the HLA-DR15 and HLA-DR3 haplotypes
correlated with local gene expression, we measured the expression
of Class II genes stratified by HLA risk haplotype in our 25 LCLs.
HLA-DR15 carriers demonstrated a significant increase in
expression of HLA-DQB1 (Fig. 4), whereas the HLA-DR3 carriers
demonstrated significant increases in expression of HLA-DRB1
(Fig. 4). Imputing the classical HLA alleles in the European
gEUVADIS dataset and conducting the same analysis provided
confirmation of these results in a more powerful dataset. In
addition, HLA-DR15 carriers within the gEUVADIS dataset
(N= 69) exhibited a significant increase in expression of HLA-
DQA1 compared to HLA-DR3 carriers (N= 54) (Fig. 4).

To determine if the genetic variation resulting in differential
hQTL allelic imbalance between HLA risk haplotypes influences
the chromatin topology in the HLA class II region, we used high-
throughput sequencing of chromosome conformation capture

coupled with chromatin immunoprecipitation (HiChIP)
to develop 3D chromatin topology maps for H3K27ac and
CTCF-mediated loops from independent LCLs heterozygous for
HLA-DR3 or HLA-DR15 (N= 3 for each haplotype). Again,
sequencing reads were aligned to the appropriate COX or PGF
genome to minimize reference genome bias in the MHC locus. In
aggregate across all six cell lines, we identified 175,833 H3K27ac
and 86,891 CTCF high-confidence chromatin loops with at least
four supporting paired-end tags (PETs) spanning two anchors;
8345 loops were shared by both H3K27ac and CTCF. A total
of 5608 (90%) hQTLs were located within loop anchors.
As expected, since our hQTLs were H3K27ac-biased, 5196
hQTLs were found only in H3K27ac-mediated loops, while 37
hQTLs were present only in CTCF-mediated loops, and 375 in
both loop types.

A strong CTCF loop extended from BTNL2 to a region
between HLA-DQB1 and HLA-DQA2 (Fig. 5a). This loop likely
defines an insulated neighborhood33,34 and is supported by Hi-C
data from the GM12878 cell line, which demonstrates a
topologically associating domain (TAD)35,36 in this region
(Supplementary Figure 8). Within this insulated neighborhood,
we observed differential H3K27ac-mediated chromatin loop
frequencies between the HLA-DR3 and HLA-DR15 subjects.
Higher loop frequencies (as determined by PET counts) were
observed within the HLA-DR15 subjects with PGF enhancers
2 (p= 0.008) and 5 (p= 0.045) (Fig. 5b, c). The PGF enhancer
2 corresponds to the exact positions of the preferential HLA-
DR15 hQTL signals A and B described above, and the PGF
enhancer 5 lies within the region of HLA-DQB1 (32.625–32.641
Mb on the human reference genome) that exhibits stronger
hQTLs within the HLA-DR15 subjects compared to HLA-DR3
subjects (Fig. 3b); additionally, these two enhancers interact
through a loop that is absent in the HLA-DR3 subjects (Fig. 5b, c
(red loop)). Thus, the strong allelic imbalance observed in this
region with the HLA-DR15 haplotype likely results in
the significantly increased loop frequency to these enhancers
and the increased expression of HLA-DQA1 and HLA-DQB1
within the HLA-DR15 subjects.

By comparison, the HLA-DR3 subjects demonstrated signifi-
cantly higher loop frequency with the HLA-DRB1 promoter COX
enhancer 1 (p= 0.013). This enhancer exhibited strong down-
stream looping interactions with the COX enhancers 3 and 4;
these downstream looping interactions were absent with the
HLA-DRB1 promoter enhancer on the HLA-DR15 haplotype
(Fig. 5b, c (blue loops)). The COX enhancers 3 and 4 correspond
to the location of the strongest HLA-DR3 hQTL signal (Fig. 3b;
Signal C); therefore, the strong allelic imbalance observed with
HLA-DR3 in this region may be driving the significantly
increased looping frequency to the HLA-DRB1 promoter and
increased expression of the HLA-DRB1 gene in the HLA-DR3
subjects. In addition, the HLA-DRB1 promoter has two additional
Alu repeats present only on the COX genome in this region;
otherwise, the two sequences were very similar. Some Alu repeats
have the potential to modulate gene transcription37, modulate
nucleosome positioning38 and shape the epigenomic landscape,
thus these HLA-DR3 specific Alu repeats may also contribute to
the preferential looping and increased HLA-DRB1 gene expres-
sion observed in HLA-DR3 subjects.

hQTLs reveal substructure in eQTL regulatory networks.
hQTLs located within the chromatin looping network of an eQTL
could potentially modify the eQTL effect if interacting on the
same target gene promoter. To assess this in our dataset, we used
a generalized linear model to measure the joint action of inde-
pendent (r2 < 0.6; D′ < 0.6) hQTL x eQTL SNP combinations on
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eQTL target genes. Following multiple hypothesis correction, we
identified 17,228 significant (FDR ≤ 0.05) interactions (median/
mean distance between two SNPs: ~115 kb/~370 kb). The
majority of significant interactions (N= 15,567, 90.4%) were
observed with genes in the HLA region, most frequently in the
Class II region (N= 13,280) and less frequently in the Class I and
Class III regions (N= 1510 and 777, respectively) (Supplemen-
tary Data 6). The remaining 9.6% of significant interactions (N=
1661) involved 752 genes (Supplementary Data 7). The direc-
tionality of these modifying effects was not uniform (Fig. 6a, b).
Most interactions (N= 13,506, 78%) demonstrated an opposing
effect on eQTL expression in samples carrying the alternate allele
at the hQTL—7279 produced repressive hQTL effects on an
enhancing eQTL (Fig. 6a, b, green), while 6227 did the opposite
(Fig. 6a, b, red). The remaining 3722 interactions (22%)
demonstrated concordant directionality with the eQTL, i.e.,
expression in the same direction as the eQTL (Fig. 6a, b, blue and
yellow).

In general, we found that significant gene expression
substructure was revealed only when considering the joint
contribution of genotypes at both the hQTL and eQTL; this
substructure was not evident when evaluating the effect of the
eQTL alone. We highlight ICOSLG and BLK as representative
examples (Fig. 6c, d). There is a strong eQTL (rs56124762) within
the Crohn’s disease and ulcerative colitis-associated ICOSLG
locus39–41 in which individuals with increased dosage of the
alternate G allele exhibited significantly higher levels of ICOSLG
gene expression, on average, than those who only carried the
reference A allele (p= 2.7E−09) (Fig. 6c). We identified an hQTL
(rs8134436) located 42 kb upstream of the eQTL that
was physically associated with the ICOSLG promoter by long-
range cis-interaction. When the eQTL and hQTL genotypes
are evaluated together, gene expression substructure emerged
with increasing dosage of the hQTL’s alternate G allele
(p-interaction= 1.11E−09). Similarly, for the BLK locus
associated with rheumatoid arthritis, SLE, and Kawasaki
disease22,42–48, a significant decrease in expression was observed

with the eQTL rs10098664 (p= 2.7E−14) and was driven by
individuals who carry an increasing dose of the alternate eQTL C
allele. This variant, located within the BLK ninth intron, was
brought into proximity with the BLK promoter through
chromatin interactions (Fig. 6d). We identified a hQTL
(rs13256690) that is positioned between BLK and FAM167A,
~79KB upstream of the eQTL, and was also physically associated
with the BLK promoter through chromatin looping. The
significant interaction of the two variants with BLK expression
(p-interaction= 8.05E−05) revealed enhanced reduction of BLK
expression in individuals with increasing alternate allele dosage at
the hQTL. Lowest BLK expression was observed in individuals
who were homozygous for the alternate alleles at both loci. These
results illustrate that an important component of variance in
eQTL genotypic expression is due to independent hQTLs located
within the chromatin network of an eQTL, revealing gene
expression stratification that is masked by observing eQTL data
alone.

Discussion
Causal variants on disease risk haplotypes are the molecular link
connecting genotype to complex disease phenotypes; however,
the precision and pace of causal variant discovery is hampered by
strong LD with neutral variants. Our approach demonstrates that
hQTLs are enriched in autoimmune and complex disease risk
haplotypes. In addition, hQTLs disproportionately contribute to
gene expression variation compared to non-hQTL variants in
strong LD; when located on haplotypes with known eQTLs, the
hQTL demonstrated significantly increased ability to model
expression variation of the eQTL target gene over the eQTL alone
or any other non-QTL variants 36% of the time. This suggests
that a priori knowledge of variant-induced allelic imbalance of
epigenetic PTMs in enhancer elements can facilitate identification
of the most influential putative causal variants on risk haplotypes
even in the context of strong LD. Current approaches to causal
variant discovery use bioinformatic predictions to develop

HLA-DQA1
(p = NS)

HLA-DR3

300

200

100

0

N
or

m
al

iz
ed

 c
ou

nt
s 

(t
ho

us
an

ds
)

HLA-DRB1
(p = 0.01)

HLA-DR3

400

300

200

100

0

HLA-DQB1
(p = 0.02)

HLA-DR3

150

100

50

0

N
or

m
al

iz
ed

 c
ou

nt
s 

(t
ho

us
an

ds
)

HLA-DRB1
(p < 0.0001)

HLA-DR3

80

60

40

20

0

HLA-DQA1
(p = 0.0002)

HLA-DR3

60

40

20

0

HLA-DQB1
(p < 0.0001)

HLA-DR3

40

30

20

10

0

HLA-DR15 HLA-DR15 HLA-DR15

HLA-DR15 HLA-DR15 HLA-DR15

Fig. 4 Impact of HLA-DR3 and DR15 haplotypes on HLA Class II gene expression. Data presented are from our 25 LCL samples (top panel) and the
European gEUVADIS dataset (bottom panel). Normalized gene counts (measured in thousands) for each gene are plotted on the y-axis and colored by risk
haplotype (DR3: blue; DR15: red); risk haplotype is presented on the x-axis. Mean and standard error of the mean bars are given in black

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05328-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2905 | DOI: 10.1038/s41467-018-05328-9 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


prioritized lists of putative causal variants. However, bioinfor-
matic algorithms lack information about allele-specific effects
of most genetic variants that modulate epigenome
function. We found that when using RegulomeDB, an

established bioinformatic annotation method, hQTLs had
twice as many high functional RegulomeDB scores compared
to non-hQTLs, demonstrating that the identification of
hQTLs could help prioritize and constrain the variants that would
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need experimental validation for mechanistic causality, thus
hastening the pace for understanding how associated causal
variants modulate gene expression phenotypes and risk for
complex diseases.

Our results shed new light on the HLA region and how it is
regulated in the context of chromatin architecture and con-
siderable genetic variation. HLA Class II loci demonstrate allele
specific gene expression when comparing HLA risk and non-risk
haplotypes, and in eQTL studies without stratification on disease
status28,49. Our results extend these observations to the level of
the epigenome, where we show that the HLA Class II region
exhibits significant levels of allelic imbalance in enhancer PTMs
between the two most frequent HLA risk haplotypes for human
SLE and other autoimmune diseases (HLA-DR3 and HLA-
DR15). Using 3D chromatin topography mapping, we found that
the HLA-DR15 risk haplotype demonstrated significantly
increased H3K27ac-mediated chromatin loop frequencies to
enhancers flanking HLA-DQA1 and HLA-DQB1. These enhan-
cers correspond to regions of strong allelic imbalance and hQTLs
observed in the HLA-DR15 subjects, which are likely associated
with the observed higher levels of HLA-DQA1 and HLA-DQB1
gene expression in these individuals. Alternatively, enhancers
located in the region producing the strongest hQTLs among the
HLA-DR3 individuals produced unique loops to the promoter of
HLA-DRB1 and likely contribute to subsequent higher HLA-
DRB1 gene expression compared to HLA-DR15 subjects. While
the underlying mechanisms remain to be fully clarified, it is
tempting to speculate that the differences in HLA class II chro-
matin topology between these two haplotypes and correlated gene
expression of HLA-D genes may explain, in part, the increased
risk for SLE conferred by the HLA-DR3 risk haplotype.

Expression QTL analysis provides a valuable intermediate
phenotype for the functional characterization of causal variants
on disease risk haplotypes. Moreover, as precision medicine
approaches develop, eQTLs may serve as potential genetic bio-
markers for selection of study subjects carrying variants that alter
expression of genes encoding drug targets and pathways. How-
ever, eQTL data aggregate the effects of all forces influencing gene
expression. Our data demonstrate that genetically independent
hQTLs (r2 < 0.6, D′ < 0.6) within an eQTL target gene chromatin
network can influence subsets of subjects for which the aggregate
eQTL effect is reduced or augmented. These results confirm and
extend the recent work of Corradin et al., where “outside var-
iants” in close proximity to GWAS risk variants, but not in LD
with them, contributed to variation in target gene expression and
clinical risk50. Overall, these results highlight the complexity
embedded in eQTL datasets and the need to clarify the compo-
nent contributions of all variants within the chromatin network
of an eQTL target locus. Defining these interactions will be
important for improving the precision of studies that leverage

eQTLs for the selection of subjects for functional analysis of
GWAS effects or genetically guided clinical studies.

In this report, we used an SLE-derived LCL model system to
perform a genome-wide screen for allelic imbalance in PTM of
enhancer histones induced by common genetic variants. Epstein-
Barr Virus (EBV) transformation modifies the epigenome of B-
cells resulting in promoter demethylation51,52, more regions of
open chromatin53, and increased numbers of expressed
transcripts52,53, while maintaining most of the transcripts
expressed in the original B-cell phenotype52. We view this as a
strength of this model system since more of the genome is capable
of being interrogated for allelic imbalance using our approach.
Nevertheless, careful analysis of hQTLs in specific primary cell
lineages and cell states will be necessary to develop a compre-
hensive portrait for how genetic variation modulates gene
expression through allele-specific epigenome mechanisms.
Moreover, hQTLs are likely to differ across ethnic backgrounds
since the allele frequency distribution of SNPs varies across dis-
parate populations. Further work will be necessary to assess the
power of this approach in admixed populations.

Methods
Study population and cell culture. Experiments were approved by the Institu-
tional Review Board at the Oklahoma Medical Research Foundation (OMRF) prior
to initiation. A total of 25 de-identified EBV-transformed B cell lines generated
from European SLE patients (21 female, 4 male) enrolled into the Lupus Family
Registry and Repository (LFRR)54 were obtained from OMRF’s Autoimmune
Disease Institute Biorepository, Phenotyping, and Bioinformatics Cores and are
hereafter denoted as lymphoblastoid cell lines (LCLs). All study participants pro-
vided written informed consent prior to study enrollment into the LFRR. Using
previously generated genotype data, cell lines were selected on their risk haplotype
repertoire for 24 SLE genes: ATG5, BANK1, BLK, CD44, IFIH1, IKZF1, IKZF3,
IL10, IRF5, IRF7, IRF8, ITGAM, JAZF1, LRRC18/WDFY4, NCF2, PRDM1, STAT4,
TNFAIP3, TNFSF4, TNIP1, TYK2, UBE2L3, and XKR6. Cell lines were maintained
in RPMI 1640 medium supplemented with 10% FBS, penicillin, streptomycin, and
L-glutamine.

ChIP sequencing and analysis. We crosslinked 10 million Epstein-Barr Virus
(EBV)-transformed B cells with 1% formaldehyde for 5 min followed by careful cell
lysis using the truChIP Chromatin Shearing Kit (Covaris). Nuclei were isolated and
fragmented using a Covaris E220e sonicator with the following operating condi-
tions: Peak Incident Power: 140 Watts; duty cycle: 5%; cycles per burst: 200;
treatment time: 15 min; setpoint temperature: 6 °C). Crosslinked protein/DNA was
immunoprecipitated using H3K27ac (rabbit polyclonal, Abcam #ab4729, 20ug/ml)
or H3K4me1 (rabbit polyclonal, Abcam #ab8895, 20 µg/ml) antibodies on Protein
A+G immunomagnetic beads. Anti-acetyl histone H3 antibodies and isotype
matched IgG antibodies were included as positive and negative controls, respec-
tively. An aliquot of the fragmented chromatin, not subjected to immunoprecipi-
tation, was also used as an input control. Chromatin crosslinks were reversed, then
protein was digested with proteinase K and DNA fragments were purified using
Ampure XP beads (Beckman Coulter), made into libraries, and sequenced on the
Illumina NextSeq 500 (Illumina Inc., San Diego, CA) using 75 bp single-end reads.
Biological replicates of each cell line were sequenced and the resulting reads were
pooled. Total input DNA was also processed in replicate and pooled. To assess the
quality of the ChIP-seq data, we calculated the fraction of reads in peaks (FRiP) for
acCBP/p300 and RNAPII enrichment peaks and scrutinized experiments with FRiP

Fig. 5 HLA Class II chromatin landscapes of HLA-DR3 and DR15 haplotypes. a CTCF HiChIP looping interactions within the HLA Class II region reveal an
insulated neighborhood that extends from BTNL2 to upstream of HLA-DQA2. The COX-aligned DR3 haplotype is presented on top and the PGF-aligned
DR15 haplotype is presented on the bottom. Gene and bp positions are presented specific for each haplotype. Orange arcs represent CTCF-mediated
HiChIP interactions. Arc thickness is proportional to the frequency of observed paired-end tags (PETs) at each enhancer. b H3K27ac HiChIP looping
interactions within the HLA Class II region reveal differential frequency and pattern in the HLA-DRB1 to HLA-DQB1 region between the HLA-DR15 and HLA-
DR3 haplotypes. Black arcs represent H3K27ac-mediated HiChIP interactions. Significant p-values are presented for enhancers that exhibit differential
binding frequencies (mean PETs) for one haplotype or the other and are colored by the haplotype that exhibits higher PET counts (HLA-DR3: blue; HLA-
DR15: red). H3K27ac ChIP peaks are presented in blue (HLA-DR3) and red (HLA-DR15). Haplotype specific loops are indicated in blue (COX) or red (PGF).
Corresponding haplotype specific enhancers are labeled as follows—COX: 1: 4.007–4.013Mb, 2: 4.021–4.031Mb, 3: 4.039–4.047Mb, 4: 4.052–4.06Mb,
5: 4.078–4.083Mb; PGF: 1: 4.076–4.081Mb, B: 4.092–4.102Mb, C: 4.111–4.120Mb, D: 4.124–4.129Mb, E: 4.154–4.159Mb. c Individual H3K27 HiChIP
looping interactions for three subjects heterozygous for HLA-DR3 (left) and three subjects homozygous for HLA-DR15 (right). H3K27ac ChIP peaks,
haplotype specific loops, and haplotype specific enhancers are presented in blue (HLA-DR3) and red (HLA-DR15)
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scores <1%. We also used strand cross-correlation to calculate the normalized
strand coefficient (NSC) and relative strand coefficient (RSC), and repeated
experiments with NSC < 1.05 and RSC < 0.8. Raw FASTQ reads were quality fil-
tered and trimmed for Illumina adapters using Trimmomatic v0.3555. Reads
aligning to Poly-A, Poly-C, ribosomal, mitochondrial, or Phi-X sequences were

excluded using Bowtie v2.2.456 with option -L 10. Filtered reads were aligned using
the Burrows Wheeler Aligner (BWA)57 to the human hg19 genome with the fol-
lowing options: -n 2 –o 0 –l 20. To reduce reference genome bias on read
mappability, we used the WASP pipeline7 to relocate reads potentially biased by
genetic variation. Only reads overlapping single nucleotide polymorphisms (SNPs)
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which were segregating in the genotyping data (≥2 minor alleles across population)
were targeted by the realignment procedure (Supplementary Tables 3 & 4).

Genotyping. DNA was harvested from each LCL using standard phenol-
chloroform extraction. Genotyping data for the 25 LCL samples were generated
using Illumina HumanOmni 2.5–8 SNP arrays (Illumina Inc., San Diego, CA).
Variants were included for analysis if they met the following criteria: genotyping
rate > 0.9, minor allele frequency > 0.01, Hardy-Weinberg equilibrium ≥ 0.001. A
total of 1,468,563 variants passed our filtering thresholds. Data were then pre-
phased using reference information from the HapMap project phase 3 genotype
map, release 358 together with SHAPEIT, v2.r79059. Imputation was carried out
using IMPUTE v2.3.160 and the 1000 Genomes Phase 3 reference panel, v512. A
total of 9,603,466 SNPs resulted from the phasing and imputation process.

gEUVADIS genotyping data were obtained from the May 02, 2013 release of the
1000 Genomes project12. Haplotype blocks (D’ > 0.8) were generated using PLINK261

from 358 Caucasian individuals using the following options:—blocks no-pheno-req
–blocks-max-kb 10,000 –blocks-min-maf 0.05, using the same reference information
used in the imputation of our SLE cell lines.

RNA-seq alignment and quantification. RNA was isolated from each LCL using
TRIzol. RNA concentrations were quantified using a Qubit fluorometer, and
mRNA libraries were generated using 500 ng of each RNA sample and Illumina’s
TruSeq Stranded mRNA Library Prep Kit. RNA-seq was performed on the Illu-
mina HiSeq 3000 (Illumina Inc., San Diego, CA) in the OMRF’s Clinical Genomics
Center following Center procedures. Samples were sequenced using 75 bp paired-
end reads with 10 samples per lane, which yielded ~30 million reads per sample.
Primary RNA-seq FASTQ files for gEUVADIS individuals were obtained from
ArrayExpress62. Post-sequence reads were quality filtered and trimmed for Illu-
mina adapters using Trimmomatic v0.3555. Resulting reads were pseudo-aligned to
coding regions of the GRCh38 genome (release 79), using Kallisto v0.43.015 with
the following options:—bias enabled, 50 bootstraps. Expression values for 173,260
unique transcripts were measured in transcripts per million reads sequenced
(TPM). To perform eQTL analyses, expression values were summarized at the gene
level to transcript-length adjusted, library-size scaled counts per million (CPM)
with the R package tximport16. Finally, to avoid false positives due to technical
variation and outliers, RNA-seq expression data was normalized with PEER63

using K= 10 latent factors on genes with positive expression in >50% of indivi-
duals. The PEER-derived weights were then scaled by the mean of each gene.

HiChIP sequencing and analysis. We crosslinked 10 million EBV-transformed B
cells using 1% formaldehyde for 10min at room temperature. Intact nuclei were
isolated and digested using the MboI restriction enzyme for 4 h at 37 °C. DNA
fragment ends were filled and labeled with dCTP, dGTP, dTTP and biotin-dATP.
Proximity ligation was performed at room temperature overnight. Following the
in situ ligation, we fragmented the ligated chromatin as previously described64.
Crosslinked protein/DNA was immunoprecipitated using antibodies to H3K27ac
(rabbit polyclonal, Abcam #ab4729, 20ug/ml) and CTCF (rabbit mAb, clone
D31H2, Cell Signaling #3418, 20ug/ml) and then purified by Protein A+G
immunomagnetic beads. The amount of MboI enzyme, antibody, and beads are
determined by the number of cells in each sample64. After immunoprecipitation,
DNA was eluted from the beads by incubating at 65 °C for 4 h with 5% Proteinase
K. DNA was purified by Zymo DNA Clean & Concentrator Column and quantified
by Qubit High Sensitivity Assay Kit. A minimum of 2 ng DNA was required for
library construction. Biotin-labeled DNA fragments were further immunoprecipi-
tated by Streptavidin M-280 Dynabeads. HiChIP libraries were generated on the
streptavidin beads using the Nextera DNA Library Prep Kit. The PCR products were
purified by two-sided size selection using the Ampure XP beads to capture DNA
fragments between 300 and 700 bp. The integrity and quality of the libraries were
assessed using an Agilent TapeStation 2200 bioanalyzer. HiChIP libraries were then
pooled together and quantified using a KAPA Biosystem library quantification
qPCR kit. qPCRs were performed on a Roche LightCycler 480 system using primers
specific to the HiSeq flowcell. Using the template size determined from the Qubit,
the pools were diluted and requantified using qPCR to double-check the starting
concentrations. The pooled samples were then denatured for 5 min with NaOH.
Libraries were sequenced on the Illumina NextSeq 500 sequencer on a 150-cycle
paired-end Mid flowcell. HiChIP raw reads (fastq files) were aligned to the hg19

human reference genome using HiC-Pro65. Aligned data were processed and ana-
lyzed through the hichipper pipeline where consensus ChIP-seq tracks for either
factor (H3K27ac or CTCF) were used to scaffold anchors for loop calling as
recommended with default parameters66. Long range interactions spanning two
anchor regions, termed DNA loops, were derived from linked paired-end reads that
overlapped restriction fragments containing these peaks (Supplementary Table 5).
Samples that passed stringent quality control had a minimum of 15% long inter-
actions and contained intrachromosomal loops with a minimum length of 5 Kbp
and a maximum length of 2Mbp. The 3D chromatin structures generated by the
HiChIP data were analyzed and visualized using the R package diffloop67.

Statistical analysis. ChIP-seq peaks were called using MACS268 using the fol-
lowing options: nomodel, extsize 175. Reproducible peaks were identified on an
individual basis using the Irreproducible Discovery Rate (IDR) method69 on each
pair of technical replicates. Population-wide consensus peak sets were derived from
individual peak profiles by identifying genomic regions that were represented by
reproducible peaks in at least 13 individuals (>50% of the population). This
majority rule has been shown to perform reliably in distinguishing genuinely
enriched peaks across multiple biological replicates70. Disjoint consensus genomic
regions separated by fewer than 147 bp were merged to create the final consensus
peak map for each epigenetic track.

We utilized the combined haplotype test (CHT)8 to identify allele-dependent
epigenetic footprints in ChIP-seq data. Allele-specific ChIP-seq reads were
aggregated within 2000 bp regions centered around testable SNPs. SNPs evaluated
by the CHT were required to have a minimum of 15 allele-specific reads in the SNP
region. Only variants on autosomal chromosomes were considered for analysis by
the CHT. Region-specific read counts were adjusted for GC content bias and
haplotype probabilities calibrated before learning dispersion parameters for both
the allele-specific and read-count portions of the CHT model. We used Holm’s
Family-wise Error Rate (FWER) correction procedure71 to adjust the statistical
significance given by the CHT to variants and their correlation with epigenetic read
counts. We chose correcting the FWER over the more common false discovery rate
(FDR) since it tends to offer better control of the Type I error rate in LD-based
QTL analyses72. Significant hQTLs (N= 5829) were identified with FWER ≤ 0.1,
and suggestive hQTLs (N= 432) with FWER ≤ 0.2. To evaluate the calibration of
the CHT, we randomly permuted genotypes and their read counts at the tested
variants and compared the distribution of significance values through
quantile–quantile plots (Supplementary Figure 1). These distributions indicated
distinct signal arising from the CHT under the true genotype and read count
information, suggesting that the test was well-calibrated.

We conducted an hQTL replication study for the H3K27ac hQTLs using
publicly available H3K27ac ChIP-seq data collected in LCLs from ten independent
Caucasian 1000 Genomes phase three samples from two published studies9,13. We
used the methods described above with the exception that SNPs evaluated by the
CHT were required to have a minimum of 10 allele-specific reads in the SNP
region due to the smaller sample size and lower ChIP sequencing depth.

Motif enrichment analysis was done using the HOMER suite v4.773 via the
findMotifsGenome tool with the hg19 database to compare consensus peaks with
and without hQTLs. Background genomic regions were specified as the list of all
unique consensus peaks. We used the LOLA (Locus Overlap) tool74 coupled with
data obtained from the human Cistrome project75 to systematically test enrichment
of transcription factor (TF) binding events within hQTL-containing consensus
peaks versus all consensus peaks. We used annotations from the Roadmap
Epigenomics Project release 93 to assign GM12878 chromatin states to consensus
peak regions.

To evaluate hQTLs for enrichment in catalogs of risk haplotypes, we performed
SNP-based enrichment analyses as follows. First, hQTLs were binned into categories
based on minor allele frequency (MAF) and distance to the nearest 5′ transcription
start site (TSS). Each category represented hQTLs from a given decile of
measurements of MAF and TSS distance, for a total of 100 categories. Next, for each
category, we matched variant sets to hQTLs by randomly sampling an equal number
of variants from those which both (a) occurred in any consensus peak region and (b)
matched the criteria for MAF and TSS distance of that category. Across all categories,
a total number of 337,242 variants formed the pool of matchable SNPs. Risk
haplotypes were established around catalog index SNPs using the PLINK-defined LD
blocks obtained from the 358 European individuals in the 1000 Genomes phase 3
dataset. The total number of matchable SNPs in risk catalogs were determined to be

Fig. 6 hQTLs alter eQTL gene expression within chromatin networks. Quadrant plots for statistically significant interactions with genes within the HLA
region (a) and outside the HLA region (b). Each statistically significant (FDR < 0.05%) distal interaction is represented by a point oriented by the value of
coefficients in the generalized linear model for the eQTL main effect (x-axis) and the interaction effect (y-axis). The sign and magnitude of the coefficients
determine the directionality and strength of the two effects on the eQTL target gene’s expression. The total number of interactions within each quadrant
are labeled. c Example of ICOSLG triplet interaction with eQTL rs56124762 and hQTL rs8134436. d Example of BLK triplet interaction with eQTL
rs10098664 and hQTLs rs13256690. For both c and d, 3D topology map with H3K27ac looping data is represented by red loops. H3K27ac ChIP peaks are
in blue and anchored to looping data. hQTLs (black dots), eQTLs (orange dots), and gene locations are presented. Scatterplots of the eQTL genotypes
alone (left panel) and stratified by the hQTL genotypes (right panel) are given
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8278 (autoimmune risk haplotypes), 2036 (SLE risk haplotypes) and 50,766 (NHGRI
GWAS catalog risk haplotypes). We estimated a distribution of SNP enrichment in
risk haplotypes under the null hypothesis by performing 1000 repetitions of the
variant matching process and calculating the fold-enrichment of matched variants in
risk haplotypes by a one-sided Fisher’s exact test. We then computed fold-enrichment
of the true set of hQTLs in risk haplotypes by Fisher’s exact test, comparing to the null
distribution to obtain a p-value.

To maximize our power for analyses using eQTL data, we obtained the raw
RNA-sequencing reads from the gEUVADIS Caucasian dataset14 and performed
an eQTL analysis. Our analysis only identified 2403 (74%) of the 3259 eQTLs
originally reported by gEUVADIS, which resulted from the following differences
between the two analyses: (1) while we attempted to use the same analysis tools
used by gEUVADIS, RNA-sequencing alignment tools have rapidly evolved and
improved since the original gEUVADIS paper that utilized GEM. We, therefore,
decided to use Kallisto15 and tximport16 for the alignment of RNA-sequencing
reads. (2) The original study included 373 samples from Phase 1 of the 1000
Genomes Project in the analysis; due to sample dropout in the Phase 3 genotyping
data, publicly available data included only 358 samples.

eQTL analysis within our own sample was performed with the Matrix eQTL
software package (v.2.1.1) in R (v.3.2.2)76,77. Expression quantifications were
standardized to the normal distribution to suit the assumptions of the Matrix eQTL
linear model. We considered cis-eQTL interactions with less than 1 Mbp separating
the SNP and the interacting transcript. Testable eQTL interactions were required to
have variants with minor allele frequency ≥ 0.05 and transcripts with coefficient of
variation ≥ 0.15 across gEUVADIS RNA-seq samples. We retained 214,702 eQTLs
at FDR ≤ 5%. For each gene with eQTL interactions, proxy SNPs were iteratively
pruned by sorting the cis-interacting SNPs by nominal p-value and calculating r2

among them; SNPs with r2 < 0.8 were retained.
To determine if the genotype at the local hQTL significantly contributed to

expression variation of the eQTL target gene, we calculated a negative binomial
generalized linear model (R function glm.nb, package MASS) with logarithmic link
function to evaluate the variance explained between the lead eQTL and other non-
proxy variants (r2 < 0.6) within each haplotype block. If a haplotype contained
multiple eQTLs or hQTLs, the lead eQTL was identified as the variant with
maximum variance explained (D2 statistic, generalized linear model) and the lead
hQTL was defined as having the maximum nominal CHT p-value among identified
hQTLs. The contribution of expression variation was estimated as:

D2 ¼ Null deviance � Residual devianceð Þ=Null deviance;

where the null deviance was calculated with a model without genotypic
information, and residual deviance incorporates variant allele dosage (homozygote
reference= 0, heterozygote= 1, homozygote alternate= 2). For the local haplotype
block analysis, we ranked eQTLs by D2 by modeling an eQTL’s gene expression as
a function of the eQTL variant’s allele dosage alone. An empirical null distribution
of D2 was calculated for each haplotype from 10,000 permutations of hQTL
positions to establish a 95% confidence interval of the p-value estimate. For both
the local and distal analyses, joint effect models were fit with additive main effect
terms for both eQTL and hQTL, and a multiplicative interaction term.

To rank hQTLs by functional annotation tools, we retrieved information from
RegulomeDB17 for hQTL variants and those in strong LD (D′ ≥ 0.8) with them on
44 AI disease risk haplotypes that contained an hQTL. For simplicity, we collapsed
RegulomeDB scores across subcategories into a single score (i.e., 1a-1f were all
scored as 1), such that RegulomeDB collapsed scores range from 8 (no
RegulomeDB record) to 1 (highest functional class).

To perform haplotype-specific alignment of the sequencing data, we obtained
the COX (HLA-DR3) and PGF (HLA-DR15) MHC haplotype sequences from the
MHC Haplotype Project32. A custom genome was created by replacing the PGF
sequence from the hg19 reference genome at chr6:28477798–33351543 with the
COX MHC sequence. BLAT78 was used to locate the PGF sequence endpoints.
ChIP and HiChIP data for HLA-DR3 individuals were then reprocessed with the
custom COX genome.

For the distal eQTL-hQTL interaction modeling, we required the eQTL and
hQTL SNPs be independent of one another by LD (r2 < 0.6; D′ < 0.6), and the
hQTL to be both within an H3K27ac loop anchor and the chromatin network of
the eQTL target gene as defined by our 3D chromatin topography data. We
modeled interaction between hQTLs and LD-independent eQTLs at an eQTL
target gene as described above. Statistical significance of these models was
calculated using a two-tailed z-test of the interaction coefficient. Statistical
significance was controlled with the FDR. Proxies (determined by rAggr (raggr.usc.
edu; r2 > 0.8) using the European 1000G, Phase 3, Oct 2014; hg19 reference
genome) were removed from each set of eQTLs and hQTLs prior to analysis. The
sets of hQTL and eQTL variants tested for distal interactions were required to be
located on separate haplotype blocks as determined by PLINK261. Only
interactions that had representatives for all nine eQTL x hQTL genotype
combinations were considered. Distal interactions were further classified as follows:
“Anchored” if both hQTL and eQTL were in the same loop anchor; “Unanchored”
if the hQTL was not in a loop anchor; “Looped” if hQTL was in a loop anchor
without the eQTL; “Off-target” if the loop containing the hQTL did not loop to any
part of the eQTL target transcript’s range (defined as 10Kbp upstream of the

transcript’s transcription start site (TSS) to the transcription end site (TES));
“Joint” if the hQTL haplotype and eQTL haplotype were connected by a loop;
“Disjoint” otherwise (Supplementary Figure 9).

Data availability. The ChIP-seq, HiChIP-seq, and RNA-seq data that support the
findings of this study have been deposited into NCBI’s Gene Expression Omni-
bus79 and are accessible through GEO Series accession number GSE116193.
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