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Spatio-temporal relays control layer identity of
direction-selective neuron subtypes in Drosophila
Holger Apitz 1 & Iris Salecker 1

Visual motion detection in sighted animals is essential to guide behavioral actions ensuring

their survival. In Drosophila, motion direction is first detected by T4/T5 neurons. Their axons

innervate one of the four lobula plate layers. How T4/T5 neurons with layer-specific

representation of motion-direction preferences are specified during development is unknown.

We show that diffusible Wingless (Wg) between adjacent neuroepithelia induces its own

expression to form secondary signaling centers. These activate Decapentaplegic (Dpp) sig-

naling in adjacent lateral tertiary neuroepithelial domains dedicated to producing layer

3/4-specific T4/T5 neurons. T4/T5 neurons derived from the core domain devoid of Dpp

signaling adopt the default layer 1/2 fate. Dpp signaling induces the expression of the

T-box transcription factor Optomotor-blind (Omb), serving as a relay to postmitotic neurons.

Omb-mediated repression of Dachshund transforms layer 1/2- into layer 3/4-specific neu-

rons. Hence, spatio-temporal relay mechanisms, bridging the distances between neuroe-

pithelial domains and their postmitotic progeny, implement T4/T5 neuron-subtype identity.
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V isual signals received by the retina are generally not sta-
tionary because objects in the environment and/or the
bodies of animals move. To detect motion, visual circuits

perform complex spatio-temporal comparisons that convert
luminance changes collected by photoreceptors into signals
containing information about direction or speed. Despite the
seemingly divergent anatomy of vertebrate and insect visual
systems, they display remarkable parallels in the computations
underlying motion vision and the neuronal elements performing
them1,2. In most sighted animals, this involves neurons that
respond to motion signals in specific directions. Direction-
selectivity emerges from differences in the connectivity of their
dendrites2. Motion-direction preferences by their axons are
represented by layer-specific innervation3–8. Thus, anatomical
characteristics such as layer-specificity seem to be intricately
linked with motion-directionality. However, how these are
implemented during circuit development is poorly understood.

The Drosophila visual system has emerged as a powerful model
for elucidating the neural circuits and computations underlying
motion detection. Photoreceptors (R-cells) in the retina extend
axons into the optic lobe consisting of the lamina, medulla, lobula
plate, and lobula (Fig. 1a). Neuronal projections in these ganglia
are organized into retinotopically arranged columnar units. The
medulla, lobula plate, and lobula are additionally subdivided into
synaptic layers. They are innervated by more than a 100 neuronal
subtypes that extract different visual features in parallel path-
ways9. T4 and T5 lobula plate neurons are the first direction-
selective circuit elements6,10. Each optic lobe hemisphere contains
~5300 T4/T5 neurons11. T4 dendrites arborize within medulla
layer 10, and T5 dendrites in lobula layer Lo1. Their axons project
to one of the four lobula plate layers, thereby defining four dif-
ferent neuron subtypes each12 (Fig. 1a). Axons segregate
according to their motion-direction preferences. Thus, front-to-
back, back-to-front, upward, and downward cardinal motion
directions are represented in lobula plate layers 1–45,6. T4 neu-
rons are part of the ON motion detection pathway reporting
brightness increments, while T5 neurons are part of the OFF
pathway reporting brightness decrements6. Distinct neuron sets
in the lamina and medulla relay ON and OFF information to T4
and T5 neurons2,13. Direction-selectivity emerges within T4/T5
dendrites and involves the non-linear integration of input from
these upstream neurons for enhancement in the preferred
direction and suppression in the null-direction10,14–16. Dendritic
arbors of the four T4 neuron subtypes have characteristic
orientations, that correlate with the direction preferences of
lobula plate layers innervated by their axons17,18. Thus, direction-
selectivity involves the establishment of neuron subtypes, each
with distinct spatial connectivities. Here, we address when and
how T4 and T5 neuron subtypes with different layer identities are
specified during development.

Optic lobe neurons originate from two horseshoe-shaped
neuroepithelia, called the outer and inner proliferation centers
(OPC and IPC; Fig. 1b)19,20. These are derived from the
embryonic optic lobe placode21 and expand by symmetric cell
divisions during early larval development22,23. At the late 2nd
instar larval stage, neuroepithelial (NE) cells from the medial
OPC edge begin to transform into medulla neural stem cells,
called neuroblasts (Nbs)20. These undergo asymmetric divisions
to self-renew and give rise to ganglion mother cells (GMCs),
which divide to generate two neurons or glia22,24. Apposing the
OPC, two dorsal and ventral NE domains, called the glial pre-
cursor cell (GPC) areas, produce neuron subtypes associated with
all ganglia25,26. At the mid 3rd instar larval stage, the lateral OPC
begins to generate lamina neurons20.

The IPC generates lobula and lobula plate neurons, including
T4/T5 neurons from the early 3rd instar larval stage

onward20. Our recent studies showed that NE cells in one
domain, the proximal (p-)IPC, convert into progenitors in an
epithelial-mesenchymal transition (EMT)-like process23,27. Pro-
genitors migrate to a second proliferative zone, the distal (d-)IPC,
where they mature into Nbs. These transition through two
competence windows to first produce C&T neurons, corre-
sponding to C2 and C3 ascending neurons connecting the
medulla and lamina, as well as T2/T2a and T3 neurons con-
necting the medulla and lobula12, and then T4/T5 lobula plate
neurons (Fig. 1a, b). Cross-regulatory interactions between
Dichaete (D) and Tailless (Tll) control the switch in Nb com-
petence defined by the sequential expression of the proneural
bHLH transcription factors Asense (Ase) and Atonal (Ato). The
latter is co-expressed with the retinal determination protein
Dachshund (Dac)23. The molecular mechanisms that control
layer-specific T4/T5 neuron subtype identities within this
sequence of developmental events occurring at different locations
have remained elusive.

T4/T5 neuron diversity resulting in differential layer-specificity
could be achieved by postmitotic combinatorial transcription
factor codes upstream of distinct guidance molecules. Although
not mutually exclusive, layer-specificity of T4/T5 neurons could
also be determined by temporal differences in the expression of
common postmitotic determinants, similar to the birth-order
dependent R-cell growth cone segregation strategy described in
the medulla28,29. Here, we provide evidence for another
mechanism, whereby layer-specific T4/T5 neuron subtype iden-
tity is determined early in the p-IPC neuroepithelium. Their
specification depends on two relay mechanisms involving Wnt
and Bone morphogenetic protein (Bmp) signaling and tran-
scription factor interactions. These establish and translate the
spatial patterning of NE cells into postmitotic neuronal subtype
identities to bridge distances inherent to this particular neuro-
genesis mode.

Results
Layer 3/4 innervating T4/T5 neurons depend on Wg secretion.
Wnt family members are evolutionary conserved signaling pro-
teins that orchestrate tissue patterning and growth during
development. Recent findings showed that flies expressing
membrane-tethered instead of normally secreted Wingless (Wg)
were viable and had normal bodies and well-patterned, albeit
slightly smaller wings30. This indicated that long-range spreading
of Wg is not essential for the development of many tissues. As the
general fitness of these flies was reduced, Wg release could pos-
sibly be required in tissues other than imaginal discs. In the visual
system, Wg is expressed and required in the GPC areas for
neuron specification25,26,31,32. To explore whether Wg plays a
role in the IPC and the spreading of this signaling molecule is
essential, we examined the brains of adult homozygous flies,
engineered to solely express Wg fused to the type-2 transmem-
brane protein Neurotactin30 (wg{KO;NRT-wg}; Fig. 1c). We
uncovered a specific and highly penetrant phenotype in the lobula
plate (Fig. 1d–g): unlike in controls (n= 13/13), either one (n=
18/30) or two (n= 12/30) of the four lobula plate layers were
missing. Moreover, T4/T5 neuron numbers were reduced by
approximately 25% in three-layered and 50% in two-layered
samples, respectively (Fig. 1h). To determine which layers were
affected, optic lobes were immunolabeled with the cell surface
molecule Connectin, a specific marker of lobula plate layers 3/4.
In contrast to controls (n= 26/26), Connectin was expressed
either in one (n= 16/30) or none (n= 14/30) of the lobula plate
layers in wg{KO;NRT-wg} flies (Fig. 1i–k). Thus, T4/T5 neurons
innervating layers 3/4 were preferentially affected in flies solely
expressing membrane-tethered Wg.
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To elucidate the underlying causes, we examined the expres-
sion of wild-type Wg in the 3rd instar larval optic lobe.
Consistent with previous reports26, Wg protein was detected in
the dorsal and ventral GPC areas adjacent to the OPC
(Fig. 1l, n, o). Apposing the ventral p-IPC shank, Wg was

expressed in surface (s-)IPC NE cells, which generate two lobula
neuron clusters23. Additionally, Wg was expressed in a small Nb
clone adjacent to the dorsal p-IPC shank (Fig. 1m–o). Relying on
the perdurance of reporter gene expression by two
wg-Gal4 drivers to mark the progeny of these domains
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(Supplementary Fig. 1a–d), we observed that wg is not produced
in T4/T5 neurons or their progenitors in the d-IPC and p-IPC.
This suggests a non-autonomous requirement of Wg for the
development or survival of T4/T5 neurons innervating layers 3/4.

Wg secretion from the GPC areas induces wg in secondary
domains. We next asked how the prevention of Wg release might
cause the lobula plate-specific defects. In the GPC areas, Wg
blocks the expression of the transcriptional regulator Homo-
thorax (Hth), a temporal series factor in the OPC32. Hth
expression was correctly suppressed in wg{KO;NRT-wg} flies,
suggesting that NRT-Wg functions as wild-type Wg in this
context (Supplementary Fig. 2a, b). However in the IPC (Fig. 2a,
b; Supplementary Fig. 2c–f), NRT-Wg expression was absent in
the s-IPC adjacent to the ventral p-IPC and the Nb clone adjacent
to the dorsal p-IPC in approximately half of the samples (n= 22/
41). In the remaining samples, residual NRT-Wg expression was
found either in the s-IPC (n= 9/41), the Nb clone (n= 8/41), or
both (n= 2/41). The s-IPC and its progeny developed normally,
because Hth was expressed and two lobula neuron clusters were
formed (Supplementary Fig. 2g–j). Wg protein and reporter gene
expression were detected in the GPC areas before the s-IPC in late
2nd instar larvae (Fig. 2c, d). Furthermore, wg expression in the s-
IPC of wg{KO;NRT-wg}mid 3rd instar larvae was absent when wg
normally is detected (Fig. 2e, f). Thus, GPC-derived Wg could
induce Wg expression in the s-IPC and Nb clone.

Failure to induce NRT-Wg expression could conceivably not be
due to lack of Wg release but instead to sub-optimal signaling
activity of the NRT-Wg protein. We therefore asked whether
boosting NRT-Wg expression could overcome observed defects.
This was tested by combining a UAS-NRT-wg transgene, known
to be highly active33 with the knock-in null allele wg{KO;Gal4},
serving also as a driver that restricts activation to endogenous
expression domains30. UAS-FLP and wg{KO;FRT wg+ FRT NRT-
wg}30 ensured that the endogenous locus only produced NRT-Wg
following the induction of recombination events. A tub-Gal80ts

transgene controlled the timing of expression (for full genotypes,
see Supplementary Table 1). Thus, at a restrictive temperature,
Wg expression is normal and no NRT-Wg is produced. After a
shift to a permissive temperature, UAS-NRT-wg is activated and
the wg allele switches to expressing NRT-Wg. We found that
following a temperature shift at the mid 3rd instar larval stage,
NRT-Wg was expressed in the GPC areas and the s-IPC (Fig. 2g;
n= 16/16). However, following an early temperature shift at the
1st instar larval stage, no expression could be detected in the
s-IPC in the majority of samples (76%; n= 26/34) (Fig. 2h). We
suggest that this partial phenotype is due to imperfect allele
switching, i.e., residual wild-type Wg is produced by the GPC
areas, and that Wg release from the GPC areas is required

between the 1st and mid 3rd instar larval stage for inducing Wg
expression in the s-IPC. Thus, impaired Wg release and not
reduced signaling activity in wg{KO;NRT-wg} flies accounts for
the loss of NRT-Wg expression in secondary domains.

Next, we performed converse allele switching experiments
using wg{KO;FRT NRT-wg FRT wg+} to express wild-type Wg
in a wg{KO;NRT-wg} background30. We used R46E01-Gal4
(Supplementary Fig. 2k, l) and UAS-FLP to induce recombination
specifically in the GPC areas. Expression of wild-type wg in the
GPC areas rescued the s-IPC-specific loss of NRT-Wg (Fig. 2i, j;
n= 16/23), demonstrating that Wg release specifically from the
GPC areas is essential.

Consistent with Wg signaling-dependent induction of wg, the
target genes frizzled 3 (fz3) and notum were expressed in the s-
IPC (Fig. 2k, l). Moreover, Wg expression in the s-IPC was
abolished following the simultaneous knockdown of the Wg
receptors frizzled (fz) and frizzled 2 (fz2) (Fig. 2m, n) in the IPC
by combining the fas3-Gal4 driver23 (cf. Supplementary Fig. 7a)
with UAS-RNA interference (RNAi) transgenes. Hence, Wg
released from the GPC areas is required to induce wg in the s-IPC
and Nb clone (Fig. 2o).

wg is required to induce dpp in adjacent p-IPC subdomains.
How can wg in these secondary domains control T4/T5 neuro-
genesis in the p-IPC/d-IPC? The Drosophila Bmp family member
Decapentaplegic (Dpp) is a known target of wg in the OPC and is
expressed adjacent to the GPC areas in dorsal and ventral OPC
subdomains26 (Fig. 3a). Similarly in the IPC, wg expression in the
s-IPC and Nb clone was detected adjacent to dpp-positive ventral
and dorsal p-IPC subdomains (Fig. 3b–f). dpp reporter gene
expression persisted in the two progenitor streams arising from
these subdomains23 (Fig. 3c, d). Consistent with stepwise
inductive events, dpp in the p-IPC did not precede wg expression
in the s-IPC in late 2nd instar larvae (Fig. 3e). Furthermore, fz3
and notum (Fig. 2k, l) were expressed similarly to dpp in p-IPC
subdomains and progenitor streams. In wg{KO;NRT-wg} flies,
dpp-lacZ in the p-IPC was either absent (Fig. 3g, h; n= 16/32) or
showed only residual labeling in one progenitor stream (Sup-
plementary Fig. 3a; n= 16/32), in line with the penetrance and
expressivity of phenotypes observed in adults. By contrast, OPC
expression was unaffected, suggesting that releasable Wg is not
required in this region (Fig. 3g, h). Constitutively active Wg
signaling induced by IPC-specific expression of ArmadilloS10

resulted in ectopic dpp-lacZ labeling (Fig. 3i; Supplementary
Fig. 3b), confirming that dpp is a Wg target in the p-IPC. IPC-
specific wg knockdown abolished dpp-lacZ labeling, corroborating
that wg is required in the s-IPC and Nb clone, and not the GPC
areas for induction (Fig. 3j). Since Dpp signaling mediates EMT
of migratory progenitors in the Dpp-expression domains23, cell

Fig. 1 Wg release is essential for the formation of lobula plate layers 3/4. a Schematic of the adult Drosophila visual system. Neurons in the lamina (L1/L2)
and medulla (e.g., Mi1,4,9, Tm1–4,9) relay ON/OFF motion cues to T4 and T5 neuron dendrites in medulla layer (Me) 10 and lobula (Lo) layer 1. T4/T5
axons innervate lobula plate (Lop) layers 1–4. C&T neurons include C2/C3 and T2/T3 subtypes. b Schematic of the 3rd instar larval optic lobe. The OPC
generates lamina (ln) and medulla (mn) neurons. p-IPC NE cells give rise to migratory progenitors that mature into d-IPC Nbs. These produce C&T and
T4/T5 neurons. GMC ganglion mother cells, LPC lamina precursor cells. c Structure of wild-type wg and engineered wg loci (wg{KO;NRT-wg}). Open
triangles indicate loxP sites. d R9B10-Gal4 UAS-cd8GFP (green) labels T4/T5 neurons. Connectin (red) marks Lop layers 3/4. d–g Neuropils were stained
with nc82 (red) and aPKC (blue). Compared to controls (e), in wg{KO;NRT-wg} flies, one (f) or two (g) lobula plate layers were absent. h The decrease of
layers correlates with T4/T5 neuron numbers. The scatter plot with bars shows data points and means with ±95% confidence interval error bars (n= 15;
three optical sections from five samples per genotype). Unpaired, two-tailed Student’s t-test not assuming equal variance: P= 4.72 × 10−11 and P= 3.23 ×
10−17. ****P < 0.0001. Unlike in controls (i), Connectin was found in one (j) or none (k) of the Lop layers in wg{KO;NRT-wg} flies. Similar to nc82 (f),
Connectin labeling showed gaps in the third lobula plate layer (j), potentially consisting of both layer 3 and 4 neurons. l–n In wild-type 3rd instar larvae
(3L), the GPC areas (arrowheads), surface (s-)IPC (dashed line, double arrowheads), and a Nb clone (arrow) adjacent to the dorsal p-IPC subdomain
(dashed line) express Wg (green). o Schematics of larval Wg expression (blue) in 3D and a horizontal section. Arrow indicates Nb lineage. For genotypes
and sample numbers, see Supplementary Table 1. Scale bars, 50 μm
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streams from these areas were affected in wg{KO;NRT-wg} flies
and following IPC-specific knockdown of wg and the Dpp type I
receptor thickveins (tkv) (Fig. 3h, j, k). Although the overall d-IPC
morphology was altered (Supplementary Fig. 3c–f), progenitors
and Nbs generated from the remaining p-IPC showed wild-type
marker expression (Supplementary Fig. 3g–n). In adults, similar
to wg{KO;NRT-wg} flies, lobula plate layers 3/4 were absent fol-
lowing IPC-specific knockdown of fz, fz2, or tkv (Fig. 3l–n).

Hence, wg from the s-IPC and Nb clone regulates dpp expression
in adjacent p-IPC subdomains and EMT of progenitors that
mature into Nbs producing T4/T5 neurons for layers 3/4
(Fig. 3o).

Layer 3/4 T4/T5 neurons arise from Dpp-positive subdomains.
To provide evidence that T4/T5 neurons innervating layers 3/
4 specifically originated from the Dpp-positive subdomains in the
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p-IPC, we next conducted lineage-tracing experiments. Because
dpp-Gal4 is expressed in the entire optic lobe, we searched for a
driver with activity restricted to the IPC Dpp-expression
domains. Expression of R45H05-Gal4 (Fig. 4a) is controlled by
an enhancer fragment of dorsocross 1, which encodes a T-box
transcription factor and known Dpp target gene34. Reporter gene
expression was detected in dorsal and ventral p-IPC subdomains,
cell streams, Nbs, and postmitotic progeny in larval optic lobes
and persisted throughout pupal development into adulthood,
where it specifically labeled T4/T5 neurons innervating the layers
3/4 but not 1/2 (Fig. 4b; Supplementary Fig. 4a, b). As the
expression was weak, we combined the FLPout approach with
tub-Gal80ts to permanently label R45H05-Gal4 expressing pro-
geny, and again solely detected T4/T5 neurons projecting into
layers 3/4 (Fig. 4c). Finally, we used the Flybow approach to label
lineages in different colors. All clones contained T4/T5 neurons
innervating either layers 1/2 or 3/4 but not both (Fig. 4d; n= 43
clones in 26 optic lobes), consistent with distinct origins of these
neuron subtypes.

In lineage-tracing experiments using R45H05-Gal4, clones
included C2, the T2-variant T2a, and/or T3 neurons, as judged by
their characteristic cell body positions and terminals in the
lamina and lobula, respectively (Fig. 4e). While C3, T2, and T3
neurons were not affected, C2 neurons were fully or partially
absent in wg{KO;NRT-wg} flies with two or three remaining
lobula plate layers, respectively (Fig. 4f, g; Supplementary
Fig. 4c–j). Due to the lack of specific markers, we could not
conduct tests for T2a neurons. Thus, T4/T5 neurons innervating
layers 3/4, C2, and possibly T2a neurons are specifically derived
from the dorsal and ventral Dpp-expression domains, while the
p-IPC core generates T4/T5 for layers 1/2, as well as C3, T2, and
T3 neurons (Fig. 4h).

dac and atomediate the transition to T4/T5 neuron formation.
We next asked when and how layer-specific T4/T5 neurons
become distinct during development. Dac and Ato are expressed
in the second d-IPC Nb competence window23. While Dac is
initially expressed in all T4/T5 neurons in 3rd instar larvae, albeit
with varying expression levels, Dac was only found in ~50% of
adult T4/T5 neurons (Fig. 5a–c; see below). The enhancer trap
dacp7d23-Gal4 line faithfully reported Dac expression in T4/T5
neurons throughout development and remained active in neurons
innervating layers 1/2 (Fig. 5d, e; Supplementary Fig. 5a). Thus,
Dac is downregulated in layer 3/4 innervating T4/T5 neurons and
maintained in neurons projecting to layers 1/2 (Fig. 5f).

To examine the function of dac, we used mosaic analysis with a
repressible cell marker (MARCM) to generate dac1 mutant T4/T5
neurons labeled with the dac enhancer Gal4 line R9B10-Gal4
(Supplementary Fig. 5b, c). Some adult dac mutant neurons
showed T2/T3-like morphologies with neurites extending into the
medulla layer M9 and higher, and synaptic terminals in lobula

layers Lo2 and Lo3 (Fig. 5f–j). This suggested that mutant
neurons adopted features of neurons born in the first d-IPC Nb
competence window. To assess potential redundancy, we
performed dac and ato knockdown experiments using validated
UAS-RNAi transgenes (Supplementary Fig. 5d–g). In samples
with IPC-specific single dac or ato knockdown, frequently only
one Connectin-positive lobula plate layer was discernible
(Supplementary Fig. 5h–j). However, simultaneous dac and ato
knockdown caused the absence of neurons with T4/T5 morphol-
ogies and in consequence an undersized lobula plate neuropil.
Fas3 in T4/T5 dendrites within medulla layer Me10 and lobula
layer Lo1 and Connectin in lobula plate layers were severely
reduced. Consistent with T2/T3-like morphologies, remaining
neurons innervated the medulla and lobula (Fig. 5k–n; Supple-
mentary Fig. 5k).

Therefore, dac and ato are required together for the switch
from T2/T3 to T4/T5 neuron formation. Dac is maintained in
layer 1/2 innervating T4/T5 neurons, but downregulated in layer
3/4 innervating T4/T5 neurons, suggesting that layer 1/2 identity
could represent the default fate.

Notch controls the choice between T4 and T5 neuron identity.
In the OPC, Notch signaling in asymmetric GMC divisions
contributes to generating neuronal diversity35, involving differ-
ential apoptosis in region-specific lineages36. We therefore
assessed whether this pathway could mediate the distinction of
layer 1/2 and 3/4 innervating T4/T5 neurons downstream of Dpp.
We did not detect apoptotic cells in the 3rd instar larval lobula
plate (Supplementary Fig. 6a). However, expression of an acti-
vated, ligand-independent form of Notch (Nintra) in d-IPC Nbs in
the second competence window and their progeny using the late
R9B10-Gal4 driver affected T4 neuron formation, because neur-
ites were missing in the medulla of 3rd instar larvae (Fig. 6a, b).
Adults exhibited a milder phenotype, in which mostly T4 neurons
connecting to the anterior proximal medulla were affected
(Supplementary Fig. 6b–h). Conversely, IPC-specific knockdown
of the transcriptional regulator Suppressor of Hairless (Su(H))
using R17B05-Gal4 caused the absence of T5 neurons in adults,
whereas T4 neurons were present (Fig. 6c, d; Supplementary
Fig. 6f). In these flies, lobula plate layers 3 and 4 could not be
discriminated (Supplementary Fig. 6i). The lobula plate and
lobula neuropils were severely disorganized, likely because of an
early requirement of Notch in p-IPC NE cells during the 3rd
instar larval stage27 (Supplementary Fig. 6j, k). Hence, Notch
controls the choice between T4 and T5 neuron fate (Fig. 6e),
whereas the distinction between layer 1/2 Dac-positive and layer
3/4 Dac-negative T4/T5 neurons is mediated by a Notch-
independent mechanism.

Dpp-dependent specification of layer 3/4 T4/T5 neurons by
omb. While dpp reporter gene activity extended from the p-IPC

Fig. 2 The GPC areas release Wg to induce wg in the s-IPC. a, b Schematic in a highlights the region of interest shown in subsequent panels. Unlike in
controls (a), Wg immunolabeling (green) was absent in the s-IPC (dashed line, double arrowhead) in many wg{KO;NRT-wg} flies (b). The GPC areas
(arrowhead) were not affected. c, d In 2nd instar larvae (2L), Wg protein (c, green) and wg{KO;Gal4} UAS-cd8GFP (d, green) were detected in GPC areas
(arrowhead), but not in the adjacent IPC (dashed line). e, f s-IPC-specific wg{KO;Gal4} UAS-cd8GFP expression (green, double arrowheads) in mid 3rd
instar larvae (e) was absent in wg{KO;NRT-wg} flies (f). Arrowheads indicate expression in GPC area. g, h In controls, wg{KO;Gal4} UAS-FLP mediated
wg{KO;FRT wg+ FRT NRT-wg} allele switching and simultaneous UAS-NRT-wg overexpression were induced at the mid 3rd instar larval stage (g, wg+

background). Allele switching at the 1st instar larval stage (h, NRT-wg background) did not rescue s-IPC-specific Wg loss (green). i, j Unlike in controls (i),
R46E01-Gal4 UAS-FLP-mediated GPC areas-specific wg{KO;FRT NRT-wg FRT wg+} allele switching (j) rescued s-IPC-specific NRT-Wg loss (green). Filled
and open triangles in transgene schematics represent FRT and loxP sites, respectively (g–j). k, l The Wg target gene reporter lines fz3G00357-GFP (k, green)
and notumWRE-lacZ (l, green) show expression in the GPC areas, the s-IPC, and in migratory progenitors (arrow) originating from the adjacent p-IPC. m, n
Unlike in controls (m), fas3NP1233-Gal4-mediated IPC-specific fz and fz2 knockdown (n) caused loss of Wg (green) in the s-IPC. o Summary of wg function
in the GPC areas. For genotypes and sample numbers, see Supplementary Table 1. Scale bars, 50 μm
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to the d-IPC, phospho-Mad (pMad) labeling was restricted to p-
IPC NE cells (Fig. 7a). Consistently, knockdown experiments
using Gal4 lines with progressively restricted activities (Supple-
mentary Fig. 7a–c) revealed a requirement of tkv for layer 3/4
neuron formation in p-IPC NE cells (cf. Fig. 3n), but not in d-IPC
Nbs and T4/T5 neurons (Supplementary Fig. 7d–f). Therefore, an
additional mechanism must relay Dpp signaling activity in p-IPC

NE cells to distant postmitotic T4/T5 neurons. The T-box
transcription factor Optomotor blind (Omb) is a Dpp target in
the p-IPC23. In 3rd instar larval brains, Omb expression is
maintained in progenitors, Nbs, and T4/T5 neurons derived from
the Dpp-positive p-IPC subdomains (Fig. 7b, c). Expression
persisted in adult T4/T5 neuron subsets (Supplementary Fig. 7g).
In wg{KO;NRT-wg} flies, omb expression was severely reduced in
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the p-IPC and progeny, but not in the OPC (Fig. 7d, e). Con-
sistently, Omb was also decreased following IPC-specific tkv
knockdown (Fig. 7f, g).

To determine the function of omb, we conducted knockdown
experiments using fas3-Gal4 and two validated UAS-RNAi
transgenes (Supplementary Fig. 7h–k). Experimental animals
were raised at 18 °C and shifted to 29 °C at the early 3rd instar
larval stage, because omb is expressed in the embryonic optic lobe

placode and null mutations cause severe disorganization or
complete loss of adult optic lobes37. Under these conditions, omb
knockdown did neither affect dpp expression nor the EMT of
progenitors from the p-IPC (Fig. 7h, i). However in adults, lobula
plate layers 3/4 were absent (Fig. 7j, k). In contrast to tkv, omb
knockdown using Gal4 lines with progressively restricted
activities revealed that this transcription factor is required in
Nb in the second competence window and postmitotic T4/T5
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neurons for layer 3/4 neuron specification (Fig. 7l, m). Thus, omb
could relay subdomain-specific Dpp signaling effects in p-IPC NE
cells across intermediate cellular states, i.e., migratory progeni-
tors, Nbs, and T4/T5 progeny (Fig. 7n).

omb mediates layer 3/4 T4/T5 neuron specification by Dac
repression. Finally, we assessed whether Omb could be respon-
sible for downregulating Dac. In 3rd instar larvae, Omb was co-
expressed with high levels of Dac in younger and low levels in
older T4/T5 neurons (Fig. 8a). From 24 h after puparium for-
mation (APF) (Fig. 8b) to adulthood (Supplementary Fig. 8a),
Omb and Dac showed mutually exclusive expression in T4/T5
neurons. While Dac was maintained in ~50% of adult T4/T5
neurons in controls (Fig. 8c, h), 95% of T4/T5 neurons expressed
Dac and adopted layer 1/2 identity following omb knockdown
(Figs. 7m, 8d, h). Conversely, when omb was overexpressed, none
of the T4/T5 neurons expressed Dac and all acquired layer 3/4
identity (Fig. 8e, h, j). Under both conditions, many
T4/T5 neurons underwent apoptosis in 3rd instar larvae (Sup-
plementary Fig. 8b–d). Consistently in adults, their numbers were
reduced by 33% and 48%, respectively (Fig. 8h), possibly because
excessive T4/T5 neurons either for layers 1/2 or 3/4 compete for
limited trophic support. To demonstrate that omb is sufficient, we
took advantage of wg{KO;NRT-wg} flies, in which all T4/T5
neurons adopted layer 1/2 identity and Dac was expressed in 97%
of these (Fig. 8f, h; Supplementary Fig. 8e, f). In this background,
omb overexpression only mildly affected neuron numbers (19%
reduction) and Dac was downregulated (Fig. 8g, h). Importantly,
concomitant upregulation of Connectin suggested that these
differentiated into layer 3/4 innervating T4/T5 neurons (Fig. 8i,
k). Thus, omb is required and sufficient for specifying T4/T5
neurons innervating layers 3/4 by downregulating Dac (Fig. 8l).

Discussion
The spread of Wg is dispensable for patterning of many tissues30.
However, our study uncovered a distinct requirement for diffu-
sible Wg in the nervous system, where it orchestrates the for-
mation of T4/T5 neurons innervating lobula plate layers 3/4.
Their generation depends on inductive mechanisms (Fig. 8m)
that are relayed in space and time. The spatial relay consists of a
multistep-signaling cascade across several NE domains: Wg from
the GPC areas induces wg expression in the s-IPC and Nb lineage
adjacent to ventral and dorsal p-IPC subdomains; this secondary
Wg source activates dpp expression. Dpp signaling mediates EMT
of migratory progenitors from these subdomains. The p-IPC core
produces Dac-positive layer 1/2 specific T4/T5 neurons. Dpp
signaling in p-IPC NE subdomains triggers a temporal relay
across intermediate cellular states by inducing omb. Omb in turn
suppresses Dac, conferring layer 3/4 identity to postmitotic T4/T5
neurons.

Fig. 5 dac and ato are required for T4/T5 neuron formation. a Schematic illustrating the expression of Ase (turquoise), Ato (red), and Dac (blue) in d-IPC
Nbs during the first (1) and second (2) competence windows and their progeny. b, c Dac (red) was expressed in all R9B10-Gal4 UAS-cd8GFP (green)
labeled T4/T5 neurons in 3rd instar larvae (b). It was downregulated (arrowheads) in approximately 50% of adult T4/T5 neurons (c). d, e dacp7d23-Gal4
UAS-cd8GFP (green) faithfully reported Dac (red, double arrowhead) expression in adults (d), specifically labeling T4/T5 neurons innervating lobula plate
(Lop) layers 1 and 2 (e). f Schematic illustrating Dac expression (blue) in adult T4/T5 neurons. g–j Unlike in controls (g, i), dac1 mutant T4/T5 neurons
adopted T2/T3 neuron morphologies with R9B10-Gal4 UAS-cd8GFP (green), displaying neurite extensions into medulla (Me) layer M9 (arrows) and more
distal layers (arrowhead) (h), and UAS-brp-RFP labeled synaptic terminals (red, arrows) in lobula (Lo) layers 2 and 3 (j). k, l Unlike in controls (k),
fas3NP1233-Gal4 UAS-cd8GFP (green)-mediated IPC-specific simultaneous knockdown of dac and ato generated neurons that failed to form a four-layered
lobula plate (Lop) neuropil and dendrites in medulla (Me) layer 10 and lobula (Lo) layer 1 (l). m, n Unlike in controls (m), Fas3-positive (red) T4/T5
neurons were absent following IPC-specific simultaneous knockdown of dac and ato mediated by fas3NP1233-Gal4 UAS-cd8GFP (green) (n). For genotypes
and sample numbers, see Supplementary Table 1. Scale bars, 50 μm
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When Wg is membrane-tethered, the first step of this cascade
is disrupted. This defect is not caused by decreased signaling
activity of NRT-Wg protein in wg{KO;NRT-wg} flies. First,
wild-type Wg signaling activity inside the GPC areas and the
adjacent OPC was not affected. Second, in allele switching
experiments, ectopic expression of a highly active UAS-NRT-wg
transgene in the GPC areas was unable to rescue. By contrast,
restoring wild-type wg function in the GPC areas was able to
rescue, supporting the notion that Wg release and spread from

the GPC areas are required to induce its own expression in the
s-IPC and the Nb clone.

Although Wg release is essential, the range of action is likely
limited. Wg expression in the s-IPC commences in early 3rd
instar larvae, when it is still in close proximity with the GPC. Half
of the wg{KO;NRT-wg} flies showed residual dpp expression in
one progenitor stream at the 3rd instar larval stage and a 25%
reduction of T4/T5 neurons, correlating with three lobula plate
layers in adults. The other half lacked dpp-lacZ expression and
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and primarily postmitotic T4/T5 neurons using R9B10-Gal4 (m) resulted in the absence of Connectin-positive lobula plate layers 3/4. Schematic insets
highlight cell type-specificities of Gal4 lines in green. n Schematics summarizing the role of Dpp in inducing Omb expression to specify layer 3/4
innervating T4/T5 neurons. For genotypes and sample numbers, see Supplementary Table 1. Scale bars, 50 μm
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showed a 50% reduction of T4/T5 neurons correlating with two
remaining layers. While this partial phenotypic penetrance is not
fully understood, NRT-Wg likely partially substituted for Wg
because of the initial close proximity of the GPC areas and the
s-IPC and Nb clone. Occasional residual NRT-Wg expression in
the s-IPC argues against an all-or-nothing inductive event and

suggests a model, whereby cell-intrinsic signaling thresholds have
to be reached. Theoretically, the dpp expression defect in the
p-IPC of wg{KO;NRT-wg} flies could reflect the dependence on
long-range Wg from the GPC areas. However, as we have shown,
IPC-specific wg knockdown leads to dpp loss in the p-IPC. Pro-
pagation of sequential Wnt signaling could explain long-range
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activities38,39. Moreover, sequentially acting primary and sec-
ondary sources of Wg have been described in the developing
Drosophila eye40, suggesting that the regulatory mechanism
observed in the optic lobe might be employed in several contexts.
The different outcomes of early and late allele wg to NRT-wg allele
switching indicate that Wg secretion is required for the induction
but not long-term maintenance of wg expression in the s-IPC.
The GPC areas become rapidly separated from the s-IPC and Nb
clone by compact rows of newly generated neurons. As part of a
relay system, diffusible Wg may therefore be required to bridge
distances over a few cell diameters during the initial phase of
neurogenesis. The s-IPC in wg{KO;NRT-wg} flies expressed Hth
and generated two neuron clusters as in wild-type. Thus, the sole
function of wg in the s-IPC is to relay the GPC-derived Wg signal
to induce dpp expression in the p-IPC. Since Wg release is not
required in the GPC areas to induce dpp in the adjacent OPC, this
secondary wg function in the s-IPC is most likely juxtacrine.

Compared to approximately 80 medulla neuron subtypes
derived from the OPC36, the specification of 13 distinct subtypes
originating from the p-IPC appears simple. However, the distinct
mechanisms employed are surprisingly complex. We previously
showed that cross-regulatory interactions between D and tll
regulate a Nb competence switch from generating early-born C2,
C3, T2, T2a, and T3 neurons to eight distinct layer-specific
T4/T5 subtypes. Ato and Dac are expressed in the second Nb
competence window and depend on tll23. Our functional studies
showed that dac mutant T4/T5 neurons adopted early-born
T2/T3 neuron-like morphologies. Similarly, ato mutant T4/T5
neurons displayed neurite connectivity defects41. Notably,
simultaneous knockdown of dac and ato resulted in the absence
of T4/T5 neurons, demonstrating that both are required together
for the ability of d-IPC Nbs to produce new neuron subtypes in
the second competence window.

Dac is initially expressed in all T4/T5 neurons but only
maintained in layer 1/2 innervating subtypes. This suggests that
an essential step for the specification of layer 3/4 innervating
neurons is the downregulation of Dac and the suppression of the
T4/T5 default neuron fate, i.e., layer 1/2 identity. Although the
mode of this inhibitory mechanism depends on the outcome of
the Nb-specific switching mechanism in the d-IPC, it is already
primed in p-IPC NE cells. Thus, layer-specificity and therefore
motion-directionality are determined early in the NE precursors
of T4/T5 neurons. Molecularly, it involves the Omb-mediated
relay of Dpp-signaling-dependent NE cell patterning information
across intermediate cell states to postmitotic T4/T5 neurons
resulting in the repression of Dac. In contrast to the OPC36, we
found no link between NE patterning in the p-IPC and
Notch-dependent differential apoptosis of region-specific

T4/T5 subtypes. Instead, Notch controls the choice between T4
and T5 identity, likely during the second competence window,
indicating that the distinction between layer 1/2 and 3/4 fates
precedes T4 and T5 neuron specification.

The mechanisms controlling the maintenance of omb expres-
sion, and Omb-mediated downregulation of Dac are unclear.
Hypotheses regarding the latter have to be reconciled with the
fact that dac, together with ato, is required for the formation of all
T4/T5 neurons and hence is expressed in all d-IPC Nbs during
the second competence window. Omb and Dac are initially co-
expressed in Nbs and young T4/T5 neurons, suggesting that Omb
does not directly repress dac transcription. Yet, expression of the
dacp7d23 enhancer trap Gal4 line showed that dac is only tran-
scribed in layer 1/2 neurons in adults. A possible scenario is that
Omb could break Dac autoregulation by triggering degradation of
Dac. Since T-box genes can act as transcriptional activators and
repressors42 and their effects are influenced by various co-
factors43, future studies will need to explore the molecular details
underlying Omb-mediated repression of Dac. It will also be
important to determine whether layer 3/4 specification is medi-
ated solely by Dac downregulation, or whether omb has addi-
tional instructive roles.

Consistent with the observation that C2 and C3 neurons have
distinct developmental origins44, we found that Nbs derived from
the Dpp-expression domain produce C2 and possibly T2a
neurons during the first Nb competence window, while the core
p-IPC generates C3, T2, and T3 neurons. dac mutant T4/T5
neurons adopt T2/T3-like morphologies suggesting that this is the
default neuron fate in this neuron group. While Omb is main-
tained in C&T neurons derived from the Dpp-expression domain,
Dac is not expressed, suggesting that Omb interacts with other
molecular determinants in these neurons. While we did not
explore how layer 1 and 2 neurons or layer 3 and 4 neurons
become distinct from each other because of the lack of specific
markers, our data suggest a possible contribution of Ato/Dac and
Notch signaling, as these are active within the d-IPC. Findings in
a concurrent study of Pinto-Teixeira et al.45 align with our data
concerning the role of Dpp and Notch signaling. Furthermore, a
second study of Mora et al.46 reported an additional role for
Ato in controlling the transient amplification of d-IPC Nbs
by symmetric cell division to ensure that the correct number of
T4/T5 neurons is produced. It will be fascinating to identify
the transcriptional targets of Notch, Ato/Dac, and Omb that
mediate ganglion- and layer-specific targeting of T4/T5
dendrites and axons, respectively. Finally, future behavioral stu-
dies of layer 3/4-deficient flies will address to what extent direc-
tion selectivity is affected or compensatory mechanisms are in
place.

Fig. 8 Omb converts layer 1/2 into layer 3/4 T4/T5 neurons by Dac downregulation. a, b In the 3rd instar larvae (a), Omb (red) and Dac (blue) were
initially co-expressed (arrows) in new-born R9B10-Gal4 UAS-cd8GFP (green) labeled T4/T5 neurons close to the d-IPC. In some more mature T4/T5
neurons, that were positive for Omb, Dac expression was low (arrowheads), while in others, Dac expression was high (double arrowheads) and Omb
expression was absent. At 24 h after puparium formation (APF) (b), Dac (double arrowheads) and Omb (arrowheads) show mutually exclusive expression.
c–g In controls (c), Dac (red, double arrowheads) was expressed in approximately 50% of T4/T5 neurons. Arrowheads indicate Dac-negative R9B10-Gal4
UAS-cd8GFP (green) labeled T4/T5 neurons. Dac was maintained in almost all T4/T5 neurons following omb knockdown (d), and downregulated following
omb overexpression (e). Dac was expressed in all T4/T5 neurons in wg{KO;NRT-wg} flies with two lobula plate layers (f). Ectopic Omb was sufficient to
downregulate Dac in these flies (g). h Quantification of all and Dac-positive T4/T5 neuron numbers following omb manipulations. The scatter plot with
bars shows data points and means with ±95% confidence interval error bars (n= 15 corresponding to three serial optical sections, 6-μm apart, from five
samples per genotype). Unpaired, two-tailed Student’s t-test not assuming equal variance: P= 5.57 × 10−12, P= 6.19 × 10−15, P= 1.26 × 10−10, P= 1.98 ×
10−17, P= 3.60 × 10−5, P= 4.79 × 10−15, P= 0.020, P= 0.017, P= 0.0015, P= 2.42 × 10−13. *P < 0.05; **P < 0.01; **** P < 0.0001. i–k Unlike in controls
(i), R9B10-Gal4-mediated ectopic UAS-omb expression in T4/T5 neurons of wild type (j) or wg{KO;NRT-wg} (k) flies resulted in ectopic Connectin
expression in the lobula plate (Lop). l Schematic illustrating Dac and Omb expression in adults. m Working model for spatial and temporal relay
mechanisms regulating the formation and specification of layer-specific T4/T5 neurons. For genotypes and sample numbers, see Supplementary Table 1.
Scale bars, 50 μm
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Signaling centers, also called organizers, pattern tissues in a
non-autonomous fashion47. The vertebrate roof plate and the
cortical hem, for instance, both release Wnts and Bmps to pattern
NE cells in the developing dorsal spinal cord and in the sur-
rounding forebrain, respectively47–49. In the Drosophila visual
system, the GPC areas express wg and pattern the OPC by
inducing dpp expression in adjacent dorsal and ventral OPC
subdomains26. Together with our insights into the function of
GPC-derived wg in IPC patterning and neurogenesis, this firmly
establishes the GPC areas as local organizers of optic lobe
development. At the onset of neurogenesis, wg is first expressed in
the GPC areas followed by the s-IPC, explaining the well-
established delay in neurogenesis between the IPC and OPC20.
Wg release from the GPC areas could coordinate the timely onset
of neurogenesis in the OPC and IPC to safeguard the alignment
of matching partner neurons across several retinotopically orga-
nized neuropils. The intercalation of new-born neurons between
both neuroepithelia may have driven the need for a relay system
using primary and secondary sources of Wg. Wg induces Dpp to
subdivide the adjacent OPC and p-IPC NE into distinct regions as
basis for generating neuronal diversity. The temporal relay
mediated by Omb represents an efficient strategy to pass the
memory of spatial NE patterning information by Dpp signaling
on to postmitotic neurons generated at a distance. It is thus
intricately tuned to the distinct neurogenesis mode of the p-IPC
essential for spatially matching birth-order-dependent neuro-
genesis between the OPC and IPC23. Interestingly, the progressive
refinement of NE patterning by the induction of secondary sig-
naling centers plays a central role in vertebrate brain develop-
ment47. Furthermore, similar signaling cascades have been
recently identified in mammalian optic tissue cultures where
sequential Wnt and Bmp signaling induces the expression of the
Omb-related T-box transcription factor Tbx5 to specify dorsal
retinal NE cells50. Hence, such cascades could represent con-
served regulatory modules that are employed repeatedly during
invertebrate and vertebrate nervous system development.

Methods
Genetics. Drosophila melanogaster strains were maintained on standard medium
at 25 °C except for Gal80ts and RNAi experiments, in which progeny were shifted
from 18 °C or 25 °C to 29 °C at specific time points as indicated below; w1118

flies
were used as controls. If not otherwise indicated, all stocks were obtained from the
Bloomington Drosophila Stock Center or the Vienna Drosophila Resource Center
and are described in FlyBase. Crosses involved approximately five males and seven
virgin females. To avoid overcrowding, parents were transferred to fresh vials every
day or every second day. Control and experimental animals of the correct age and
genotype were selected irrespective of their gender randomly and independently
from several vials. If not otherwise indicated, wandering 3rd instar larvae were
analyzed. Detailed genotypes of all experimental samples are listed in Supple-
mentary Tables 1 and 2.

The following stocks served as reporter lines: (1) fz3-GFP (Flytrap#G00357)51,
(2) dpp-lacZExel.2, (3) ombP1-lacZ52, (4) notumWRE-lacZ (from J. P. Vincent, The
Francis Crick Institute, London). The following lines were used as Gal4 drivers: (1)
dacp7d23-Gal4/CyO53, (2) dppblk1-Gal4/CyO (from J.P. Vincent), (3) fas3NP1233-
Gal4 (Kyoto Drosophila Stock Center), (4) fkh-Gal4 (from A. Gould, The Francis
Crick Institute, London), (5) h1J3-Gal4 (from A. Brand, The Gurdon Institute,
Cambridge), (6) R9B10-Gal4, (7) R9H07-Gal4, (8) R12G08-Gal4, (9) R17B05-Gal4,
(10) R17C06-Gal4, (11) R34E01-Gal4, (12) R45H05-Gal4, (13) R46E01-Gal4, (14)
R67E05-Gal454–56, (15) wg-Gal4/CyO, (16) wg{KO;Gal4}/CyO30, (17) wg{KO;Gal4}/
CyO; UAS-HRP-cd8GFP/TM230. For presynaptic labeling, UAS-brp-RFP (from S.
Sigrist, FU Berlin) was used; for membrane-tethered GFP reporter gene expression,
(1) UAS-cd8GFP, (2) UAS-FB1.1B57, or (3) UAS-FB1.1C. In UAS-FB1.1C, cd8-
mCherry and myr/palm (mp)-tethered mTurquoise in UAS-FB1.1B were replaced
by TagRFP-T and mTurquoise2, respectively (unpublished). For R45H05-Gal4 cell
lineage analysis using the hs-FLPout approach58, act>y+>Gal4 UAS-GFP/GlaBc;
UAS-FLP/TM6B flies were crossed with tubP-Gal80ts; R45H05-Gal4 and kept at 18
°C before shifting to 29 °C at the late 3rd instar larval stage. For Flybow
experiments57,59, (1) hs-mFLP5MH12/GlaBc flies were crossed with (2) UAS-
FB1.1B260b; R9B10-Gal4 and (3) UAS-FB1.1B260b; R9H07-Gal4. Progeny were heat
shocked for 40–60 min at 48–72 h and 72–96 h or at 24–48 h, 48–72 h, and 72–96 h
after egg laying (AEL) in a 37 °C water bath. Loss-of-function analysis using mosaic
analysis with a repressible cell marker (MARCM)60 were conducted by crossing yw

hs-FLP122; tubP-Gal80LL10 FRT40A/CyO; UAS-FB1.1B49b R9B10-Gal4/TM6 flies
with (1) FRT40A, (2) dac1 FRT40A, (3) FRT40A; UAS-brp-RFP, and (4) dac1

FRT40A; UAS-brp-RFP (dac1 from F. Pignoni, SUNY Upstate Medical University).
Twenty-four-hour embryo collections were heat shocked for 40–60 min at 48–72 h
and 72–96 h AEL in a 37 °C water bath. For knockdown experiments using UAS-
RNAi transgenes, the following driver lines were used: (1) yw ey3.5-Gal80;
fas3NP1233-Gal4; UAS-Dcr2 UAS-cd8GFP/TM6B, (2) R17B05-Gal4 UAS-FB1.1C49B,
(3) UAS-cd8GFP; R12G08-Gal4, and (4) UAS-FB1.1B260b; R9B10-Gal4. RNAi lines
used were: (1) UAS-atoIR TRiP.JF02089, (2) UAS-dacIR KK106040, (3) UAS-fzIR GD43077,
(4) UAS-fz2IR KK108998, (5) UAS-ombIR C1 (ref. 61; from G. Pflugfelder, University of
Mainz), (6) UAS-ombIR KK100598, (7) UAS-Su(H)IR KK103597, (8) UAS-tkvIR KK105834,
and (9) UAS-wgIR GD13351. UAS-Dcr2 was co-expressed in all experiments. Progeny
were shifted from 25 °C to 29 °C 24 h AEL. Exceptions were crosses of ey3.5-Gal80;
fas3NP1233-Gal4; UAS-Dcr2 UAS-cd8GFP and UAS-ombIR or UAS-tkvIR animals,
which were kept at 18 °C before shifting to 29 °C at the early 3rd instar larval stage.
For UAS-NRT-wg33 gain-of-function experiments, wg{KO;Gal4}/CyO; UAS-FLP
flies were crossed with wg{KO;FRT wg+ FRT NRT-wg} UAS-NRT-wg; tubP-Gal80ts

flies and kept at 18 °C. While experimental animals were shifted to 29 °C at the 1st
instar larval stage, control animals were maintained at 18 °C until the mid 3rd
instar larval stage and then shifted to 29 °C. wg{KO;FRT wg+ FRT NRT-wg} flies are
described in ref. 30. For GPC-specific wg{KO;FRT NRT-wg FRT wg+} allele
switching rescue experiments30, wg{KO;FRT NRT-wg FRT wg+}/GlaBc; UAS-FLP
flies were crossed with (1) wg{KO;NRT-wg}/GlaBc30 and (2) wg{KO;NRT-wg}/
GlaBc; R46E01-Gal4 and maintained at 25 °C. For gain-of-function experiments,
UAS-cd8-GFP; h1J3-Gal4 was crossed with UAS-armS10; dpp-lacZExel.2 (ref. 62),
UAS-FB1.1B260b; R9B10-Gal4 was crossed with UAS-Nintra (from L. Tsuda, NCGG,
Obu), and (1) UAS-FB1.1B260b; R9B10-Gal4 or (2) wg{KO;NRT-wg}/GlaBc; R9B10-
Gal4 UAS-FB1.1B49b were crossed with UAS-omb (♯2-1, ref. 63; from G.
Pflugfelder) and wg{KO;NRT-wg}/GlaBc; UAS-omb.

Immunolabeling and imaging. Brains were dissected in phosphate-buffered saline
(PBS), fixed for 1 h at 20–24 °C in 2% paraformaldehyde (wt/vol) in 0.05 M sodium
phosphate buffer (pH 7.4) containing 0.1 M L-lysine (Sigma-Aldrich) and washed
in PBS containing 0.5% Triton X-100 (Sigma-Aldrich). Primary and secondary
antibodies were diluted in 10% Normal Goat Serum (NGS) and PBT. The following
primary antibodies were used: rabbit antibody to Ase (1:5000, from Y. N. Jan,
HHMI, San Francisco64), rabbit antibody to Ato (1:5000, from Y. N. Jan65), mouse
antibody to Brp (nc82, 1:10, Developmental Studies Hybridoma Bank [DSHB]),
mouse antibody to Connectin (C1.427, 1:40, DSHB as marker for lobula plate
layers 3/466), guinea pig antibody to D (1:200, from A. Gould67), mouse antibody
to Dac (mAbdac2-3, 1:50, DSHB), rabbit antibody to Dcp1 (#9578, 1:200, Cell
Signaling Technologies), mouse antibody to Dlg (4F3, 1:50, DSHB), guinea pig
antibody to Dpn (1:500, from J. Skeath, Washington University, St. Louis68), rat
antibody to E-cad (DCAD2, 1:2, DSHB), mouse antibody to Fas3 (7G10, 1:5,
DSHB), chicken, mouse, and rabbit antibodies to β-galactosidase (#ab9361, 1:500,
Abcam; #Z3783, 1:300, Promega; #559762, 1:12,000, Cappel), rabbit antibody to
GFP (#A6455, 1:1000, Molecular Probes), rabbit antibody to Hth (1:100, from R.
Mann, Columbia University, New York69), rabbit antibody to Omb (1:400, G.
Pflugfelder, University of Mainz/J.P. Vincent63), rabbit antibody to aPKC ς
(sc-216, 1:100, Santa Cruz Biotechnologies), rabbit antibody to pSmad3 (pS423/425
#1880-S, 1:2, Epitomics), rabbit antibody to Tll (812, 1:20, J. Reinitz Segmentation
Antibodies70), guinea pig antibody to Toy (1.170, 1:200, from U. Walldorf, Uni-
versity of Homburg), and mouse antibody to Wg (4D4, 1:20, DSHB). For immu-
nofluorescence labeling, samples were incubated for 2.5 h at 20–24 °C in goat
F(ab’)2 fragments coupled to FITC/DyLight 488, Cy3, or Alexa Fluor 647 (1:400;
Jackson ImmunoResearch Laboratories): antibody to guinea pig (Cy3: #106-166-
003; Alexa Fluor 647: #106-606-003), antibody to mouse (DyLight488: #115-486-
003; Cy3: #115-166-003; Alexa Fluor 647: #115-606-003), antibody to rabbit (FITC:
#111-096-003; Cy3: #111-166-003; Alexa Fluor 647: #111-606-003), antibody to rat
(Cy3: #112-166-003). Furthermore, goat antibody to chicken IgY (H+L) (Alexa
Fluor 555, Molecular Probes, #A21437, 1:400) was used. Images were collected with
a Leica TCS SP5 II laser scanning confocal microscope and processed using Adobe
Photoshop and Fiji software programs.

Quantifications and statistics. Statistical details of all experiments are reported in
the figures and figure legends. To quantify T4/T5 neuron numbers, adult optic
lobes were imaged in horizontal orientations and cell numbers were collected from
three serial optical sections (6-μm distance) in five samples (n= 15) at the center of
the optic lobe. Sample numbers and genotypes for all experiments are provided in
Supplementary Tables 1 and 2. If not otherwise indicated, the penetrance of
observed phenotypes was 100% for examined samples. Sample sizes were not
predetermined by statistical calculations, but were based on the standard of the
field. In a pool of control or experimental animals, specimens of the correct stage
and genotype were selected randomly and independently from different vials. Data
acquisition and analysis were not performed blinded but relied on samples with
identified genotypes that were not limited in repeatability. The calculations of 95%
confidence interval error bars and unpaired two-tailed Student’s t-test P values
were performed using Microsoft Excel software [Confidence.T and T.Test (type 3,
not assuming equal variance)]. Prism 7 GraphPad was used to perform Shapiro-
Wilk and D’Agostino-Pearson omnibus normality tests and data met the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04592-z

14 NATURE COMMUNICATIONS |  (2018) 9:2295 | DOI: 10.1038/s41467-018-04592-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


assumption of normality in one or both tests. Quantifications are presented as
scatter plots and bar graphs with means ±95% confidence interval error bars.
*P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.

Data availability. Image data sets generated and analyzed in this study are
available from the corresponding author upon reasonable request. A source data
file for quantifications shown in Figs. 1h and 8h is provided with this manuscript
(Supplementary Data 1).
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