
ARTICLE

A modular transcriptional signature identifies
phenotypic heterogeneity of human tuberculosis
infection
Akul Singhania 1, Raman Verma2, Christine M. Graham1, Jo Lee2, Trang Tran3, Matthew Richardson2,

Patrick Lecine3, Philippe Leissner3, Matthew P.R. Berry4, Robert J. Wilkinson5,6,7, Karine Kaiser8,

Marc Rodrigue8, Gerrit Woltmann 2, Pranabashis Haldar2 & Anne O’Garra 1,9

Whole blood transcriptional signatures distinguishing active tuberculosis patients from

asymptomatic latently infected individuals exist. Consensus has not been achieved regarding

the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from

other diseases. Here we show a blood transcriptional signature of active tuberculosis using

RNA-Seq, confirming microarray results, that discriminates active tuberculosis from latently

infected and healthy individuals, validating this signature in an independent cohort. Using an

advanced modular approach, we utilise the information from the entire transcriptome, which

includes overabundance of type I interferon-inducible genes and underabundance of IFNG and

TBX21, to develop a signature that discriminates active tuberculosis patients from latently

infected individuals or those with acute viral and bacterial infections. We suggest that

methods targeting gene selection across multiple discriminant modules can improve the

development of diagnostic biomarkers with improved performance. Finally, utilising the

modular approach, we demonstrate dynamic heterogeneity in a longitudinal study of recent

tuberculosis contacts.
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Tuberculosis (TB) is the leading cause of global mortality
from an infectious disease. In 2016, there were 10.4 million
incident and 6.3 million new cases of TB disease and 1.67

million deaths, and its diagnosis is problematic1. Active pul-
monary TB diagnosis requires culture of Mycobacterium tuber-
culosis, which may take up to 6 weeks2. Although the World
Health Organisation1 endorsed GeneXpert MTB/RIF automated
molecular test for M. tuberculosis results in rapid diagnosis3, this
test still requires sputum, which can be difficult to obtain. Diffi-
culties in obtaining sputum lead to ~30% of patients in the USA
and 50% of South African patients to be treated empirically1,4.
However, clinical disease represents one end of a spectrum of
infection states. An estimated one third of all individuals
worldwide have been infected with the causative pathogen, M.
tuberculosis, but the vast majority remain clinically asymptomatic
with no radiological or microbiological evidence for active
infection. This state is termed as latent TB infection (LTBI) and
conceptually denotes that M. tuberculosis persists within its host,
while maintaining its viability with the potential to replicate and
cause symptomatic disease. Indeed, LTBI represents the primary
reservoir for future incident TB, with 90% of all TB cases esti-
mated to arise from reactivation of existing infection1,5. The risk
of incident TB arising from existing LTBI is heterogeneous,
poorly characterised and modifiable with anti-tuberculous treat-
ment. Modelling studies indicate that effective TB prevention to
reduce future TB incidence requires policies directed at the
identification and treatment of LTBI6. However, implementation
of mass screening programmes for this purpose are severely
constrained by the size of the target population. Transformative
advances in diagnostic tools that can effectively help to stratify TB
risk in the LTBI population are therefore implicit to the realisa-
tion of systematic screening.

The basis for LTBI heterogeneity rests with the limited scope of
the tools we have available to identify the state. LTBI is inferred
solely through evidence that immune sensitisation has occurred,
by the tuberculin skin test (TST) or the M. tuberculosis antigen-
specific interferon-gamma (IFN-γ) release assay (IGRA).
Although these tests are both sensitive and specific for identifying
the exposure, that has been associated with establishment of an
adaptive immune response, neither distinguishes active from
latent infection. Moreover, T-cell responses to mycobacterial
antigens persist for several years after the infection has been
treated, implying that these tests may not reliably inform the
presence of viable organisms in vivo. For ‘true’ LTBI, in which the
pathogen remains viable, it is envisaged that a dynamic equili-
brium exists between the host immune response and the patho-
gen, with a shifting balance in favour of one or the other,
influencing the future risk of TB reactivation7. A study using
highly sensitive radiological imaging with combined Positron
Emission Tomography and Computerised Tomography has
reported evidence to support this dynamic state and demon-
strated phenotypic imaging characteristics associated with the risk
of developing TB among subjects with conventionally defined
LTBI8. A proportion of these LTBI patients were identified with
radiological features of subclinical active TB8, with a subgroup
failing to respond to prophylactic LTBI treatment regimens.
These observations support the view that injudicious use of LTBI
chemoprophylaxis using presently available diagnostic tools for
mass screening risks, promotes drug resistance in unrecognised
active infection.

We have previously characterised an interferon (IFN)-induci-
ble transcriptional signature of 393 gene transcripts in whole
blood that discriminates patients with active pulmonary TB (from
high- and low-incidence TB-burden countries) from healthy
individuals, patients with other chronic respiratory and systemic
conditions, and the majority of patients with LTBI9,10. This TB

signature revealed an unexpected dominance of type I IFN-
inducible genes9 more frequently associated with viral infec-
tions11. We12,13,14 and others15–22 have since shown that elevated
and sustained levels of type I IFN result in an enhanced myco-
bacterial load and disease exacerbation in experimental models of
TB. Similar findings of a blood signature in active TB patients
have since been reported23,24–29, and our meta-analysis of 16
datasets, including many of these studies, identified 380 genes
differentially abundant in active TB across all datasets30. How-
ever, there is a relative lack of concordance across studies that
have reported a reduced and optimised diagnostic gene signature,
although an agreement exists for some of the pathways they
represent23,24,25,31,32. While some genes overlap between the
different reduced signatures, the overall composition of each
reduced signature is unique, both in size and transcript profile. In
this respect, we note that a consistent statistical approach to
optimising gene selection has not been used across studies, and
where the approach was consistent, a different optimal reduced
signature was reported for discriminating active TB from either
LTBI and controls or other diseases24. Additionally, recent
reports suggest that these signatures do not effectively dis-
criminate TB from other diseases such as pneumonia, lowering
their value as stand-alone diagnostic tests28,29.

We have previously observed and reported that 10–20% of
subjects with IGRA positive LTBI in our studies had a tran-
scriptional signature that overlapped with active TB patients and
clustered with this group9. By definition, the transcriptional sig-
nature in this LTBI outlier group shares important similarities
with the signature of active TB that requires further character-
isation. Importantly, the biological significance of this statistical
observation remains unclear. However, these observations sup-
port the utilisation of a transcriptional approach to explore the
LTBI heterogeneity. In keeping with this, Zak et al.32 have
recently reported evidence for a gene signature of TB several
months in advance of clinical presentation with disease, among a
cohort of South African adolescents, contained within the pre-
viously described TB signature9. This suggests that transcriptional
signatures of TB in subjects with presumed LTBI may indicate
either a high risk of progression to active disease or existing
subclinical disease. However, the interpretation of the study was
limited by the confounding risk of new TB exposure in a high TB
incidence setting, particularly to determine the longitudinal
changes in signature expression and dynamic heterogeneity of the
host immune response. Analysis focussed on the subgroup with
IGRA defined LTBI, despite a proportion of prospective TB cases
developing in subjects that were IGRA negative at baseline, sug-
gesting either new TB exposure during prospective observation in
a high TB incidence setting and/or that the IGRA test did not
reliably inform the underlying LTBI. In this context, studies
evaluating the diagnostic performance of IGRAs in micro-
biologically confirmed active TB report an overall sensitivity of
~85%33, implying that a proportion of M. tuberculosis infections
may be missed using this test alone.

To address some of these questions, here we (i) validate the
microarray findings by RNA-sequencing in our published9

cohorts and a new cohort of TB; (ii) evaluate current TB gene
signatures from the literature against TB and other infections; (iii)
develop and test a modular TB signature in multiple TB cohorts
and other diseases; (iv) develop a reduced TB-specific gene sig-
nature from modules of TB and test against viral infections and
other diseases; (v) evaluate the transcriptional profile of LTBI
outliers and compare with active TB; (vi) evaluate the blood
transcriptional signature at baseline and longitudinally in TB
contacts who develop TB against those TB contacts who remain
healthy, in a low TB incidence setting (Fig. 1; Supplementary
Figure 1). As a proof of principle, our reduced TB-specific gene

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04579-w

2 NATURE COMMUNICATIONS |  (2018) 9:2308 | DOI: 10.1038/s41467-018-04579-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


set developed from the modular signature not only distinguishes
active TB and LTBI, but additionally does not detect viral and
bacterial infections. We identify immunological heterogeneity of
LTBI, with a percentage of individuals showing a transcriptional
signature of active TB, which only develop longitudinally in a
small proportion of the recent close contacts of TB.

Results
RNA-seq recapitulates the microarray TB gene signature. We
validated our microarray-derived blood 393-transcript signature9

in patients with active TB using RNA-seq in the Berry London
and South Africa cohorts showing identical clustering of active
TB and LTBI cases (Supplementary Figure 2a and b). A 373-gene
signature was then independently re-derived from the Berry
London RNA-seq data (Supplementary Figure 2c; Supplementary
Data 1; Fig. 2a), and validated in the Berry South Africa cohort
(Fig. 2a) and a new Leicester cohort (Supplementary Table 1;
Fig. 2b). Consistent with our previous microarray signature, the
RNA-seq signature was absent in the majority of individuals with
LTBI and healthy controls, and identified with perfect agreement
the LTBI subjects that cluster with active TB, henceforth referred
to as LTBI outliers in both Berry cohorts (Supplementary
Figure 2b and d). A similar proportion of outliers was also
observed in the Leicester cohort (Fig. 2b; Supplementary
Figure 2e). There was a great similarity in the composition of the
microarray and RNA-seqbased signatures, with overabundance of

IFN-inducible genes and underabundance of B- and T-cell genes,
as previously reported9. This was supported by an in silico cel-
lular deconvolution analysis of the RNA-Seq data that showed
diminished percentages of CD4, CD8 and B cells in the blood of
active TB patients, and an increase in monocytes/macrophages
and neutrophils (Supplementary Figure 3), in keeping with our
previous findings using flow cytometry9.

Published TB gene signatures identify acute viral infections.
Applying the published 16-gene signature of Zak et al.32 to the
Berry and Leicester TB cohorts, single-sample Gene Set Enrich-
ment Analysis34 (ssGSEA) across all three cohorts demonstrated
high enrichment of the Zak et al. signature32 in active TB and a
low enrichment in the healthy controls and the majority of LTBI
patients (Fig. 2c). We observed higher enrichment scores in the
LTBI outlier groups (Fig. 3a, b), of all three cohorts that over-
lapped with scores observed in active TB cohorts (Fig. 2c). Higher
enrichment scores were also noted in a small proportion of
IGRA−ve individuals recruited as healthy controls (Fig. 2c). There
was a comparable discrimination in the enrichment scores
between TB and LTBI in the 16-gene signature by Zak et al.32 and
the 27- and 44-gene signatures by Kaforou et al.24 (Fig. 3a). Only
the Kaforou 44-gene signature was developed to discriminate
between active TB and other diseases (including infectious
meningitis, pneumonia, gastric diseases and malignancies)24,
rather than LTBI.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

TB-specifc 20-gene signature and other published signatures

TB vs
LTBI/control

TB vs
other diseases

Influenza
vs. control

Changes in the
blood
transcriptional
signature of TB
contacts over
time

Improvement
of current TB
signatures

Microarray vs.
RNA-seq
findings in TB

Figure 2a and 2b

Figure 2c and 3

Figure 4 and 5

Figure 6,7 and 8

Figure 9

Figure 10

Validation of microarray findings by RNA-sequencing in our published 
cohorts and new cohorts of TB

Evaluation of current TB gene signatures from the literature against TB 
and other infections

Development and testing of a modular TB signature in multiple TB 
cohorts and other diseases

Development of a reduced TB-specific gene signature from modules of 
TB and testing against viral infections and other diseases

Evaluation of the transcriptional profile of LTBI-outliers and comparison 
with active TB

Evaluation of the blood transcriptional signature at baseline and 
longitudinally in TB contacts who went on to develop TB against those 
TB contacts who remained healthy, in a low TB incidence setting

Fig. 1 The objectives of this study. An overview of the analysis undertaken in the study. Figures associated with each objective are stated below the box
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The composition of all three signatures24,32 is dominated
(≥50% of the signature) by IFN-inducible genes (Supplementary
Table 2), raising the possibility that they are not TB specific, but
may also be expressed in acute viral infections. We therefore
evaluated the enrichment of these signatures in two independent
published datasets of influenza infection from Parnell et al.35 and
Zhai et al.36 (Supplementary Table 3; Fig. 3b). Subjects with
influenza at baseline showed a high enrichment score for the
three TB signatures as compared with healthy controls, which
diminished with time in keeping with recovery (Fig. 3b). In
contrast, the enrichment scores for the three signatures demon-
strated heterogeneity in patients diagnosed with bacterial
pneumonia from the Parnell study35, with little change over
5 days and poor discrimination from controls, consistent with our
previous findings for this group9,10 (Fig. 3b).

A modular signature discriminates TB from other diseases. A
limitation of the gene reduction methodologies24,32 used to date
has been the prioritisation of most discriminant genes, with little
consideration to the correlation between the selected genes in this
iterative process. Although non-selective and lacking subjective
bias, this approach favours the selection of a highly correlated
gene set with a narrow immunological focus. In this context,
limited diversity risks the loss of specificity, with an increased
likelihood of overlap between multiple pathologies and responses
to different infections for a specific immune pathway. We
therefore hypothesised that methodologies that incorporate
information from the entire transcriptome may better inform the

development of a unique biosignature for TB. Weighted gene co-
expression network analysis37 (WGCNA) is a well-validated
clustering technique for reducing high dimensional data into
modules that preserve intrinsic relationships between variables
within a network structure. When applied to the blood tran-
scriptome, modules of co-ordinately expressed genes with a
coherent functional relationship are generated. The complete
transcriptome is thus expressed as a signature defined by the
relative perturbation of individual modules.

We applied WGCNA analysis to the blood transcriptional data
from our Berry and Leicester TB cohorts, those TB cohorts
published by Zak and Kaforou24,32, and to several others that
included sample sets of other viral and bacterial infec-
tions35,36,38,39, together with our previous cohorts of sarcoidosis
and lung cancer10 as conditions that may mimic TB, all compared
against their healthy controls (Fig. 4; Supplementary Table 3
(information of published cohorts), Supplementary Data 2 (genes
in each module) and Supplementary Table 4 (module annota-
tion)). The modular signature for active TB was qualitatively
consistent across all the TB cohorts and absent in LTBI. The IFN
modules (light green and yellow) were overabundant in TB
(Fig. 4a), as we have previously published9,10, and also in acute
influenza infection, but absent in bacterial infection9,10 (Fig. 4b).
However, we observed clear differences between TB and both
influenza and other bacterial infections in the pattern of specific
perturbation of other modules including underabundance of gene
expression in the T-cell (blue and cyan) and B-cell (midnight blue)
modules (Fig. 4) for TB. On the other hand, we observed
overabundance of genes in the Cell Proliferation/Metabolism
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(dark turquoise) module and underabundance of genes
associated with Haematopoeisis (pink) in severe influenza, but
not in TB (Fig. 4). In this context, the classical approaches of gene
signature reduction algorithms40–42 used by Kaforou et al.24 to
distinguish TB from LTBI or TB from other diseases, and Zak
et al.32 to identify risk of progression that are notable for
formulating gene signatures that we show here map predomi-
nantly to the yellow module (Interferon/complement/myeloid),
with many of these genes also overabundant in both influenza
cohorts, representative of viral infections (Supplementary Fig-
ures 4 and 5).

A reduced TB-specific signature from modular gene expres-
sion. Interrogating the whole-gene set of the yellow module in
TB, influenza and bacterial infection, we observed a subset of
genes expressed specifically in TB (Fig. 5, orange squares).
Similarly, other genes were specifically expressed in influenza.
Thus, although modular expression of the yellow module is
comparable between TB and influenza, gene subsets within the
module exhibit differential expression between the two condi-
tions. This provides scope to select genes from this dominant
module that can be used to develop a TB signature, while
retaining discriminant value from viral infection. Using this
rationale as a proof of principle, we identified and extracted 303
unique gene candidates in the Berry London TB dataset that were
selectively perturbed in TB, but not in any confounding viral
infections, from all modules that contributed to and exhibited
consistency across the TB datasets that we analysed (Fig. 4;
Supplementary Figure 6a; Supplementary Figure 6b). Using this

gene set, we developed a reduced gene signature to distinguish
active TB from LTBI. We applied the Boruta algorithm41 based
on random forest to this set of genes, yielding 61 genes (Sup-
plementary Figure 6c) that was further reduced by selecting the
top 20 genes, ranked according to the GINI score using Random
Forest (Supplementary Figure 6d). Our 20-gene signature
(Fig. 6a) included genes from six different modules (Supple-
mentary Figure 6d), representing both overabundance and
underabundance in TB. Using a modified Disease Risk Score (See
Methods), we identified the powerful discrimination between
active TB and LTBI/controls in Berry London and South Africa,
and Leicester cohorts (Fig. 6b). In contrast, the signature identi-
fied no difference between influenza and the controls or between
bacterial pneumonia and the controls at any time point across
5 days (Fig. 6c). Our 20-gene signature also discriminated active
TB from LTBI and the controls, in three additional published
cohorts, similarly to the 44-gene signature described by Kaforou
et al.24 (Fig. 7a). Both our 20-gene signature and the 44-gene
signature of Kaforou also discriminated active TB from other
diseases, albeit to a lower extent (Fig. 7b). In keeping with this,
our 20-gene signature, and the signatures published by Zak
et al.32, Kaforou et al.24, Roe et al.27, Sweeney et al.43 and
Maertzdorf et al.44 distinguished active TB and LTBI with high
specificity and sensitivity (Fig. 8a). While our 20-gene signature
did not discriminate influenza from the controls, all other sig-
natures demonstrated excellent discrimination between influenza
from the controls, comparable with their performance for TB
(Fig. 8b), indicating that influenza and other types of viral
infections may inadvertently be detected and confound the TB
diagnosis.
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The modular signature of LTBI outliers resembles that of TB.
We have previously reported the evidence for a small proportion
of LTBI subjects that clustered with active TB using our 393-
transcript signature9 that we refer to as an LTBI outlier group.
This group was reproduced using RNA-seq in the Berry cohorts
(10.9%), and a similar proportion was also identified in our new
Leicester cohort (10%) (Fig. 2). To compare and contrast the
signature of this group with active TB and the majority of LTBI
resembling healthy controls (Supplementary Figure 2d and e), we
specifically examined the WGCNA modular signature in the
LTBI outliers using the combined Berry London and South Africa

datasets and Leicester dataset, respectively, compared with heal-
thy controls (Fig. 9a). The modular signature of LTBI outliers in
both datasets showed overabundance of the lightgreen (IFN/
Pattern recognition receptors) and yellow (IFN/Complement/
myeloid) modules, as seen in active TB (Fig. 9a, b). This is entirely
in keeping with our earlier finding (Figs. 2c and 3a) that gene
enrichment scores using the published signatures24,32, all of
which are comprised primarily of genes from the yellow module
(Supplementary Figures 4 and 5), were consistently higher in the
LTBI outliers. Of note, these reduced gene signatures from
published signatures24,32 were not present in the lightgreen (IFN/
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Pattern recognition receptors) module. In addition to the over-
abundance of the IFN modules, the LTBI outlier group of the
Leicester dataset showed changes in other modules also perturbed
in active TB, suggesting a host response that is evolving towards
the phenotype typically observed in active TB (Fig. 9a). Of par-
ticular interest was the observation of underabundance in the tan
module (Th1 and NK cells) that is associated with IFN-γ
expression, a cytokine required for protection against TB16,45–51.
Underabundance of this module was a consistent finding across
all the TB datasets that we analysed (Figs. 4 and 9).

We performed differential gene expression analysis between
the active TB, LTBI outliers, and LTBI with outliers removed, and
identified a set of 70 genes that was consistently upregulated in
active TB and LTBI outliers, compared to LTBI (without outliers),
in both the Berry and Leicester datasets (Fig. 9d; Supplementary
Data 3), which were enriched for the IFN signalling pathway and
innate immunity.

Dynamic transcriptional heterogeneity in recent TB contacts.
Longitudinal RNA-seq was performed in a subset of our Leicester
cohort (Methods; Fig. 10a) that included 15 IGRA–ve contacts, 16
IGRA+ve contacts, both of whom remained healthy, and 9 sub-
jects recruited as contacts that were subsequently diagnosed with
microbiologically confirmed TB during prospective observation
(Fig. 10a; Supplementary Table 5). Five contacts (4 IGRA+ve and
1 IGRA–ve) identified as outliers at baseline sequencing (Fig. 2b)
were included.

In contrast with other studies, the control population of our
Leicester cohort comprised subjects that were IGRA–ve contacts
of TB. This is a group in which recent exposure to active TB is
documented, placing them at higher risk of recently acquired
infection. Our rationale for this approach was to evaluate whether
blood transcriptional data would identify LTBI that is not
detected using IGRA. The observations that: firstly, the Leicester
control group had greater overlap in the enrichment scores with
the IGRA+ve LTBI group using the Zak and Kaforou signatures,
compared with the Berry London cohort (Figs. 2c and 3a); and
secondly, one subject from this group was identified as an outlier,
together suggest that IGRA testing alone would miss some M.
tuberculosis infection. We therefore elected to define our TB
contacts henceforth as IGRA+ve or IGRA–ve, with no determi-
nistic reference to LTBI.

The modular signatures of both IGRA–ve and IGRA+ve

contacts qualitatively demonstrated considerable between-
subject heterogeneity and some within-subject variability; a
comparison between the groups suggested more transcriptional
activity, in the form of a higher frequency and greater breadth of
modules exhibiting overabundance and underabundance within
the IGRA+ve group (Supplementary Figure 7). For the cohort that
developed TB after recruitment to the study (Supplementary
Figure 7), we stratified subjects on the basis of their longitudinal
clinical course as true progressors (no evidence of TB at baseline,
with features developing during observation); subclinical TB
(objective evidence of pathology, usually as radiological change,
in the absence of reported symptoms); and active TB (symptoms
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at baseline with either radiological or microbiological evidence
for TB subsequently identified) (Supplementary Table 5). This
stratification was performed to better understand the dynamic
relationship between the modular signature and the onset
of TB.

To quantitatively evaluate the modular signatures in each
group for their proximity to TB, we applied the modified disease
risk score for our 20-gene signature (Fig. 10b). Higher-risk scores
were generally observed in the IGRA+ve cohort compared with
the IGRA–ve cohort, although there was considerable variability
and overlap. Longitudinal observations suggest relative stability of
the risk score in the majority of both IGRA+ve and IGRA–ve

subjects that were examined. In contrast, six of the nine subjects
that were diagnosed with TB demonstrated high baseline
modified disease risk scores that tended to increase further, prior
to diagnosis of active TB. In the other three contacts (subjects
245, 348 and 278), the modified disease risk score remained low
at all time points, before and at the time of TB diagnosis
(Fig. 10b).

Baseline scores demonstrated clustering near the baseline for
IGRA–ve subjects (Supplementary Figure 8; Fig. 10b). In contrast,
both the IGRA+ve group and the group that developed TB
exhibited a higher risk score (Fig. 10b; Supplementary Figure 8).
Subjects identified as outliers (Fig. 2b), marked with an asterisk*
(Fig. 10b), had higher TB scores than majority of the LTBI
subjects that were not outliers (Fig. 10b). However, some
discordance between the clustering outcomes (Fig. 2b) and the
TB score was observed (Fig. 10b), with two subjects that were not
outliers having TB scores within the outlier range (subjects 185
and 040). Furthermore, the IGRA–ve subject categorised as an
outlier (subject 209) had a very low TB score (Fig. 10b). Overall,

the longitudinal within-subject expression of the 20-gene TB
signature in both the IGRA+ve and IGRA−ve cohorts could be
categorised into the following three groups: (i) subjects that did
not express the signature at any time point (10 of the 15 IGRA−ve

subjects and 6 of the 16 IGRA+ve subjects); (ii) subjects that
transiently expressed the signature, albeit generally to a low
extent, in the first 3–4 months (4 of the 15 IGRA−ve subjects and
8 of the 16 IGRA+ve subjects; (iii) subjects that already had or
developed a persistent TB signature at and beyond 4 months (1 of
the 15 IGRA−ve subjects and 2 of the 16 IGRA+ve subjects)
(Fig. 10b). We did not observe the subjects developing the
signature de novo after 3 months. Using the 16-gene signature of
Zak et al.32, we reported similar findings (Supplementary
Figure 9). However, this 16-gene signature showed scores for
additional IGRA−ve and IGRA+ve individuals (Supplementary
Figure 9, marked with red arrow), possibly resulting from
intercurrent infections.

In the cohort that developed TB, five of the nine subjects
demonstrated high baseline modified disease risk scores (Fig. 10b).
In six of the nine subjects, a moderate to high TB score was
observed at the visit prior to TB diagnosis. For the remaining
three subjects (subjects 245, 278 and 348), a 20-gene signature of
TB was not expressed. For subject 245, an explanation may be
that this patient received antibiotics for bacterial pneumonia,
which are known to have immunosuppressive effects that may
have affected expression of the immune signature. For subjects
278 and 348, we have not identified the potential confounding
factors for this observation. Subjects categorised as true
progressors exhibited a dynamic modular signature, with
increasing TB scores at all visit time points within 2 months of
diagnosis.
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Discussion
We have recapitulated a blood transcriptional signature of active
TB using RNA-seq, previously reported by microarray9,24,25,30,52,
that discriminates active TB from LTBI and healthy individuals,
and is largely characterised by an overabundance of IFN-
inducible genes and an underabundance of B- and T-cell genes.
We show that an advanced modular approach, rather than a
traditionally derived reduced gene set, is robust in discriminating
active TB patients from individuals with LTBI, whilst additionally
not detecting acute viral and bacterial infections. Our findings
highlight the need to consider additional approaches to develop
transcriptional biomarkers of the highest sensitivity and specifi-
city for distinguishing active TB from LTBI and other diseases.
Using this modular approach and our reduced gene set, we also
demonstrate the heterogeneity of LTBI in a prospective study of
contacts of patients with active TB.

RNA-seq32 has now replaced the microarray9,10,23–26,30,31,52–54

for the transcriptional studies and the existing literature is limited
by uncertainty regarding the equivalence of RNA-seq and
microarray. In this study, we repeated the analysis of our previous
Berry et al.9 cohorts using RNA-seq and provided reassurance
that RNA-seq recapitulates the outcomes derived using micro-
array. The vast majority of genes in our RNA-seq derived 373-
gene signature also comprised our original 393-gene transcript
signature. Furthermore, there was equivalence in allocation of
subjects to clusters, including those with LTBI that clustered with
active TB and thus referred to as outliers. This is of considerable

translational significance, as no field applicable test is likely to be
based on RNA-seq or microarray analysis.

In transcriptomic studies of the disease, there has been focus
on deriving reduced gene signatures to develop clinical diag-
nostics, with inconsistencies in both deriving and defining the
optimal reduced gene signature. Studies defining signatures dis-
tinguishing active TB and LTBI24,25,27,32,43,55 are illustrative of
this issue. We evaluated the diagnostic performance of some of
the published reduced gene signatures24,27,32,43,44 on our inde-
pendent TB cohorts and confirmed excellent specificity and
sensitivity to distinguish active TB patients from those with LTBI.
However, we identified dominance of IFN-inducible genes in
these signatures and demonstrated the enrichment of these sig-
natures in published datasets of acute influenza infection35,36,
which represents the immune response globally observed in viral
infections. However, these signatures was not apparent in bac-
terial pneumonia35, highlighting the apparent lack of IFN-
inducible genes in the immunological response to bacterial
pneumonia. However, it is clear that the immune response in TB
has a dominant IFN-inducible gene signature resembling that of
viral infections. It follows that such IFN-inducible signatures,
whilst optimised for discriminating active TB patients and heal-
thy individuals, with and without LTBI, with high sensitivity, may
also detect other pathologies and/or infectious diseases that may
exhibit a similar clinical presentation. It is clear that IFN-
inducible genes are dominant discriminators of active TB from
healthy LTBI, leading to preferential selection of this gene set to
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Fig. 8 Comparison of our TB-specific 20-gene signature and others in distinguishing TB and influenza. a Receiver operating characteristic curves (ROC)
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curve (AUC) is shown for each ROC curve

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04579-w

10 NATURE COMMUNICATIONS |  (2018) 9:2308 | DOI: 10.1038/s41467-018-04579-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


a

c

d

b

Annotation

DNA binding Black

Blue

Brown

Cyan

Darkgreen

Darkred

Darkturquoise

Green

Greenyellow

E
nr

ic
hm

en
t s

co
re

Grey60

Lightcyan

Lightgreen
Lightyellow

Magenta

Midnightblue

Pink

Purple

Red

Royalblue

Salmon

Tan

Turquoise

1.3

Log2
fold change

–5.05 0 5.05

0

–1.3
0.2

E
ig

en
ge

ne
 e

xp
re

ss
io

n

0.1

–0.1

C
on

tr
ol

s
(w

ith
ou

t
ou

tli
er

s)

C
on

tr
ol

s
(w

ith
ou

t
ou

tli
er

s)

C
on

tr
ol

s
(w

ith
ou

t
ou

tli
er

s)

C
on

tr
ol

s
(w

ith
ou

t
ou

tli
er

s)

LT
B

I
(w

ith
ou

t
ou

tli
er

s)

LT
B

I
(w

ih
to

ut
ou

tli
er

s)

LT
B

I
(w

ih
to

ut
ou

tli
er

s)

LT
B

I
(w

ith
ou

t
ou

tli
er

s)

LT
B

I–
ou

tli
er

s

LT
B

I–
ou

tli
er

s

LT
B

I–
ou

tli
er

s

LT
B

I–
ou

tli
er

s

A
ct

iv
e 

T
B

(w
ith

ou
t

ou
tli

er
s)

A
ct

iv
e 

T
B

(w
ith

ou
t

ou
tli

er
s)

A
ct

iv
e 

T
B

(w
ith

ou
t

ou
tli

er
s)

A
ct

iv
e 

T
B

(w
ith

ou
t

ou
tli

er
s)

0.0

0.2

0.1

–0.1

0.0

0.2

0.1

–0.1

0.0

0.2

0.3

0.1

–0.1

0.0

Yellow

T cells

T cells

Ubiquitination

Coagulation/Granulocytes

Th2/Eosinophils/Mast cells

Immunoglobulins

Cell cycle

B cells

Hematopoiesis

Extracellular matrix

PRR*/Enzymes

Cell structures

Microtubule/Enzymes

NK & T cells

Ion channels/cell cycle

*pattern recognition receptor
’complement system

#without outliers

Berry combined

B
er

ry
 c

om
bi

ne
d

Le
ic

es
te

r

-L
og

10
 F

D
R

 P
-v

al
ue

Log2 fold change

Berry combined

Leicester

Leicester

Berry combined Leicester
Interferon/C′/Myeloid

Myeloid/C′/Adhesion

Interferon/PRR*

Cell proliferation/Metabolism

Innate immunity/PRR*/C′

Inflammasome

Innate/Hemopoietic mediators

Berry
combined Leicester

Module

Yellow module (n= 360)

Tan module (n=157)

IFNG

TBX21

PRSS23

IL2RB

IKZF3

PRF1 PLEKHF1

GNLY

TIGIT
ZNF831

FASLG

NKG7

PYHIN1

SMAD7

NMUR1

YPEL1

CHST12

TTC22
ARL4C

FGFBP2

FRMPD3 GZMH

SH2D2A

MATK

CD247 ADGRG1

DLG3

SLAMF6

NFATC2

CCL4

CCDC102A

CACNA2D2

TGRBR3

RUNX3

LLGL2
TTC16 GFI1

PPP1R16B
SYTL2

FCRL6

EOMES GPR68
SAMD3

NCALD

S1PR5 LAG3 GZMA

KLRD1

ITPRIPL1 PPP2R2B TOX

Berry combined Leicester Compared to
respective controls
(without outliers)

LTBI–outliers

LTBI–outliersActive TB (without outliers)

RHBDF2

GCH1

PML

NUB1

TRAFD1

GADD45B

TYMP

APOL2
TDRD7

DAPP1

TNFSF10

CHMP5

DTX3L IFI16

IFIH1

EIF2AK2

PARP14

PARP12
LYSMD2

MX2

ADAR

SP100

TRIM22

TRIM5

MX1

TNFSF13B

HERC5 SAMD9L

SAMD9

IL1RN
ZNFX1

ZCCHC2 IFI44L

LAMP3

RSAD2

CMPK2

RNF213

TRANK1PLSCR1

IFIT1

IFIT2

IFI44

IFI6 ISG15

OAS3

OASL

IFIT3

OAS2

ZBP1

DDX60

DDX60L

DDX58

NT5C3A

STAT2

TOR1B

XAF1

IFIT5

APOL1 APOL6

TAP1

GBP2

NPC2
TAP2

LAP3

PSTPIP2

RTP4

GRAMD1B

UBE2L6

IL15RA

PSME2

TRIM69

SECTM1

SORT1

FBXO6

ASPHD2

DUSP3 VAMP5

LHFPL2

AIM2

FCGR1B

FCGR1A

EPSTI1

BATF2

ANKRD22

SEPT4

STAT1

SERPING1

PSMB9

IFI35

TRIM21

IRF1

ATF3

GBP6

CD274

WARS

GBP1

GBP5

GBP4

MTHFD2

Active TB (without outliers)

Lightgreen module (n= 86)

A
ct

iv
e 

T
B

#
LT

B
I–

O
LT

B
I#

A
ct

iv
e 

T
B

#

LT
B

I–
O

LT
B

I#

0.2

0.0

–0.2

0.1

30

Active TB (without outliers)
vs.

LTBI (without outliers)

LTBI–Outliers
vs.

LTBI (without outliers)

Berry combined

Berry combined

Active TB
(without outliers)

(n=402)

Active TB Active TB 316

70LTBI–Outliers LTBI–Outliers

Active TB
(without outliers)

(n=571)

LTBI–
outliers
(n=110)

9

4

80
25

171
50

2

222

31

163
0

0

20

0
70

All 4 comparrisons 70

LTBI–
outliers
(n=334)

Leicester

Leicester Overlap

Upregulated genes
compared to

LTBI (without outliers)

60

50

40

30

20

10

0

25

20

15

10

5

0

30

25

20

15

10

5

0

30

25

20

15

10

5

0

–4 –2 0 2 4 –4 –2 0 2 4

–4–6 –2 0 2 4 6 –4–6 –2 0 2 4 6

0.0

–0.1

–0.2

E
ig

en
ge

ne
 e

xp
re

ss
io

n

C
on

tr
ol

s
(w

ith
ou

t
ou

tli
er

s)
LT

B
I

(w
ih

to
ut

ou
tli

er
s)

LT
B

I–
ou

tli
er

s

A
ct

iv
e 

T
B

(w
ith

ou
t

ou
tli

er
s)

C
on

tr
ol

s
(w

ith
ou

t
ou

tli
er

s)
LT

B
I

(w
ih

to
ut

ou
tli

er
s)

LT
B

I–
ou

tli
er

s

A
ct

iv
e 

T
B

(w
ith

ou
t

ou
tli

er
s)

Log2
fold change

–1.56 0 1.56

Fig. 9 Blood transcriptional profile of LTBI outliers compared with active TB. a Modules of co-expressed genes tested in LTBI outliers from the Combined
Berry and Leicester cohorts. Fold enrichment scores derived using QuSAGE are depicted, with red and blue indicating modules over- or underexpressed,
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define an optimal signature. However, this dominance precludes
consideration of most other gene sets and may also detect other
diseases, such as viral infections. This view is supported by the
differences in the reported signatures of Kaforou et al.24 that were
independently derived to discriminate active TB from LTBI or

active TB from other diseases. The 44-gene signature, derived
using the latter approach, included more genes and exhibited
greater diversity when compared with the 27-gene signature for
discriminating LTBI from TB. However, both signatures24 in
addition to others27,32,43,44 still showed high specificity and

Contacts of active TB patients followed over time in Leicester

TB-specific 20-gene signature in TB contacts followed over time
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Fig. 10 Blood transcriptional profile of TB contacts followed over time. a Schematic representing active TB patients from the Leicester cohort and their
contacts followed over time. Purple, black and red represent IGRA−ve (controls), IGRA+ve (LTBI) and active TB patients, respectively. b Bar plots depicting
the modified disease risk scores using the TB-specific 20-gene signature in TB contacts who remained IGRA−ve and did not develop TB (n= 15), TB
contacts who remained IGRA+ve and did not develop TB (n= 16) and TB contacts who developed TB during the study (n= 9). For TB contacts who
developed TB during the study, the time point when the contact was diagnosed with active TB in the clinic is represented by a red bar. Baseline in the
barplot is set at 766.64, average of all Baseline time point modified disease risk scores from all IGRA−ve contacts (n= 15)
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sensitivity for influenza. These observations suggest that a trade-
off exists between these two objectives, of achieving high sensi-
tivity and high specificity, and that a single signature may not be
optimal for both. The development of biomarkers for clinical
practice is defined and optimised according to the clinical context
for use. In the clinical context, the two objectives of a TB sig-
nature fulfil the distinct requirements. A signature that dis-
criminates active TB from LTBI is a useful screening tool for
testing in healthy populations. Identification of an active TB
signature when screening for LTBI can inform the need for fur-
ther investigation. In contrast, a signature that discriminates
active TB from other diseases would be applied for the investi-
gation of unwell patients presenting with symptoms that suggest
the possibility of TB, but may also be other infections including
viral infections. While discrimination of TB from LTBI in
screening programmes and TB from other diseases in patients
that are unwell represent distinct clinical settings, the potential
requirement of two different biomarkers adds complexity to the
models of implementation, particularly in a field setting. Fur-
thermore, there is overlap between screening and clinical diag-
nostics as people attending for screening may present with an
intercurrent illness (either symptomatic or asymptomatic) that is
unrelated to TB. A single biomarker that is able to achieve reliable
discrimination of TB from both LTBI and other conditions will
have greater utility in clinical practice. A trade-off in sensitivity to
distinguish active TB from LTBI may result from losing the IFN-
inducible genes that are highly induced by viral infections.
However, it is possible that this knowledge will allow the reten-
tion of such genes that distinguish active TB from LTBI with high
sensitivity, by also including additional genes that are detected in
response to viral infections and not TB, as an additional dis-
criminatory approach to maintaining high sensitivity and speci-
ficity for TB against LTBI.

We developed the WGCNA-derived modular signature for
active TB across our cohorts and determined consistency of the
signature in our cohorts and those from other published datasets.
When all 23 modules were taken into consideration, the signature
in active TB was distinct from both viral and bacterial infections.
In keeping with our earlier findings of an IFN-inducible signature
of active TB9, we here also demonstrate an IFN-inducible gene
signature in both the active TB and LTBI outliers. The IFN-
inducible signature, however, is now distributed across the three
different modules; two overabundant modules; the yellow module
that includes BATF2, AIM2, FCGR1A and B, and a number of
GBPs; the light green module, which we show is also strongly
overabundant in influenza infection, includes many IFITs, ISGs
and OASs, and very reminiscent of type-I IFN-inducible genes
induced during viral infections. In contrast, the Tan module,
which includes IFNG and TBX21, is significantly underabundant
in TB and some LTBI outliers, in keeping with the reported
downregulation of IFNG expression and signalling by high levels
of type I IFN, contributing to the pathogenesis of TB15. This
could also represent the reduced number of CD4+ and CD8+

T cells that we observe in the blood of active TB patients, as we
have previously discussed9. We also observed that this IFNG
module was underabundant in those contacts who progressed to
TB (7 out of 9), whereas few of the IGRA+ve (3 out of 16) and
IGRA−ve (2 out of 15) showed an underabundance of this
module. This supports the hypothesis that the ratio of type I IFN
versus IFNG-inducible genes may be critical in determining
protection or progression to TB disease.

To tackle the challenge of developing a high performing TB
signature, we explored the modular tool for systematic gene
reduction into biologically meaningful modules that together
represent the entire transcriptome. Furthermore, we additionally
identified the gene clusters that were differentially expressed in

TB, but not influenza, from within the modules of IFN signalling.
This was an important observation as the opportunity to select
specific genes from these dominant modules offered scope to
improve the specificity of the signature and discrimination of TB
from LTBI and other diseases. Based on these findings, we
developed and evaluated a two-step approach for the targeted
gene selection to derive a TB signature. Modules perturbed in TB
were first interrogated to establish a gene set comprising genes
that are differentially expressed in TB, compared with other
diseases. A priori gene selection in this way provided a gene set
with high TB specificity against other diseases. In the second step,
traditional gene reduction methodology was applied to separate
TB from LTBI using this gene set. As a proof of principle, we
developed a 20-gene signature using this approach that was
diverse in its modular representation, incorporating the genes
from six modules. We demonstrate here that this 20-gene sig-
nature has robust sensitivity and specificity for discriminating
active TB from LTBI in our cohorts, in addition to across a
number of different published cohorts10,24,27. Our 20-gene sig-
nature also showed discrimination of TB from other diseases,
similarly to the 44-gene signature of Kaforou et al.24. However,
our 20-gene signature did not detect influenza from healthy
controls, in contrast to all the other reported TB sig-
natures24,27,32,43,44, which not only detected TB at high specificity
and sensitivity against LTBI, but additionally showed a high
specificity and sensitivity for influenza versus the controls.
Therefore, the development of our 20-gene signature provides a
novel approach to discriminate TB from LTBI, whilst not
detecting viral infections, here exemplified by influenza, offering
scope for further refinement in further translational clinical
studies.

Heterogeneity of LTBI was suggested in our previous study9

with the identification of an outlier group after clustering. In the
present study, we identified a similar proportion of LTBI outliers
in the new Leicester cohort. We demonstrated the enrichment
scores using the published signatures of Zak et al.32 and Kaforou
et al.24, dominated by IFN-inducible genes that were higher in the
outliers compared with other LTBI in both the Berry and Leice-
ster cohorts, and overlapped with scores obtained in active TB.
These observations suggested that LTBI outliers are characterised
by an overabundance of IFN-inducible genes, a view that was
corroborated in their modular signatures, together with identifi-
cation of 70 selectively upregulated genes common to both the
Berry and Leicester LTBI outliers, which mapped to IFN signal-
ling pathways. The clinical significance of these observations
remains unclear, however the recent study of Zak et al.32 suggests
that the expression of a TB-like signature, characterised by
enrichment of IFN-inducible genes, which we show from our
analysis, may indicate either subclinical disease or increased risk
of progression to TB within a few months, although this may be
confounded by viral infections.

We utilised the modular signature for deeper characterisation
of heterogeneity in recent TB contacts and identified instances of
similarity with TB in a few of the IGRA−ve (2) and IGRA+ve (4)
individuals, representing IFN and other signalling pathways.
There were higher perturbations in the modular signature in
IGRA+ve individuals. Our observations of low modular activity
for the IGRA−ve cohort is consistent with the absence of LTBI
and likely to reflect a robust finding. In contrast, the enrichment
scores of the published signatures we tested indicated con-
siderably more overlap of IGRA–ve subjects with the IGRA+ve

group, again suggesting impaired specificity of these signatures.
Other modular changes, discordant with TB, appeared to be
driven by differences in the pattern of perturbation in other
modules than those representing IFN signalling pathways. The
majority of contacts who developed TB had a modular signature
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(six out of nine) comparable to that of active TB patients,
observable before a diagnosis was made.

In keeping with the global modular activity, we observed evi-
dence of dynamic change in the reduced 20-gene signature,
derived from the modules, of some TB contacts that can be
categorised into three patterns of longitudinal expression that
may reflect early immunological events following TB exposure.
We suggest that the absence of a signature at any time point may
indicate the absence of infection being acquired. This pattern was
seen in 67% of our IGRA−ve cohort and 38% of our IGRA+ve

cohort. A transient signature may indicate an infection that was
acquired, but has either been controlled or cleared. In this con-
text, the observation that 26% of our IGRA−ve cohort and 50% of
our IGRA+ve cohort demonstrated this pattern suggests that the
blood transcriptional signature represents immune responses that
may precede priming and activation of IFN-γ producing CD4 T-
cells. Finally, subjects with an evolving and persistent modular TB
signature may represent subjects that have acquired an infection
requiring active control to maintain latency. This pattern was
seen in 7% of IGRA−ve subjects and 12% of IGRA+ve subjects.
These observations require validation in larger longitudinal
cohorts, but do suggest that the blood transcriptome may offer a
sensitive approach to characterising the state of latent infection
following TB exposure, with implications for better stratification
of prospective TB risk.

For our cohort of nine subjects identified with TB during
prospective observation, a high or rising 20-gene signature score
was observed in most. This was most apparent in the subjects
defined as true progressors who had no signature at baseline. Our
study was limited by small numbers and the identification of TB
within a short period of prospective observation, suggesting that
incipient (or subclinical) TB is likely to have been present at the
time of baseline assessment in a proportion of cases. We are
therefore presently unable to comment on the dynamic properties
of this response or determine accurately the interval between the
signature becoming detectable and manifestation of active TB. It
is notable also that three subjects did not express a signature at
any time point and yet went on to be diagnosed with TB. One of
these was on anti-bacterial drugs, which have known immuno-
suppressive properties, which could have diminished the sig-
nature. Additionally, interrogating the modules for these subjects
indicates a weak transcriptional response that may suggest
pathogen-induced host immunomodulation, which is well
recognised in active TB16,45. We are unable to determine whether
a delayed transcriptional response would have developed over the
natural timecourse of infection, as our rigorous protocol of fre-
quent surveillance identified active disease at the earliest stage,
however, it is apparent that heterogeneity of the host immune
response and its association with the state of M. tuberculosis
requires further investigation.

A robust and objective definition of LTBI is unavailable.
Patients with IGRA positivity have a heterogeneous risk of
developing TB, and secondly, a proportion of patients that are
IGRA-ve at screening proceed to develop TB in the future. It
therefore follows that an IGRA is not a reliable gold standard to
determine the validity of new biomarkers. In this respect, our
observations of a TB-like modular signature being expressed in
both IGRA+ve and IGRA-ve contacts of TB is not surprising. The
difference between the groups in the proportion of subjects
expressing the signature (19% in IGRA+ve vs. 7% in IGRA–ve) is
comparable with the relative risk of TB, according to the IGRA
status (incident rate ratio for TB, 2.1156). This provides support
for the validity of our observations and supports developing a
transcriptional biomarker for defining LTBI.

Here in summary, we have validated the whole blood tran-
scriptomic findings, previously identified by microarray by RNA-

sequencing of our previously published TB cohorts and a new
cohort from a low-TB-incidence setting. We further developed an
advanced modular signature of active TB, and validated it in our
new cohort and a number of TB cohorts published by other
groups. Using this modular signature, we obtained a reduced TB-
specific 20-gene signature that showed very high specificity and
sensitivity in individuals with active TB against those with LTBI
and other diseases. Moreover, this signature did not detect
influenza, representative of many viral infections that share a
strong IFN-inducible signature, providing a proof of principle for
the development of transcriptional biomarkers for TB as diag-
nostics, with the aim of obtaining the highest sensitivity, whilst
maintaining specificity against LTBI and other diseases. Our
findings highlight the need to consider additional approaches to
develop transcriptional biomarkers of the highest sensitivity and
specificity for distinguishing active TB from LTBI and other
diseases. The reduced gene signatures for discriminating active
TB from LTBI and other infections also demonstrated important
clinical outcomes and heterogeneity in LTBI. Our improved
approach for the development of diagnostic biomarkers consist-
ing of reduced gene sets is broadly applicable across diverse
infectious and inflammatory diseases.

Methods
Study cohorts for analysis. Cohorts analysed in Berry et al. 9 using microarrays
were subjected to RNA-seq and analysed as part of this study. Test and validation
sets, termed Berry London and Berry South Africa sets, respectively, based on the
geographical location of patient recruitment, were retained for RNA-seq analysis in
this study (Supplementary Figure 1a).

An independent cohort was recruited (between September 2015 and September
2016) at the Glenfield Hospital, University Hospitals of Leicester NHS Trust,
Leicester, UK. The cohort consisted of active TB patients (n= 53) and recent close
contacts (n= 108). Patients who were pregnant, immunosuppressed, had previous
TB or previous treatment for LTBI were excluded from this study. All participants
had routine HIV testing and patients with a positive result were excluded. Patients
with active TB were confirmed by laboratory isolation of M. tuberculosis on culture
of a respiratory specimen (sputum or bronchoalveloar lavage) with sensitivity
testing performed by the Public Health Laboratory Birmingham, Heart of England
NHS Foundation Trust, Birmingham, UK. All the recent close contacts were IGRA
tested using the QuantiFERON Gold In-Tube Assay (Qiagen) and were
subsequently categorised as either IGRA negative (n= 50) or IGRA positive (n=
49). All participants were prospectively enrolled and sampled before the initiation
of any anti-mycobacterial treatment. A subset of subjects recruited initially as close
contacts were identified with active TB during longitudinal assessment (n= 9),
based on microbiological confirmation of M. tuberculosis by culture or positive
Xpert MTB/RIF (Cepheid). (Supplementary Tables 1 and 5; Fig. 7a). The Research
Ethics Committee (REC) for East Midlands – Nottingham 1, Nottingham, UK
(REC 15/EM/0109) approved the study. All participants were older than 16 years
and gave written informed consent.

RNA extraction and cDNA library preparation for RNA-seq. A volume of 3 ml
whole blood was collected by venepuncture into Tempus™ blood RNA tubes (Fisher
Scientific UK Ltd), tubes were mixed vigorously immediately after collection and
then stored in a −80 °C freezer prior to use. Total RNA was isolated from 1ml
whole blood using the MagMAX™ for Stabilized Blood Tubes RNA Isolation Kit
(Applied Biosystems/Thermo Fisher Scientific), according to the manufacturer’s
instructions. Globin RNA was depleted from the total RNA (1.5–2 µg) using the
human GLOBINclear kit (Thermo Fisher Scientific), according to the manu-
facturer’s instructions. The RNA yield of the total and the globin-reduced RNA was
assessed using a NanoDrop™ 8000 spectrophotometer (Thermo Fisher Scientific).
Quality and integrity of the total and the globin-reduced RNA were assessed with
the HT RNA Assay reagent kit (Perkin Elmer) using a LabChip GX bioanalyser
(Caliper Life Sciences/Perkin Elmer) and assigned an RNA Quality Score (RQS).
The samples (200 ng) with an RQS > 6 were used to prepare a cDNA library using
the TruSeq Stranded mRNA HT Library Preparation Kit (Illumina). The tagged
libraries were sized and quantitated in duplicate (Agilent TapeStation system)
using D1000 ScreenTape and reagents (Agilent), normalised, pooled and then
clustered using the HiSeq® 3000/4000 PE Cluster Kit (Illumina). The libraries were
imaged and sequenced on an Illumina HiSeq 4000 sequencer using the HiSeq®
3000/4000 SBS kit (Illumina) at a minimum of 25 million paired-end reads (75 bp)
per sample.

RNA-seq data analysis. The raw paired-end RNA-seq data obtained for Berry
London, Berry South Africa and Leicester cohorts were processed separately and
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subjected to quality control using FastQC (Babraham Bioinformatics) and Mul-
tiQC57. Trimmomatic58 v0.36 was used to remove the adapters and filter raw reads
below 36 bases long, and leading and trailing bases below quality 25. The filtered
reads were aligned to the Homo sapiens genome Ensembl GRCh38 (release 86)
using HISAT259 v2.0.4 with default settings and RF rna-strandedness including
unpaired reads resulting from Trimmomatic. The mapped and aligned reads were
quantified to obtain the gene-level counts using HtSeq60 v0.6.1 with default settings
and reverse strandedness. Raw counts were processed using the bioconductor
package edgeR61 v3.14.0 in R. Genes expressed with counts per million (CPM) > 2
in at least five samples were considered and normalised using trimmed mean of M-
values (TMM) to remove the library-specific artefacts. Only protein-coding genes
were considered for subsequent analyses. Differentially abundant genes were cal-
culated using the likelihood ratio tests in edgeR by fitting generalised linear models
to the non-normally distributed RNA-seq data. Genes with log2 fold change >1 or <
−1 and false discovery rate (FDR) p-value < 0.05 corrected for multiple testing
using the Benjamini–Hochberg (BH) method62 were considered significant. For
subsequent analysis, voom transformation was applied to RNA-seq count data to
obtain normalised expression values on the log2 scale. For Berry Combined dataset,
the raw counts from Berry London and South Africa cohorts were combined as one
dataset and processed in edgeR, as described above, and the batch effects were
removed from log2 expression values using surrogate variable analysis (sva) using
the bioconductor package sva63 in R. RNA-Seq data obtained from Zak et al.32 in
the SRA format were converted to fastq files using the SRA toolkit and processed as
above.

Microarray data analysis. External microarray datasets retrieved from GEO as
non-normalised matrices were processed in GeneSpring GX v14.8 (Agilent Tech-
nologies). Flags were used to filter out the probe sets that did not result in a
‘present’ call in at least 10% of the samples, with the ‘present’ lower cut-off of 0.8.
Signal values were then set to a threshold level of 10, log2 transformed, and per-
chip normalised using 75th percentile shift algorithm. Next, per-gene normal-
isation was applied by dividing each messenger RNA transcript by the median
intensity of all the samples. The training, test and validation sets in Bloom et al.10

were combined and the batch effects were removed using sva63. In Kaforou et al.24,
HIV+/− groups were combined and analysed as one dataset. In all datasets,
multiple probes mapping to the same gene were removed and the probe with the
highest inter-quartile range across all samples was retained to match with the
RNA-seq data. Differentially expressed genes were identified using the bio-
conductor package limma64 in R and only the genes with FDR p-value < 0.05
corrected for multiple testing using the BH method62 were considered significant.

Gene signature enrichment analysis. Enrichment of the TB gene signatures was
carried out on a per sample basis using ssGSEA34 using the bioconductor package
gsva65 in R. The enrichment scores were obtained similar to those from Gene Set
Enrichment Analysis (GSEA), but based on absolute expression rather than dif-
ferential expression34 to quantify the degree to which a gene set is over-represented
in a particular sample.

Weighted gene co-expression network analysis. Modular analysis was per-
formed using the WGCNA package in R. The modules were constructed using the
Berry Combined dataset (combined Berry London and South Africa sets) using
5000 genes with highest covariance across all samples using log2 RNA-seq
expression values. A signed weighted correlation matrix containing pairwise
Pearson correlations between all the genes across all the samples was computed
using a soft threshold of β= 14 to reach a scale-free topology. Using this adjacency
matrix, the topological overlap measure (TOM) was calculated, which measures the
network interconnectedness and is used as input to group highly correlated genes
together using average linkage hierarchical clustering. The WGCNA dynamic
hybrid tree-cut algorithm66 was used to detect the network modules of co-
expressed genes with a minimum module size of 20. All the modules were assigned
a colour arbitrarily and annotated using Ingenuity Pathway Analysis (IPA)
(QIAGEN Bioinformatics) and Literature Lab (Acumenta Biotech, Massachusetts,
USA). Literature Lab mines the PubMed literature and identifies the significant
associations in 20 MeSH (Medical Subject Headings) domains including pathways,
diseases and cell biology. Significantly enriched canonical pathways from IPA (p-
value < 0.05) and strongly associated terms from Literature Lab were obtained.
Modules were assigned annotation terms based on the pathways and the processes
that showed corroboration between both tools (Supplementary Table 4). Repre-
sentative terms were then selected and assigned to the modules (Fig. 4). For each
module, module eigengene (ME) values were calculated, which represent the first
principal component of a given module and summarise the gene abundance profile
in that module. For each module, top 50 hub genes with high intramodular con-
nectivity and a minimum correlation of 0.75 were calculated and exported into
Cytoscape v3.4.0 to create interaction networks.

WGCNA module enrichment analysis. Fold enrichment for the WGCNA mod-
ules was calculated using the quantitative set analysis for gene expression
(QuSAGE)67 using the bioconductor package qusage in R to identify the modules
of genes over- or underexpressed in a dataset, compared to the control group.

Linear-mixed models were incorporated in the analysis using QGen algorithm in
QuSAGE, and patients in the datasets with repeated measures were modelled as
random effects. Only modules with FDR p-value < 0.05 were considered significant.
To test the modules in the microarray datasets, only those modules were analysed
that had at least 70% of total genes within the module with a match in the
filtered microarray data. To obtain a modular profile of a disease group, single-
sample enrichment scores were calculated using ssGSEA and the average enrich-
ment score of the control group was subtracted from the average enrichment score
of the disease group. To obtain a modular profile on a single sample basis, the
average enrichment score of the control group was subtracted from the enrichment
score of the sample.

Class prediction. In order to develop a TB-specific gene signature, only genes
significantly differentially expressed in Berry London set and not in other flu
cohorts were considered from only those modules that were perturbed in TB (a
module was considered perturbed in TB if it followed a similar profile (up or down
compared to the control) in at least four of the five TB datasets (Berry London,
Berry South Africa, Leicester cohort, Kaforou et al.24 and Zak et al.32), and given
that for the fifth dataset, the module did not reach significance when compared to
control). These genes were then reduced using the Boruta41 package in R. Boruta is
a feature selection wrapper algorithm based on random forest and is particularly
useful in biomedical applications as it captures the features by incorporating the
outcome variable. Next, the features identified as predictive using Boruta were
ranked using the GINI score in random forest and the top 20 genes were selected.
For classifying patients as active TB or latent TB, the random forest algorithm was
used in caret68 package in R using LOOCV over 1000 iterations. Each of the TB
datasets was randomly split into training (70%) and test (30%) sets to classify
patients as active TB or latent TB. For analysis in the Zhai et al.36 dataset, the
Influenza A group at Day 0 and healthy controls were randomly split into training
(70%) and test (30%) sets to classify patients as infected with Influenza A or healthy
controls.

Modified disease risk score. To test the TB-specific 20-gene signature, a modified
version of the disease risk score (DRS) established by Kaforou et al.24 was used.
Briefly, the DRS is obtained from the normalised data in a non-log space by adding
the total intensity of the upregulated transcripts and subtracting the total intensity
of downregulated transcripts from the gene signature. In this study, the normalised
CPM values were used for the RNA-seq data and non-log normalised expression
values were used for the microarray data. As part of the modification of the
DRS, the absolute values of the total intensity of upregulated transcripts and
total intensity of downregulated transcripts were added to obtain a composite
score.

Deconvolution analysis. Deconvolution analysis for quantification of relative
levels of distinct cell types on a per sample basis was carried out using CIBER-
SORT69. CIBERSORT estimates the relative subsets of RNA transcripts using linear
support vector regression. Cell signatures for 22 cell types were obtained using the
LM22 database from CIBERSORT and grouped into 11 representative cell types.
The fractions of cell types were compared across different groups using one-way
ANOVA, and p-value < 0.05 was considered significant.

Data availability. Sequence data that support the findings of this study has been
deposited in NCBI GEO database with the primary accession code GSE107995 and
in BioProject with the primary accession code PRJNA422124. TB datasets refer-
enced in this study as comparators are available in GEO with the primary accession
codes GSE37250 and GSE79362, in BioProject with the primary accession code
PRJNA315611 and in SRA with the primary accession codes SRP071965,
GSE20346, GSE68310, GSE42026, GSE60244 and GSE42834.
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