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Solvent-assisted programming of flat polymer
sheets into reconfigurable and self-healing 3D
structures

Yang Yang® "2, Eugene M. Terentjev® 2, Yen Wei' & Yan Ji®'

It is extremely challenging, yet critically desirable to convert 2D plastic films into 3D
structures without any assisting equipment. Taking the advantage of solvent-induced bond-
exchange reaction and elastic-plastic transition, shape programming of flat vitrimer polymer
sheets offers a new way to obtain 3D structures or topologies, which are hard for traditional
molding to achieve. Here we show that such programming can be achieved with a pipette, a
hair dryer, and a bottle of solvent. The polymer used here is very similar to the commercial
epoxy, except that a small percentage of a specific catalyst is involved to facilitate the bond-
exchange reaction. The programmed 3D structures can later be erased, reprogrammed,
welded with others, and healed again and again, using the same solvent-assisted technique.
The 3D structures can also be recycled by hot-pressing into new sheets, which can still be

repeatedly programmed.
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hree-dimensional (3D) structures are crucial for polymers

to function in practical applications, such as soft robotics,

deployable devices, aerospace materials, and so on!~>.
Compared to 3D structures, planar sheets or films are easy to be
mass-produced, stored, packed, and transported®. It has become
of strategic significance to directly, and often reversibly, convert
flat sheets or films into 3D structures via shape programming®.
Traditionally, most plastic shapes are produced by thermal
molding in which the difficulty in demoulding restricts the
structure complexity. Shape programming is normally based on
the self-folding or bending of active materials, giving rise to the
designed new shages in response to an external stimulus without
the external force™®, which is necessary for the traditional pro-
cessing of plastics. This offers a promising strategy to access 3D
structures which cannot be obtained by traditional methods®*. In
previous literature, the polymeric materials used for 2D to 3D
shape grogramming are limited to gels”$, liquid crystalline elas-
tomers’~!1, shape memory polymers'>~'* or other conjugated
polymers!>~18, and are fabricated to 3D structures by bending/
folding 2D shapes!®? in response to external stimuli*!~2°, More
often than not, programming the shage transformation requires
special equipment such as a printer®’ and lithographic plate?!.
For hydrogels, the mechanical strength is usually poor, and the
stability of their 3D structures can only be controlled in solvent.
For shape memory polymers, the programming procedure can be
simple and efficient (e.g., the li§ht-induced heating of polystyrene
pioneered by Genzer & Dickey”?) based on the flexible local shape
recovery of pre-strained films. However, the 3D structures
obtained in this way are temporary shapes. When they are placed
into an environment with a temperature above T, or T, all the
areas return to the original flat sheet. Other programmed 3D
polymeric structures are made from bilayer or multi-layer
assemblies, which raise problems of delamination between lay-
ers on repeated use. No matter what kind of material it is, very
few 3D structures obtained from folding a 2D film are capable of
reprogramming and reshaping, nor are they weldable or capable
of self-healing. Obviously, such abilities would greatly extend the
service lifetime and expand service areas®>%3, So far, reaching this
aim remains a big challenge, especially without any special
assisting equipment.

Here we show a simple and versatile method to program planar
2D polymer sheets into reprogrammable, and therefore—recycl-
able, weldable, and self-healing 3D structures by selectively
coating solvent onto them. We follow the ideas of vitrimer
plastics: a class of covalently cross-linked polymer networks that
has attracted much attention in recent years due to their con-
ceptual analogy with strong (e.g., silicate) glass**~°. Vitrimer
networks are cross-linked via transient covalent bonds capable of

a bond-exchange reaction (BER)?38, As a result, the network
topology can be changed when the BER is activated by an external
stimulus. So far, such stimuli have been the temperature (the
direct thermal activation of BER3>*7) and light (photo-induced
BER**0). In this paper, we demonstrate and study the effect of
swelling by solvent in activating BER, and leading to the elastic-
plastic transition in polymer network, which allows a shape-
programming procedure without any assisting equipment, as well
as welding, healing and reconfiguration of 3D structures (as
shown in Fig. 1).

Results

Solvent-induced shape programming. The shape programming
is achieved by the following generic procedure: [1] the flat sheet
of the vitrimer is heated to 45°C (above T,) and stretched (to
about 100% extension), it is then cooled down to below T, to
freeze this pre-strained shape; [2] the solvent (tetrahydrofuran:
THF, or dichloromethane: DCM) is selectively deposited onto the
desired area of the free-standing pre-strained film, and then
allowed to evaporate naturally; [3] the sample is reheated to above
Tg, at which time the new natural 3D shape is adopted. Finally,
[4] the sample is brought back to ambient temperature (below T,)
for this new shape to be exploited. This is now a usual shape-
memory material that could be further deformed above T, but
will always return to its natural 3D shape programmed as stage
[3]. Varying the details of this procedure, such as the amount of
solvent used, or the localization of swollen areas, achieves dif-
ferent degrees of local bending. We explain the mechanism of
solvent-induced plastic deformation in the following section.

For example, as shown in Fig. 2a, by depositing a uniform thin
layer of THF onto the surface of a whole film, the exposed side is
permanently locked in the extended shape due to solvent-induced
plastic deformation, while the bottom side is not. As a result, the
sample bends toward the bottom side (Fig. 2a). This shape is
permanent stable till decomposing temperature (~300 °C, Sup-
plementary Fig. 2): it is the new natural configuration of the
reshaped network.

We can also locally deposit the solvent on selected spots of the
film to produce more complex 3D patterns. A two-dome shape
(Fig. 2b) and a hollow square (Fig. 2c) were patterned by local
solvent deposition. Bending combined with kirigami (a paper-cut
art) can be used to construct more elaborate 3D structures. As
illustrated in Fig. 2d, a five-pointed star was constructed to
spontaneously form a 3D five-petal “flower”, which could wrap a
ball inside. In another example, stretching the wings of a flat
butterfly (Fig. 2e) and depositing drops of THF onto them, a
“flying” butterfly is obtained after evaporating THF and re-

Solvent
=

N

Shape programming

NATA

PE

Solvent-induced
transesterification

I

I S(é/;nt @

Weldable

Solvent

=

AP

A

Reconfigurable

Topological rearrangement

Healable

Fig. 1 Schematic of topological rearrangement induced by solvent-activated transesterification, which enables shape programming, reconfiguration, welding

and healing of epoxy vitirmer

2 | (2018)9:1906

| DOI: 10.1038/541467-018-04257-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04257-x

ARTICLE

a Coating solvent

—— .

Pre-stretched film

b  Two drops of solvent

Pre-stretched film
C

Coating solvent

Pre-stretched film

=
] 3¢
2
s

Fig. 2 Solvent-induced shape programming. a Bending a polymer film by
depositing solvent onto a pre-strained film. Scale bar: 5 mm. b lllustration
and photographs of the dot pattern by depositing two drops of THF onto a
pre-strained film. Scale bar: 5 mm. ¢ lllustration and photographs of the
square pattern by depositing THF with a square pattern onto a pre-strained
film. Scale bar: 5mm. d A bent five-point star could wrap a ball inside. The
picture on the right is a model structure. Scale bar: 5 mm. e Reshaping a flat
butterfly to a 3D “flying” butterfly. Scale bar: 5 mm. The picture on the right
is a model structure. f A bended windmill reshaped from a flat film with pre-
cuts. The picture on the right is a model structure. Scale bar: 5mm. g A
complex fish-like 3D shape reprogrammed by solvent. The picture on the
right is a model structure. Scale bar: Tcm

heating to 45 °C. A complex windmill shape is obtained (Fig. 2f)
by cutting four right-angles of a square film along two diagonal
lines (the center of the film remained uncut) into four parts and
then bending each part using the method described in Fig. 2a. We
also made a fish-like 3D shape (Fig. 2g), whose tail and wings are
programmed by solvent using the method described in Fig. 2a
and whose fish-scales are programmed by solvent using the
method described in Fig. 2b.

The above shape programming is fully compatible with the
currently fashionable strategy to make complex 3D structure by
origami methods*' 3, Origami requires sharp folding of a
surface. For instance, a series of digital numbers are obtained
from a strip by local folding induced by our solvent-deposition
method (Fig. 3a, the samples are painted red by marking pen).
The procedure of making sharp bend requires that only a narrow
line (the width of below 2 mm) is coated with a higher amount of
solvent on the surface, so higher magnitude of narrowly localized
extension is achieved on the top surface (see the Supplementary
Fig. 6 for details of procedures). Miura-origami, originally
proposed by Miura for packaging large membranes*4, is also
useful to build 3D structures. For example, folding a film along
the dotted lines (Fig. 3b, left panel) leads to a crease-like structure
(Fig. 3b, right panel). In addition, introducing kirigami into a flat
film is able to increase the flexibility of final 3D structures
(Fig. 3c). Similarly, a steering-wheel-like shape transforms to a
tower-like structure (Fig. 3d) by bending four lines (which
connected two circles) using the method described in Fig. 2a.
When necessary, very sharp folds can be made by varying our
procedure slightly: instead of uniform pre-straining of a flat film,
we fold the film at a required sharp angle at T> T, and cool it
down to freeze the shape. Then, the solvent is applied to both
sides of the folding area, so that both the local extension on the
outside, and the local compression on the inside of the fold can be
programmed by the solvent-induced plastic flow after solvent
evaporation (please see the Supplementary Fig. 7 for the details).

The mechanism of shape programming. The polymer used here
is an easily available epoxy vitrimer. Commercial epoxy cured by
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Fig. 3 Solvent-induced shape programming by origami and kirigami. a
Digital numbers formed by origami from a strip. Scale bars: 1cm. b A crease
structure obtained by Miura-origami. (left panel: folding along with the
dotted line; middle panel: illustration of a crease structure; right panel: the
obtained crease-structure.) Scale bars: 1cm. € Assembled 3D structures by
origami and kirigami. Scale bars: Tcm. d A steering-wheel-like 3D shape
obtained by kirigami. (left panel: a cut flat steering-wheel-like film; right
panel: the obtained 3D structure.) Scale bars: 1cm

diacid or acid anhydride is a densely cross-linked network, which
is hard to reprocess due to its insoluble and infusible nature. But
when a small amount of transesterification catalyst is added, the
common epoxy becomes a vitrimer’*-364>46 Epoxy vitrimers
behave like a normal thermoset, but they can be plastically
reprocessed at high temperatures because the thermally activated
transesterification allows the plastic rearrangement of the net-
work?. The epoxy vitrimer we used here is prepared by reacting
diglycidyl ether of bisphenol A with adipic acid (equal stoichio-
metric amounts) in the presence of 5 mol% triazobicyclodecene
catalyst (TBD) (Fig. 4a). Without the catalyst, no bond-exchange
(transesterification) reaction can take place at room tempera-
ture®®. Reshaping this kind of vitrimer is normally done at a high
temperature (e.g., 160-180 °C, well above the nominal ‘vitrifica-
tion point’ T, = 105°C%, see Supplementary Fig. 3 and Sup-
plementary Fig. 11), since the energy barrier for
transesterification was measured to be AG = 19 kcal/mol with 5
mol% of TBD (see Supplementary Fig. 10b); for comparison, zinc
acetate catalyst in the pioneering work of Leibler et al., also at 5
mol%, gives AG=20kcal/mol?®. However, the shape-
programming methods that rely on the locally induced high
temperature or irradiation by light**" also have detrimental
effects, such as oxidation and other side-reactions, leading to
material decomposition and aging. So, a programming method
that can be used for easily available polymers without high
temperature and special polymer synthesis is very much
preferred.

The underlining mechanism of the shape-programming
method here is an effect of solvent-induced BER. We found that
local swelling accelerates the BER in that region, and permits local
plastic deformation without an elevated temperature; the
stretched local shape is then fixed on solvent drying. This
solvent-induced shape programming not only avoids high
temperature, but also is quite simple: effects are achieved just
by selectively coating solvent onto the vitrimer surface. There are
different ways to accelerate a thermally activated reaction, by
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Fig. 4 The mechanism of solvent-induced transesterification. a Synthesis of epoxy vitrimer. b Stress-relaxation curves for transesterification at three
different temperatures (labeled on the plot), making a comparison between the original network, the thermally remolded one, and the network that was
dried after extensive swelling (confirming that its BER remains the same). ¢ An illustration of transesterification when swelling in solvent. d Reshaping a
strip to a spiral by solvent under external force. Scale bar: 1cm. e Reshaping a star with external force. Scale bar: 1cm. f Reshaping a cube vitrimer by
depositing solvent onto the designed edges and folding/unfolding with external force simultaneously in each procedure. Scale bar: Tcm

effectively reducing the energy barrier. If the material is swollen,
even though the ambient temperature is much too low for the
thermal activation of BER, the additional stretching of chains
provides an extra tension on the crosslinking bonds in a swollen
gel; the associated mechanical work is calculated to be AW =4
kcal/mol for the equilibrium swelling ratio of 1.75 (see
Supplementary Note 6 for detail of this analysis). This shift in
the effective activation energy (AG—AW) is enough to bring the
vitrification temperature T, from 105°C down to 25.5°C, and
thus explain the observed high rate of BER, and the resulting
elastic-plastic transition in the swollen network at ambient
temperatures.

For this mechanism to work, we must be certain that TBD
catalyst remains associated with the polymer even with the
solvent present (otherwise the regular energy barrier to disrupt a
covalent bond would be too high). Although solvents we used
here (such as DCM and THF) are good solvents for TBD, we
found that this catalyst remains in the swollen polymer material,
instead of being dissolved away. To verify this, we dried the
vitrimer after it was fully swollen, and compared its stress
relaxation dynamics with the virgin vitrimer. As shown in Fig. 4b,
the vitrimer dried after swelling has nearly the same relaxation
rate as the original vitrimer, indicating the TBD loading remains
the same after the solvent is dried away (and, therefore, in the
presence of solvent too). We explain this by the fact that TBD
catalyst is covalently connected to the network during the
polymerization. It is well-known that -NH- groups of TBD can
react with epoxy, in addition, the strong basicity of the guanidine
group is not only helgful to the opening of epoxy groups, but also
can act with acid*®*.

Therefore, the swollen vitrimer may be reshaped at room
temperature due to the transesterification BER accelerated by the
effective reduction of activation energy, due to the additional
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mechanical work of chain stretching (depicted in Fig. 4c). For
example, a flat strip was permanently fixed into a spiral shape
after being swollen in THF (swelling volume ratio 175%),
reshaped to a spiral with external force, and then dried by
evaporating the solvent (Fig. 4d). This solvent-induced transes-
terification also provides a way to reshape 3D structures in the
presence of external forces, which is more like the traditional
processing even though no mold is used. This is different from
shape programming as the formation of 3D structure does not
rely on the stimuli-responsive folding or bending. For example,
we selectively deposited five narrow strips of THF onto a star-
shaped epoxy vitrimer (red dotted lines in Fig. 4e) and
simultaneously folded each angle up with external force. After
evaporating THF at room temperature, a new 3D shape with
sharp bends is obtained. In another example, a cubic box, which
is made by solvent deposition along the edges, could be
reconfigured to new structures again and again without molds
or a need of high temperature (Fig. 4f). Compared to previous
solvent-induced 2D-3D shape changes®~>2, the method pre-
sented here does not require immersing the whole material into
solvent.

Solvent-induced erasing and reshaping of shape-programmed
3D structures. The shape programming can be repeatedly done
on the same film to get different shapes. There are two repro-
gramming methods. One is directly reprogramming to a new
shape by modifying an already prepared shape. For example, in
Fig. 5a, after being programmed into a bent sample, the strip can
be subsequently converted into a wave-shape by stretching the
bent film and coating solvent onto the surface of two areas which
were shown in Fig. 5a (red circled line). It could be repro-
grammed to more variations if one repeats this procedure. On the
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Fig. 5 Solvent-induced reprogramming and reconfiguring of epoxy vitrimer. a Consecutively programming of a vitrimer film. Scale bar: 1cm. b After erasing
the shape of a programmed vitrimer film, reprogramming it by solvent into a different shape. Scale bar: 1cm. ¢ Solvent triggered programming to a four-
petal “flower”, and then reconfiguring to another 3D shape with two petals up and two petals down. The reconfigured structure was recycled to a flat film

by heat-molding. Scale bar: 1cm

other hand, the programmed network topology can be erased
completely by immersing the structures into solvent to fully swell,
after which the ‘refreshed’ vitrimer sample can be programmed
again and again to generate different structures. For example, in
Fig. 5b, a rectangular film was firstly programmed into a bent
shape. After immersing the bending sample into THF, the
bending information was erased, and it returned to the flat film.
Such a ‘refreshed’ vitrimer could be patterned on the surface
again (Fig. 5b) or reprogrammed to different shape (effectively
recycling the plastic). Here we patterned three characters “THU”
on it by firstly stretching the film by 100%, secondly writing
“THU” on it with the “ink” of solvent, and finally heating the
polymer after the solvent evaporated. The programmed shape is
also fully reconfigurable. In Fig. 5c we show a vitrimer film with a
flat “4” shape is firstly programmed to bend into a four-petal
“flower”, and then reconfigured to a 3D shape with two petals up
and two petals down. Therefore, in case that the single-step shape
programming is not enough, reconfiguration can help to obtain
modified structures. As always with vitrimers, any 3D structure
can be recycled back into a flat film by hot pressing (via thermally
activated BER), and reused for a different purpose (Fig. 5¢).

Solvent-induced healing and welding of epoxy vitrimer. The
solvent-assisted transesterification also allows in situ healing and
welding. As a demonstration, a vitrimer film was pierced by a
needle to produce a hole with a diameter of about 0.2 mm, see
Fig. 6a (left panel). The hole vanished (healed completely) after
swelling in THF, and subsequent drying. In another example, we
scratched a film with a razor to form a cutoff about 64 pm. This
damaged cut is healed effectively after swelling and drying, Fig. 6a
(right panel). Such in situ healing is very useful to improve the
long-term device maintenance. In our observation, the holes with
the width less than the film thickness can be healed in this way.

Previous methods to weld epoxy vitrimer have utilized either
intense IR li§ht or localized heat to activate transesterification
thermally®>>3, Here we have successfully welded two samples
together by solvent alone. By overlapping parts of two samples,
immersing the set in THF and then evaporating THF while the
set remains under compressive stress to maintain a good contact
between two films, a welded sample was obtained after solvent
evaporation (the details are described in Supplementary Fig. 12a).
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Fig. 6 Solvent-induced welding and healing of epoxy vitrimer. a Solvent
triggered healing of vitrimer with a needle pierced hole (left panel) and a
narrow cut (right panel). Scale bars: 100 um. b The lap shear tests of
welded samples. The stress and strain were measured while the sample
was stretched at a ramp force of 0.5 N/min. ¢ Welding to a more
complicated structure. Scale bar: Tcm. d Welding two 3D structures with
different components to a more complicated structure. Scale bar: 1cm

To further investigate the welding efficiency, lap-shear tests were
carried out. The welded sample has almost the same mechanical
response as the blank sample (Fig. 6b, showing the initial elastic
response followed by a plastic deformation of the transient
network); the welded film broke in the regions of bulk materials
instead of sliding form the overlapped part, which again indicates
a strong joint. The details of lap-share test are described in
Supplementary Fig. 12a. Solvent-induced welding can greatly
increase the complexity and versatility of resulting 3D structures.
By welding two folded pentagons (Fig. 6¢) and two programmed
bending samples (Supplementary Fig. 12) back-to-back, more
complex 3D structures are obtained. It is also possible to join
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epoxy vitrimer with other vitrimers. For example, we welded a
basic epoxy vitrimer with a composite containing the well-
dispersed carbon nanotubes!’>  together (Supplementary
Fig. 12d). Assembling different materials together is beneficial
to construct more complex and multifunctional 3D structures
(Fig. 6d).

Discussion

In summary, we developed an easy and robust method to shape-
program flat vitrimer films into complex 3D structures just by
selectively dropping or coating solvent onto the desired areas
directly, based on the solvent-assisted BER of transesterification
in epoxy vitrimers. No equipment is involved. This solvent-
induced 2D-3D transformation of epoxy vitrimer avoids the use
of high temperature, molds, and multi-layers. Moreover, this
method enables the structures to be reprogrammed and reshaped
repeatedly, which makes it easy to repurpose them without
material disposal. Welding different parts by solvent can enhance
the multifunctionality of 3D structures as well. The defects in the
material (holes, cracks, or scratches) can be healed just by
dropping solvent locally on the damaged area, which would
extend the lifetime and improve the performance of applications.
To achieve the desired shape programming we have to carefully
design the starting geometry, but it is easy to design a starting
geometry on a flat sheet by professional software, if needed, and
by cutting. But the complete material recycling (including the
cutaway pieces) is a natural feature of vitrimers, which makes
them so attractive. Overall, solvent-accelerated BER, and the
resulting programming of 2D-3D shapes by using the local
elastic-plastic transition may be a promising alternative to the
deliberate preparation of 3D shaped plastics, which promises
great potential in many applications.

Methods

Chemicals. Triazobicyclodecene (TCI, 98%), adipic acid (TCI, >99.0%), and
diglycidyl ether of bisphenol A (Sigma-aldrich, D.E.R. 332), Tetrahydrofuran
(THF) were used directly without further purification.

Synthesis of epoxy vitrimer. The epoxy was prepared by standard methods fol-
lowing our previous work®>. Stoichiometric amounts of diglycidyl ether of
bisphenol A (0.340 g, 1 mmol) and adipic acid (0.146 g, 1 mmol) were mixed and
heated to 180 °C. After the mixture was melted, triazobicyclodecene (5 mol% to the
COOH groups) was introduced and stirred manually till homogeneous. As the
mixture became very viscous, it was cooled to room temperature to obtain a solid
product which was not completely cross-linked. Then the solid was sandwiched
between two plates to be cured by a hot press for 4 h at 180 °C. A spacer was placed
between two plates to control the thickness of film. The applied pressure was 3
MPa. Fourier transform infrared spectroscopy (FTIR, Perkin Elmer spectrum 100)
was used to monitor the reaction progress. The epoxy peak at 912 cm™! totally
disappeared after curing for 4 h, indicating the complete reaction.

Preparation of remolded sample. Remolded sample in Fig. 4b was done at 180 °C
with the stress of 300 Ibf/in? (2.1 MPa) for 30 min from the epoxy vitrimer frag-
ments. The dry swelled sample was tested without any treatment after swelling in
the solvent and evaporating for 9 days.

Characterization. Differential scanning calorimetry (DSC) was performed using
TA instruments Q2000 operated at a scanning rate of 10 °C/min. The thermal
stability was measured with a TA instruments Q50 thermal gravity analysis (TGA)
under air atmosphere at a ramp rate of 20 °C/min to 800 °C. Stress-strain test was
performed on a TA instruments Q800 dynamic mechanical analyzer (DMA)
apparatus in the tension film geometry under the controlled force mode, with a
rectangular tension film dimension of 10.0 x 2.5 x 0.15 mm. The strain was mea-
sured while the sample was stretched at a ramp force of 0.5 N/min to 18.0 N.

Stress relaxation tests. To test stress relaxation, we used a home-made equip-
ment that allowed fine and versatile control of stress-strain-temperature-solvent.
All our experiments were done in ambient air in a lab with 70% humidity main-
tained. The heated sample chamber had a glass front end to allow optical-tracking
of sample dimensions. After mounting, the samples were brought to the taut length
and allowed to relax at the chosen temperature until full equilibrium was assured.

6 | (2018)9:1906

The raw data on tensile force relaxation were collected, and processed to report the
normalized relaxation function F(t)/F, ., which was reported in the plots.

Making bending samples. The procedure of shape-programming bending sample
is as follows: as shown in Supplementary Fig. 4, first, pre-stretch a polymer film by
external force at 45 °C (above T,) by ~100% and cool it to room temperature
(below Ty) to fix the length; then keep the sample in the glassy state without
tension, and coat the solvent onto the polymer film; third, let the solvent evaporate
naturally; finally, heat the polymer to above Tj to allow it adopt the programmed
shape, which is a new natural shape of the network.

Making sample with dot pattern. The procedure of shape-programming sample
with dot pattern is as follows: as shown in Supplementary Fig. 5, first, pre-stretch a
polymer film by external force at 45 °C (above Ty) by ~100% and then cool it to
room temperature (below Ty) to fix the length; second, selectively drop the solvent
onto the pre-stretched polymer film; third, let the solvent evaporate naturally;
finally, heat the polymer.

Making folding samples. There are two different ways to make folds. The first one
is very similar to making a bending sample, the only difference is that coating only
a narrow line of THF (the width of below 2 mm, Supplementary Fig. 6) and about
double-dose of THF is coated (compared to bending sample, coating double-dose
of THF onto the same area) onto the surface. In the Fig. 2 of the main text, we only
present the fold made by the first procedure. The second one can make even
sharper folds: first, folding a film by external force at a temperature above T, and
cooling down to freeze the fold; then, solvent is applied to the both inside and
outside of the fold (as shown in Supplementary Fig. 7), which leads to the fixation
of the fold after solvent evaporation. The folds made by the second procedure are
presented in Supplementary Fig. 8.

Making welded samples. Two vitrimer strips (Supplementary Figure 12a, the
thickness is 0.13 mm) were cut and then immersed in tetrahydrofuran (THF) till
swelling fully (the thickness is 0.14 mm). To get a good contact between two films,
two swelling films were manually pressed together with an overlap area of 2.0 x 2.0
mm and sandwiched within two glass sheets by external force (the space of two
glass sheets is 0.25 mm). Then the set was evaporated for 2 days. And to evaporate
fully, the set was in vacuum drying oven for another day. After removing the glass
sheet, the two films were welded.

Data availability. The relevant data that support the findings of this study are
available from the authors upon reasonable request.
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