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Sulfenate anions as organocatalysts for benzylic
chloromethyl coupling polymerization via C=C
bond formation
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Organocatalytic polymerization reactions have a number of advantages over their

metal-catalyzed counterparts, including environmental friendliness, ease of catalyst synthesis

and storage, and alternative reaction pathways. Here we introduce an organocatalytic

polymerization method called benzylic chloromethyl-coupling polymerization (BCCP). BCCP

is catalyzed by organocatalysts not previously employed in polymerization processes

(sulfenate anions), which are generated from bench-stable sulfoxide precatalysts. The

sulfenate anion promotes an umpolung polycondensation via step-growth propagation cycles

involving sulfoxide intermediates. BCCP represents an example of an organocatalyst that

links monomers by C=C double bond formation and offers transition metal-free access to a

wide variety of polymers that cannot be synthesized by traditional precursor routes.
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Innovations in polymer chemistry and materials science often
have their genesis in the introduction of small molecule cat-
alysts1,2. This is particularly true in the developing field of

organocatalytic polymerization chemistry.3,4 Organocatalytic
polymerization reactions have a number of advantages over their
metal-catalyzed counterparts, including environmental friendli-
ness, reduced toxicity and cost, ease of catalyst synthesis and
storage, and access to alternative reaction pathways. Furthermore,
organocatalysts circumvent problems caused by metal residue
contamination of polymers, which can severely limit biomedical
and electronic applications, and complicate polymer purification
and processing3,4. The majority of organocatalytic polymeriza-
tions involve ring-opening polymerizations using cyclic esters,
carbonates, ethers, siloxanes, anhydrides, and phosphoesters4.

Herein we introduce a class of organocatalytic polymerization
processes termed benzylic chloromethyl-coupling polymerization
(BCCP). BCCP represents the application of sulfenate anion
organocatalysts to polymerization processes. The sulfenate anion-
catalyzed process proceeds via an umpolung mechanism and
represents a rare example of an organocatalysts that enchains
monomers by C=C bond formation5,6. Design of BCCP is vali-
dated in the context of poly(m-phenylene vinylene) (PmPV)
synthesis. In this study, PmPV’s withMn as high as 17,400 Da and
with very high trans-selectivity are obtained. To demonstrate the

mechanistic distinctness of BCCP, a non-conjugated polymer
bearing quaternary –C(CF3)2 spacers between stilbene units in the
polymer backbone is synthesized. Moreover, two alternating
co-polymers as representatives of poly[(1,3-phenylene vinylene)-
alt-arene]s and poly[(1,3-phenylene vinylene)-alt-(1,4-phenylene
vinylene)] (PmPVpPV)s are synthesized. Nuclear magnetic
resonance (NMR) spectra, thermal, photophysical, electro-
chemical, and charge transport properties of the above mentioned
co-polymers are characterized. The polymers reported herein
cannot be prepared by classic precursor routes (Gilch, Wesling,
and Vanderzande methods).

Results
Design of the BCCP. Sulfenate anions (ArSO–) are highly
reactive intermediates in biological chemistry and in organic
reactions7–10. We recently disclosed that sulfenate anions can act
as organocatalysts and reported their ability to catalytically
dehydrocouple benzyl halides under basic conditions to yield
trans-stilbenes (Fig. 1a)11 and their application to catalytic
cross-coupling of benzyl chlorides with benzaldehyde derivatives
to produce diarylacetylenes12. The efficiency of sulfenate anion
catalysts in these reactions, and their high selectivity for
formation of trans-stilbenes, inspired us to explore their potential
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in polymerization reactions. We hypothesized that substrates
bearing two benzylic chloromethyl groups would be suitable
monomers for polymerization. The benzylic chloromethyl sub-
stituents could be located on the same aromatic system or on
different aromatic rings separated by linking groups, as repre-
sented in Fig. 1b.

Based on this hypothesis, we designed the 1,3-bis(chloro-
methyl)benzene monomer A (Fig. 1c). We envisioned that the
sulfenate anion would react with monomer A via an SN2 reaction
to generate sulfoxide B. In the presence of base, sulfoxide B is
reversibly deprotonated to generate carbanion C. Anion C is a
reactive nucleophile and undergoes SN2 with monomer A to form
the first C–C bond. Base promoted E2 elimination of inter-
mediate D provides dimer E and liberates the sulfenate anion to
further catalyze the polycondensation of E. Notably, the product
is a PmPV, which is an important class of organic semiconductors
with applications in optoelectronics, such as organic light-
emitting diodes (OLEDs), solar cells, organic lasers, sensors,
and displays13–18. Although the synthesis of PPV’s has been
developed, including precursor routes19–23, olefin metathesis
polymerizations23, nucleophilic condensations24–29, and cross-
coupling polymerizations30–36, to the best of our knowledge this
is a unique organocatalytic method for the synthesis of this
important class of polymers. Moreover, PmPV is a challenging
target, because meta-linkages preclude formation of

quinodimethane intermediates, prohibiting classic PPV precursor
routes (Gilch, Wesling and Vanderzande methods)33,37–40.

Optimization of BCCP with monomer M1. Starting from the
optimized coupling of benzyl chlorides used in our stilbene
synthesis (Fig. 1a)11, we selected cyclopentyl methyl ether
(CPME) as solvent and KOtBu as base at 80 oC, to optimize the
polymerization of monomer M1 (Fig. 2). A long alkyl chain was
introduced onto the PmPV backbone to assure the resulting
polymer P1 has good solubility in common organic solvents.
Initial reactions were conducted in 24-well plates on 10 µmol
scale by adapting small molecule high-throughput experimenta-
tion (HTE)41–48 techniques to polymerizations (see Supplemen-
tary Method, High-Throughput Experimentation screenings for
polymerization for full details). As shown in Fig. 2a, we initially
focused on air-stable benzylic sulfoxide catalysts (1–9)
ArSOCH2Ph with various Ar–S groups and one precatalyst (10)
with 4 catalyst loadings (10, 7.5, 5.0, and 2.5 mol %). Reactions
were heated for 24 h at 80 oC followed by cooling and work up by
addition of 10 µL of water and removal of the volatile materials.
Next, CHCl3 was added to each well to dissolve the products
followed by cold methanol to precipitate the solid polymer.
Finally, filtration of the solid, dissolution in tetrahydrofuran
(THF) and analysis by gel permeation chromatography (GPC)
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against polystyrene standards were performed. In this screen we
observed complete polymerization at 10, 7.5, and 5.0 mol %
catalyst loadings. There was little impact of the substituents on
the aryl ring of the sulfenate anion (ArSO–), with similar Mn and
polydispersity index (PDI) (Mn ~ 10,000 were observed at 10 and
7.5 mol % loading and Mn ~ 9000 at 5.0 mol % loading). Lower
catalyst loadings of 2.5 mol % led to oligomerization (see
Supplementary Table 1). Moreover, we observed complete con-
sumption of monomerM1 after 10 min. A rapid loss of monomer
at the beginning of the polymerization indicates that the BCCP
proceeds by a step-growth mechanism.

At this stage of our investigations we chose to employ
precatalyst 10. Under the basic conditions of the polymerization,
10 rapidly undergoes E2 elimination to form styrene and generate
the sulfenate anion12. The most promising results with precatalyst
10 were with 7.5 mol % (Mn 10,900, PDI 1.26). At this loading, we
conducted a second screen focused on 10 bases [LiOtBu, NaOtBu,
LiN(SiMe3)2, NaN(SiMe3)2, KN(SiMe3)2, NaH, KH, KOSiMe3,
KOPh, NaOMe] under otherwise identical conditions (Fig. 2b).
Analysis of the resulting reactions indicated that polymer was
obtained only with LiN(SiMe3)2, NaN(SiMe3)2, KN(SiMe3)2 with
Mn all lower than with KOtBu from the first screen (see
Supplementary Table 2).

The next step in the optimization was a solvent screen. We
examined five solvents (THF, dioxane, MTBE (methyl tert-butyl
ether), toluene, and dimethylformamide). As shown in Fig. 2C,
the most promising result was obtained in MTBE (Mn 13,200,
PDI 1.23).

After narrowing our optimization parameters to precatalyst 10
(7.5 mol %), KOtBu, and CPME and MTBE as two top solvents,
we conducted lab-scale (0.1 mmol) polymerizations to validate
the microscale results and further optimize the BCCP (Table 1).
Lab-scale polycondensation of monomer M1 with both CPME
and MTBE at 0.05 M concentration yielded polymer with Mn

10,400, PDI 1.28 in 91% isolated yield for CPME and polymer
with Mn 13,600, PDI 1.21 in 69% isolated yield with MTBE. The
results confirmed that Mn and PDI of polymers obtained at 10
µmol scale could be reproduced at 0.1 mmol scale. With CPME as
solvent, increasing concentration to 0.1 M and 0.2 M (entries 3–4)
led to higher Mn (11,200 at 0.1 M and 12,200 at 0.2 M) with

similar PDIs. The yields, however, dropped from 91% (0.05M) to
86% (0.1 M) and 73% (0.2 M). With MTBE as solvent, increasing
concentration led to higher Mn of 15,300 (0.1 M, entry 5) in 72%
yield and 17,400 (0.2 M, entry 6) in 71% yield, with PDI of the
corresponding polymers of 1.41. Employing 4 and 5 equivalents
of KOtBu afforded polymer product with similar Mn, PDI, and
yield (entries 7–8). The Mn dropped to 10,200 when 6 equiv. of
base were employed (entry 9).

Scalability of BCCP with monomer M1. Scalability is an
important attribute of polymerization catalysts. We next scaled
the BCCP of M1 to 1 mmol scale using the conditions outlined in
Table 1, entry 1. Under the reaction conditions shown in Fig. 3,
the polymer P1 was obtained with Mn 10,600 and PDI 1.20 in
90% yield (334.8 mg).

Mechanistic distinctness of BCCP. Traditionally, PPVs were
synthesized by a two-step quinodimethane polymerization/elim-
ination protocol (the precursor route)19. The quinodimethane
polymerization forms a non-conjugated polymer that is then
converted to the conjugated PPV by high-temperature (180–300
oC) thermal elimination reaction (Fig. 4a)49. The harsh condi-
tions required for converting non-conjugated precursor polymers
to PPVs and the incomplete elimination lead to structural defects,
which affect the luminescence quantum efficiency of the PPV
films50. In sharp contrast, sulfenate anion-catalyzed BCCP pro-
ceeds by a different mechanism, which results in chemoselective
construction of trans double bonds (Fig. 4b). Compared with
other common methods for the preparation of PPVs such as
transition metal-mediated Heck reactions, cross-coupling reac-
tions, and metathesis reactions51, BCCP is a transition metal-free
process.

To highlight the advantage of BCCP over precursor routes
(Gilch, Wesling, and Vanderzande methods) (Fig. 4a), we
designed monomer M2 in which two benzyl chloromethyl groups
are linked by a C(CF3)2 bridge (Fig. 5). As the C(CF3)2 linker
prevents the formation of quinodimethane intermediate, polymer
P2 could not be prepared by precursor routes (Fig. 4a). Using the
conditions in Table 1 (entry 1), the BCCP afforded polymer P2 in
82% yield with Mn 14,300 and PDI 1.45.

Synthesis and characterization of alternating 1,3- and 1,4-
linked copolymers. It is well-known that OLED device perfor-
mance is greatly influenced by the structural regularity of the
polymers. To further demonstrate the synthetic potential of
BCCP, we next employed BCCP in the synthesis of challenging
alternating copolymers. We designed a class of monomers (M3,
Fig. 6a) by incorporating a flourenyl group between two meta-
phenyl groups. Polymerization of monomer M3 bearing different
central Ar groups is expected to lead to a new class of structurally
regular and alternating poly[(1,3-phenylene vinylene)-alt-arene]s.
As proof-of-concept, we synthesized a fluorine-containing
monomer M3-1. BCCP of M3-1 led to co-polymer P3-1 in 91%
yield with Mn 13,000 and PDI 2.00 (see Supplementary Method,

Table 1 BCCP optimization

Entry Solvent x= Conc.
(M)

Yield
(%)

Mn (Da) PDI

1 CPME 3 0.05 91 10,400 1.28
2 MTBE 3 0.05 69 13,600 1.21
3 CPME 3 0.1 86 11,200 1.26
4 CPME 3 0.2 73 12,200 1.29
5 MTBE 3 0.1 72 15,300 1.41
6 MTBE 3 0.2 71 17,400 1.42
7 CPME 4 0.05 92 10,600 1.23
8 CPME 5 0.05 92 10,300 1.22
9 CPME 6 0.05 91 10,200 1.22

Reactions were conducted using monomer M1 (0.1 mmol). The products were obtained by
reprecipitation from CHCl3-CH3OH. Polymer analysis (Mn, PDI) were estimated by GPC
calibrated on polystyrene standards with THF as eluent
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Fig. 3 Scale-up of P1. Synthesis of P1 by BCCP reaction
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1 mmol Scale synthesis and characterization of co-polymer P3-1,
P4-1, for the synthesis of monomer M3-1 and co-polymer P4-1).

Previous studies have shown that (PmPVpPV)s are highly
photoluminescent polymers with well-defined conjugation
lengths52–55. Such observations inspired us to design a member
of this class, monomer M4. We expect that polymerization of M4
type monomers will achieve the synthesis of structurally regular
(PmPVpPV)s with 1:1 alternating mPV and pPV units along the
chain linked by trans C=C bonds (Fig. 6b). Moreover,
incorporation of different moieties as side-chains into the
PmPVpPV backbone (R group on the pPV unit of P4), would
allow tuning of the emission wavelength, emission color and
change the quantum efficiency of the resulting co-polymer P4. As
a proof-of-concept, we synthesized a thiophene-containing
monomer M4-1. BCCP of M4-1 led to co-polymer P4-1 in 93%
yield with Mn 8000 and PDI 1.82 (see Supplementary Method,
1 mmol Scale synthesis and characterization of co-polymer P3-1,
P4-1, for the synthesis of monomer M4-1 and co-polymer P4-1).
Notably, both polymers P3-1 and P4-1 are not accessible by the
precursor route, demonstrating the value of BCCP in co-polymer
synthesis.

The thermal, photophysical, electrochemical and charge
transport properties of P3-1 and P4-1 were characterized
(see Supplementary Figure 37). As shown in Fig. 7a, I, the

decomposition temperatures (Td, corresponding to 5% weight
loss) measured from thermogravimetric analysis were 420 oC and
404 oC for P3-1 and P4-1, respectively, indicating good thermal
stability. Thermal stability is valuable for long device operation in
emission materials15. From the glass transition temperatures (Tg)
observed from differential scanning calorimetry (DSC) for the
more rigid fluorene containing P3-1 was 141 oC; however, no
obvious phase transition temperature could be obtained for P4-1
with more flexible C–C double bonds in the conjugated backbone
(Fig. 7b). Both polymers showed bright emission under UV
excitation, as shown in the photo images of Fig. 7c,d, II. From the
UV-Vis spectra in both solution and film (Fig. 7c,d), it is found
that two-dimensional conjugated P4-1 with the pendant
thiophene ring exhibited broader and red-shifted absorption
relative to P3-1, with a one-dimensional conjugated polymer
backbone. Regarding the photoluminescence (PL), the thiophene-
containing P4-1 displayed red-shifted PL compared with P3-1,
with emission peaks in the deep blue (435 nm in THF and 457 nm
in the film state) for P4-1 and ultra-violet (373 nm in THF and
402 nm in the film state) for P3-1. The electrochemical properties
were measured by cyclic voltammetry (Fig. 7e). Both polymers
exhibited quasi-reversible oxidation and irreversible reduction
behavior. The highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energy levels were
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determined from the onset of oxidation and reduction curves for
P3-1 and P4-1, and were calculated to be −5.97/−2.60 eV and
−5.65/−2.77 eV, respectively. Compared with P3-1, the intro-
duction of a strong electron-donating thiophene ring in P4-1
significantly raises the HOMO level by 0.32 eV, suggesting a more
efficient hole-injection and better hole transport properties of P4-
1 in optoelectronic devices. This prediction is in good agreement
with the measured hole mobility from the space charge limited
current method (Fig. 7f). The hole mobility for the thiophene-
containing P4-1 is estimated to be 1.56 × 10−6 cm2 V−1 s−1,
which doubles P3-1 of 7.79 × 10−7 cm2 V−1 s−1.

Discussion
Introduced herein is a class of organocatalytic polymerization
processes termed BCCP. The organocatalysts for this process,
sulfenate anions, are operationally trivial to generate from bench-
stable sulfoxide precatalysts in the presence of base. Sulfenate
anion organocatalysts are unique in that they enable generation of
C=C double bonds of the type found in PPV’s and other stilbene-
based polymers. We demonstrated the application of sulfenate
anion-catalyzed transfer polycondensation methods to polymers
bearing isolated stilbene motifs. The important conceptual
advance of this work is that it suggests that small organic mole-
cules that can activate substrates via nucleophilic attack, acidify
neighboring hydrogens leading to umpolung reactivity, and then
behave as leaving groups can be considered in polymerization
processes to forge C=C linkages. From the synthetic aspect,
BCCP offers transition metal-free access to wide varieties of
polymers that cannot be synthesized by traditional precursor

routes (Gilch, Wesling, and Vanderzande methods). To further
demonstrate the synthetic potential of BCCP, two alternating co-
polymers were synthesized as representatives of classes of poly
[(1,3-phenylene vinylene)-alt-arene]s and (PmPVpPV)s. NMR
spectra, thermal, photophysical, electrochemical, and charge
transport properties of the above mentioned polymers were
characterized. Further studies are underway to apply BCCP to the
preparation of novel functionalized polymers.

Methods
General procedure for the 0.1 mmol BCCP. An oven-dried 8 mL microwave vial
equipped with a stir bar was charged with monomer M1 (44.4 mg, 0.10 mmol)
under a nitrogen atmosphere in a glove box. A solution of precatalyst 10 (1.73 mg,
0.0075 mmol) in 1.0 mL anhydrous CPME was added by syringe. Next, a solution
of KOtBu (33.6 mg, 0.30 mmol) in 1.0 mL anhydrous CPME was added by syringe.
The reaction was stirred for 24 h at 80 °C, quenched with 2 drops of H2O via
syringe, cooled to room temperature, and opened to air. After the volatile materials
were removed with a rotary evaporator, CHCl3 (2 mL) was added into each vial and
the slurry solution was allowed to stir for 10 min. Cold methanol (6 mL) and H2O
(0.5 mL) was then added into each vial to precipitate the polymer and the slurry
solution with polymer suspension was allowed to stir for 10 min. The mixture was
then transferred with a pipette onto a Whatman autovial syringeless filter (5 mL,
0.45 µm polytetrafluoroethylene (PTFE) membrane). After the MeOH/CHCl3/H2O
solution was filtered, polymer that remained in the filter was washed sequentially
with 5 mL MeOH and 5mL pentane. Finally, the polymer remaining in the filter
was transferred into a 20 mL vial with spatula and dried under vacuum to yield a
pale yellow solid in 33.8 mg, 91% yield.

General procedure for the scale-up (1 mmol) polymerization. An oven-dried
100 mL Schlenk tube equipped with a stir bar was charged with monomer 1 (444.0
mg, 1.0 mmol) and precatalyst 10 (17.3 mg, 0.075 mmol). The Schlenk tube was
sealed with a rubber septum and was connected to a Schlenk line, evacuated, and
refilled with nitrogen (repeated three times). Next, a solution of KOtBu (336 mg,
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3.0 mmol) in 20 mL anhydrous CPME was added by syringe. The reaction was
stirred for 24 h at 80 °C, cooled to room temperature, opened to air, and quenched
with 1 mL of H2O. The reaction mixture was firstly transferred to a 250 mL round-
bottom flask and the volatile materials were removed with a rotary evaporator.
Next, CHCl3 (20 mL) was added into flask and the slurry solution was allowed to
stir for 10 min. Cold methanol (60 mL) was added into the flask to precipitate the
polymer and the slurry solution with polymer suspension was allowed to stir for 10
min. The mixture was then filtered on a glass fritted filter funnel (75 mL). After the
MeOH/CHCl3 solution was filtered, the resulting solid was washed with H2O (5
mL), MeOH (20 mL *3), and pentane (5 mL). The solid was collected and dried in a
vacuum as pale yellow solid to provide 334.8 mg, 90% yield of the polymer.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files.
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