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PREDICTD PaRallel Epigenomics Data Imputation
with Cloud-based Tensor Decomposition
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The Encyclopedia of DNA Elements (ENCODE) and the Roadmap Epigenomics Project seek

to characterize the epigenome in diverse cell types using assays that identify, for example,

genomic regions with modified histones or accessible chromatin. These efforts have pro-

duced thousands of datasets but cannot possibly measure each epigenomic factor in all cell

types. To address this, we present a method, PaRallel Epigenomics Data Imputation with

Cloud-based Tensor Decomposition (PREDICTD), to computationally impute missing

experiments. PREDICTD leverages an elegant model called “tensor decomposition” to impute

many experiments simultaneously. Compared with the current state-of-the-art method,

ChromImpute, PREDICTD produces lower overall mean squared error, and combining the two

methods yields further improvement. We show that PREDICTD data captures enhancer

activity at noncoding human accelerated regions. PREDICTD provides reference imputed data

and open-source software for investigating new cell types, and demonstrates the utility of

tensor decomposition and cloud computing, both promising technologies for bioinformatics.

DOI: 10.1038/s41467-018-03635-9 OPEN

1 Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Ave NE, Seattle, WA 98195, USA. 2 Department
of Electrical Engineering, University of Washington, Paul Allen Center AE100R, Box 352500, 185 Stevens Way, Seattle, WA 98195, USA. 3 Department of
Computer Science and Engineering, University of Washington, Foege Building S-250, Box 355065, 3720 15th Ave NE, Seattle, WA 98195, USA.
Correspondence and requests for materials should be addressed to W.S.N. (email: william-noble@uw.edu)

NATURE COMMUNICATIONS |  (2018) 9:1402 | DOI: 10.1038/s41467-018-03635-9 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2056-4199
http://orcid.org/0000-0003-2056-4199
http://orcid.org/0000-0003-2056-4199
http://orcid.org/0000-0003-2056-4199
http://orcid.org/0000-0003-2056-4199
http://orcid.org/0000-0002-4842-262X
http://orcid.org/0000-0002-4842-262X
http://orcid.org/0000-0002-4842-262X
http://orcid.org/0000-0002-4842-262X
http://orcid.org/0000-0002-4842-262X
http://orcid.org/0000-0001-7283-4715
http://orcid.org/0000-0001-7283-4715
http://orcid.org/0000-0001-7283-4715
http://orcid.org/0000-0001-7283-4715
http://orcid.org/0000-0001-7283-4715
mailto:william-noble@uw.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Understanding how the genome is interpreted by varied cell
types, in different developmental and environmental
contexts, is the key question in biology. With the advent

of high-throughput next-generation sequencing technologies,
over the past decade, we have witnessed an explosion in the
number of assays to characterize the epigenome and interrogate
the chromatin state, genome wide. Assays to measure chromatin
accessibility (DNase-seq, ATAC-seq, FAIRE-seq), DNA methy-
lation (RRBS, WGBS), histone modification, and transcription
factor binding (ChIP-seq) have been leveraged in large projects,
such as the Encyclopedia of DNA Elements (ENCODE)1 and the
Roadmap Epigenomics Project2 to characterize patterns of bio-
chemical activity across the genome in many different cell types
and developmental stages. These projects have produced thou-
sands of genome-wide datasets, and studies leveraging these
datasets have provided insight into multiple aspects of genome
regulation, including mapping different classes of genomic ele-
ments3,4, inferring gene regulatory networks5, and providing
insights into possible disease-causing mutations identified in
genome-wide association studies (GWAS)2.

Despite the progress made by these efforts to map the epi-
genome, much work remains to be done. Due to time and
funding constraints, data have been collected for only a fraction
of the possible pairs of cell types and assays defined in these
projects (Fig. 1a). Furthermore, taking into account all possible
developmental stages and environmental conditions, the number
of possible human cell types is nearly infinite, and it is clear that
we will never be able to collect data for all cell type/assay pairs.

However, understanding the epigenome is not an intractable
problem, because in reality many of the assays detect overlapping
signals, such that most of the unique information can be recov-
ered from just a subset of experiments. One solution is thus to
prioritize experiments for new cell types, based on analysis of
existing data6. Alternatively, one may exploit existing data to
accurately impute the results of missing experiments.

Ernst and Kellis pioneered this imputation approach, and
achieved remarkable accuracy with their method, ChromImpute7.
Briefly, this method imputes data for a particular target assay in a
particular target cell type by: (1) finding the top ten cell types
most correlated with the target cell type, based on data from non-
target assays, (2) extracting features from the data for the target
assay from the top ten non-target cell types, and also extracting
features from the data for non-target assays in the target cell type,
and (3) training a regression tree for each of the top ten most
correlated cell types. Data points along the genome are imputed
as the mean predicted value from the collection of trained
regression trees. Although ChromImpute produces highly accu-
rate imputed data, this training scheme is complicated and not
very intuitive, and results in a fragmented model of the epigen-
ome that is very difficult to interpret. We hypothesized that an
alternative approach, in which a single joint model learns to
impute all experiments at once, would simplify the model training
and improve the interpretability, while maintaining accurate
imputation of missing data.

Accordingly, we present PaRallel Epigenomics Data Imputa-
tion with Cloud-based Tensor Decomposition (PREDICTD),
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Fig. 1 Overview. a Matrix representing the subset of the Roadmap Epigenomics consolidated data set used in this study. Experiments in yellow have
observed data, while missing experiments are purple. b We model the experiments in a as a three-dimensional tensor, and find three low-rank factor
matrices (denoted C, A, and G) that can be combined by summing the outer products of each of the L latent factor vector triplets to reconstruct a complete
tensor with no missing values that both approximates the existing data and imputes the missing data. c The genome dimension is very large, so in order to
fit all of the data in memory and to speed up training, we distribute the tensor across multiple cluster nodes running Apache Spark. Then we use parallel
stochastic gradient descent37 to share the A and C matrices across all nodes
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which treats the imputation problem as a tensor completion task,
and employs a parallelized algorithm based on the PARAFAC/
CANDECOMP method8,9,]. Our implementation, developed on
consumer cloud infrastructure, achieves high accuracy imputa-
tion of ENCODE and Roadmap Epigenomics data, and predicts
all datasets jointly in a single model. We used PREDICTD to
impute the results for 3048 experiments across 127 cell types and
24 assays from the Roadmap Epigenomics project, and these
imputed data are available for download through ENCODE
(https://www.encodeproject.org/). In the following sections, we
explain the model, discuss its performance on held out experi-
ments from the Roadmap Epigenomics Consolidated data2, show
that the model parameters summarize biologically relevant fea-
tures in the data, and demonstrate that imputed data can reca-
pitulate important cell type-specific gene regulatory signals in
noncoding human accelerated regions (ncHARs) of the
genome10.

Results
Epigenomic maps can be imputed using tensor factorization.
Data from Roadmap and ENCODE projects can be organized
into a 3D tensor, with axes corresponding to cell types, assays,
and genomic positions (Fig. 1b). This tensor is long and skinny,
with many fewer cell types and assays than genomic positions,
and the data for experiments that have not been done yet are
missing in the tensor fibers along the genome dimension. Our
strategy for imputing these fibers is to jointly learn three factor

matrices that can be combined mathematically to produce a
complete tensor that both approximates the observed data and
predicts the missing data. These three factor matrices are of shape
C × L, A × L, and G × L, where C, A, and G indicate the numbers
of cell types, assays, and genomic positions, respectively, and L
indicates the number of “latent factors” that the model trains
(Fig. 1b), and thus the number of model parameters.

We developed and trained our implementation of this tensor-
factorization model, PREDICTD, using 1014 datasets from the
Roadmap Epigenomics Consolidated Epigenomes2 (Fig. 1a). To
assess model performance, we split the datasets into five training/
test splits, and we report the results of imputing each test set at 25
base pair resolution. The model training proceeds by distributing
the data and genome parameters across the nodes of the cluster,
and then sharing the cell type and assay parameters across all
nodes, using a parallelized training procedure (See Methods,
Fig. 1c). We find that training on a randomly selected 0.01% of
the genome provides enough signal for learning the cell type and
assay parameters; these parameters are then applied across all
genomic positions of interest by training the genome parameters
for each position while holding the cell type and assay parameters
constant. We report the results from imputing just over 1% of the
genome, including the ENCODE Pilot Regions1 and 2640
ncHARs10. All subsequent references to the genome dimension
in this manuscript refer to this subset of loci.

Our model formulation and implementation offer several
important advantages. First, training a single model to impute all
datasets at once is a straightforward and intuitive way of solving
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this problem. Second, as we demonstrate below, the model can
leverage the joint training to perform well even in cell types with
a single informative experiment. Third, the parameters of the
trained model have the same semantics across all input datasets
and, although a full investigation of model interpretability is
outside the scope of this work, we show that the trained
parameters show different patterns for different cell types, assays,
and genomic elements. We take these results as evidence that the
PREDICTD model itself holds the potential to be interrogated to
learn about relationships among assays, cell types, and genomic
loci. Last, PREDICTD software is open-source (https://bitbucket.
org/noblelab/predictd), and is also implemented and distributed
on the consumer cloud, which makes our model immediately
accessible to, and easily runnable by, nearly anyone.

PREDICTD imputes epigenomics experiments with high
accuracy. PREDICTD imputes missing data with high accuracy,
based on both visual inspection and quality measures (Fig. 2).
Visually, the imputed signal pattern closely matches that of
observed data, and recapitulates the known associations of epi-
genomic marks with genomic features (Fig. 2a, Supplementary
Fig. 1). For example, as expected, H3K4me3-imputed signal is
strongly enriched in narrow peaks at promoter regions near the
transcription start site of active genes, and H3K36me3, known to
mark transcribing regions, is enriched over gene bodies.

We also show strong performance of PREDICTD on ten
different quality measures (see Methods, Supplementary Figs 2,
14, 15, Supplementary Data 13–16), especially the global
mean squared error quality measure (MSEglobal). As a key part
of the PREDICTD model’s objective function, MSEglobal is
explicitly optimized during model training (see Methods). The
MSEglobal measure has a mean of 0.1229, and it ranges from
0.0359 for H3K4me3 in the “NHLF Lung Fibroblasts” cell type to
0.4511 for H4K20me1 in “Monocytes CD14+ RO01746.” Other
key quality measures include the genome-wide Pearson correla-
tion (GWcorr, mean: 0.6886, min: 0.0790 for H3K36me3 in
“Right Atrium,” max: 0.9391 for H3K4me3 in “HUES64 Cell
Line”), and the area under the receiver operating characteristic
curve for recovering observed peak regions from imputed data
(CatchPeakObs, mean: 0.9565, min: 0.5503 for H3K36me3 in
“Right Atrium,” max: 0.9984 for H3K4me3 in “NHLF Lung
Fibroblasts”). Note that seven of our ten quality measures,
including GWcorr and CatchPeakObs, were also used in the
ChromImpute publication7.

As a baseline, we compared the performance of PREDICTD to
a simple “Main Effects” model, which computes the global mean
of the observed data, and then the column and row residuals of
each two-dimensional (2D) slice of the tensor along the genome
dimension, and imputes a given cell in the tensor by summing the
global mean and the corresponding row and column residual
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means. PREDICTD outperforms this baseline model for MSE-
global on all but two assays (Fig. 2b). Furthermore, PREDICTD
similarly outperforms the Main Effects on all additional
performance measures (Supplementary Fig. 2).

PREDICTD performs well on cell types with few assays. The
key application of PREDICTD will be to impute results for cell
types that may have only one or two datasets available. To
investigate the performance of PREDICTD in this context, we
trained a model on all available data for all cell types, except that
we only included one or two experiments for the “CD3 cord
blood primary cells” cell type. In particular, one model had just
H3K4me1 in the training set for this cell type, one had just
H3K4me3, and one had both H3K4me3 and H3K9me3. Com-
paring the performance measures between these experiments and
the imputed results from our original models trained on the five
test sets, we find that the results of training with just H3K4me3 or
both H3K4me3 and H3K9me3 are nearly as good as (and
sometimes better than) the results from the original models with
training data that included five or six experiments for this cell
type (Fig. 2c, Supplementary Fig. 3). Imputing based on
H3K4me1 signal did not perform as well as imputing based on

only H3K4me3. This observation is consistent with previous
results of assay prioritization6 indicating that H3K4me3 is the
most information-rich assay. Furthermore, this result is not
specific to the “CD3 cord blood primary cells” cell type. We find
that the results for imputing four other cell types (“GM12878
lymphoblastoid,” “fetal muscle trunk,” “brain anterior caudate,”
and “lung”), just based on H3K4me3 signal, showed similar
results (Supplementary Figs. 5, 6, 7, 8). We conclude that PRE-
DICTD performs well on under-characterized cell types, and will
be useful for studying new cell types for which few datasets are
currently available.

Model parameters capture patterns in each tensor dimension.
The fact that PREDICTD performs well on the imputation task
implies that the parameters learned by the model capture patterns
that can distinguish among different cell types, assays, and
genomic positions, and we next present results showing that this
is the case. We think it important to note that it would be
incorrect, at this point, to interpret any particular latent factor as
having a specific biological meaning. We place no a priori con-
straints on what patterns in the data PREDICTD uses to arrive at
a solution, and any signal with relevance to a particular biological
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Fig. 4 PREDICTD performs comparably to ChromImpute, and combining the models improves the result. a Schematic describing how a ternary plot relates
to Cartesian coordinates. Each experiment (represented by a black dot) is plotted in Cartesian space based on the values of a particular quality score for
imputed data (in this example, MSEglobal) from PREDICTD, ChromImpute, and Main Effects. Each point in this space is then projected onto a plane by a
vector drawn through the point and the origin. The resulting ternary plot summarizes the relative magnitude of the quality score for the three models. If all
models achieve the same quality measure score for a particular experiment, then that point will be projected onto the center of the ternary plot. Deviation
toward a corner of the triangle indicates that one model has a higher value for that quality measure than the other two, and deviation from the center
toward one of the edges of the triangle indicates that one model has a lower value. Color shading of the plot area marks the regions of the ternary plot that
indicate superior performance of each model on a particular quality measure. The pattern of the colors changes based on whether it is better to have a low
value on that quality measure (as with mean squared error) or a high value (for example, the genome-wide correlation). b Comparing PREDICTD,
ChromImpute, and Main Effects models across five quality measures: the global mean squared error (MSEglobal), the genome-wide Pearson correlation
(GWcorr), the percent of the top 1% of observed data windows by signal value found in the top 5% of imputed windows (Catch1obs), the percent of the
top 1% of imputed windows by signal value found in the top 5% of observed windows (Catch1imp), and the area under the receiver operating characteristic
curve for recovery of observed peak calls from all imputed windows ranked by signal value (CatchPeakObs). c The same as in b, except that the quality
measures for the averaged results of ChromImpute and PREDICTD are plotted along the bottom (red) axis, instead of the measures of PREDICTD alone
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feature is likely distributed across multiple latent factors. As such,
here we simply show that the parameters, in aggregate, exhibit
different patterns between different cell types, assays, and geno-
mic loci; a full investigation on the ways to gain biological insight,
from these parameters, is outside the scope of our present study.

Although we cannot definitively assign semantics to individual
latent factors, we find that their values in aggregate show patterns
that recover known relationships among the cell types, assays and
genomic loci (Fig. 3). Hierarchical clustering on the rows of the
cell type factor matrix shows that similar cell types are grouped
together (Fig. 3a), producing large clades for embryonic stem cells
(magenta), immune cell types (green), and brain tissues (cyan),
among others (Fig. 3a, Supplementary Fig. 9). In the same way,
assays with similar targets cluster together (Fig. 3b), with the
colored clades from top to bottom representing acetylation marks
generally associated with active promoters (magenta), marks that
are strongly associated with active regulatory regions (cyan/blue),
and broad marks for transcription (red) and repression (green).
The assays cluster perfectly except that, biologically, H3K23ac
should be grouped with either the active regulatory marks (cyan/
blue) or the active acetylation marks (magenta). This is one of the
two assays for which PREDICTD failed to outperform the Main
Effects, and it was one of the worst performing assays for
ChromImpute as well, so it appears to be a difficult mark to
impute. Nevertheless, most of the cell types and assays cluster
correctly, and these results are highly nonrandom. We quantified
this by comparing our clustering results to randomly shuffled
cluster identities, using the Calinski–Harabaz Index, which
assesses how well the clustering separates the data by comparing
the average distance among points between clusters to the average
distance among points within clusters (Supplementary Fig. 10).

For the genome factor matrix, we projected the coordinates of
each gene, from the GENCODE v19 human genome annotation11

(https://www.gencodegenes.org/releases/19.html), onto an idea-
lized gene model that includes nine parts from 5′ to 3′ in the
gene: the promoter, 5′ untranslated region (UTR), first exon, first
intron, middle exons, middle introns, last intron, last exon, and 3′
UTR. This procedure produced a summary of the genome latent
factors (Fig. 3c) that, when reading each column of the heat map
as a feature vector for a particular location in a gene, shows
distinct patterns at different gene components. For example,
latent factors that on average have high or low values at regions
(i.e., heat map columns) near the transcription start site are
different from those with high or low values at other gene
components, like exons and introns.

In addition to investigating patterns in the genome parameters
at genes, we checked to see whether distal regulatory regions
showed a pattern distinct from gene components. P300 is a
chromatin regulator that associates with active enhancers12. We
therefore decided to search for patterns in the genome latent

factors at windows ±1 kb around annotated P300 sites from
published ENCODE tracks (see Methods). Note that no P300
data was used to train PREDICTD. Nevertheless, we find a
striking pattern, with many latent factors showing average values
of larger magnitude within the 400 bp region surrounding the
center of the peak, and some others showing larger average
magnitude in a flanking pattern in the bins 200–400 bp away
from the peak center (Fig. 3c, d). Again, note that these results do
not imply a biological meaning for any particular latent factor;
instead, we hypothesize that the genome latent factors as a whole
might be useful as features for classification or deeper
characterization of genomic elements. Last, if we randomize the
latent factors at each genomic location and do the same analyses,
we find no discernible pattern (Supplementary Fig. 11). We thus
conclude that the trained model parameters encode patterns that
correspond to biology.

PREDICTD and ChromImpute data are similar and com-
plementary. As described in the Introduction, the ChromImpute
method7 provides high-quality imputed data, but employs a
complicated model and training procedure tuned to each indi-
vidual experiment. In contrast, our tensor decomposition
approach imputes all missing experiments by using a single
model, which we argue is conceptually simpler and addresses the
problem in a more natural way. Furthermore, we find that our
model outperforms ChromImpute on our primary performance
measure (MSEglobal), and yields similar performance on nine
additional measures (Fig. 4a, Table 1, Supplementary Figs. 14, 15,
and Supplementary Data 1, 13–16). Also see Supplementary
Figs. 4, 2, 3, 5, 6, 7, 8 for figures similar to those in Fig. 2, but with
ChromImpute values included. The correlation of quality mea-
sures between PREDICTD and ChromImpute is higher than the
correlation between the Main Effects method and ChromImpute,
indicating that PREDICTD agrees with ChromImpute more often
than Main Effects does. Furthermore, the mean log ratio of
quality measures on corresponding experiments imputed by
PREDICTD and ChromImpute show smaller differences than the
log ratios for Main Effects and ChromImpute (Table 1, Supple-
mentary Data 1, Fig. 4, Supplementary Figs. 14, 15). Thus,
PREDICTD produces high-quality imputed data that is almost as
good, or better than, ChromImpute predictions, depending upon
which quality measure is employed.

We also calculated the distribution of the differences between
imputed values and observed values for experiments imputed by
both PREDICTD and ChromImpute, and we found that
ChromImpute tends to impute higher values than PREDICTD
(Supplementary Fig. 13). We hypothesized that the two models
each perform better on different parts of the genome, and so we
tried averaging the PREDICTD and ChromImpute results. By the

Table 1 Statistics comparing models across five quality measures show PREDICTD outperforms Main Effects and has similar
performance to ChromImpute

Measure PREDICTD vs ChromImpute PREDICTD vs Main Effects Main Effects vs ChromImpute

Corr Log ratio Corr Log ratio Corr Log ratio

Mean Std Mean Std Mean Std

MSEglobal 0.689 −0.151 0.266 0.835 −0.188 0.212 0.510 0.037 0.373
GWcorr 0.977 −0.039 0.072 0.883 0.100 0.163 0.866 −0.139 0.164
Catch1obs 0.979 −0.028 0.055 0.916 0.097 0.161 0.886 −0.125 0.177
Catch1imp 0.973 −0.023 0.073 0.876 0.155 0.293 0.848 −0.178 0.306
CatchPeakObs 0.923 −0.008 0.017 0.776 0.025 0.037 0.812 −0.032 0.035

See Supplementary Data 1 for the statistics on all quality measures.
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MSEglobal measure, we do see a marked improvement relative to
both models, and other quality measures on which ChromImpute
outperformed PREDICTD alone show parity between ChromIm-
pute and the averaged model (Fig. 4b).

Imputed data recovers cell type-specific enhancer signatures.
Human accelerated regions (HARs) are genomic loci that are
highly conserved across mammals, but harbor more mutations in
human than would be expected for their level of conservation
(reviewed in ref. 13). Although some HARs overlap coding
regions, the overwhelming majority (>90%) are found in non-
coding portions of the genome (ncHARs)10,13, and ncHARs are
thought to be enriched for mutations that affect the regulation of
genes underlying human-specific traits. Noncoding variation is
thought to account for much of our phenotypic divergence from
other primates14, and additional evidence in support of this
hypothesis comes from observations that ncHARs cluster around
developmental and transcription factor genes10,13, transgenic
assays for functional validation of enhancer activity10,15–17,
computational epigenomics, and population genetics
studies10,18,19.

In particular, ncHARs are enriched in developmental enhancer
activity10,18. In10 EnhancerFinder18, a program to predict
genomic regions with tissue-specific developmental enhancer
activity, was trained on ENCODE epigenomics maps1 and results
from the VISTA enhancer database20, and applied to ncHARs.
EnhancerFinder predicted enhancer activity for 773 of 2649
ncHARs, but the authors note that the characterization of these

regions remains incomplete due to limitations in the available
data. To our knowledge, no one has yet analyzed enhancer
signatures of ncHARs in the context of the Epigenomics
Roadmap data. Thus, we decided to address this question as a
way to validate PREDICTD in a biological application, and to
extend the EnhancerFinder results by assessing cell type-specific
enhancer activity in the ncHARs based on the Roadmap dataset.

Briefly, we imputed data for three enhancer-associated assays
(DNase, H3K27ac, and H3K4me1) in all cell types, and averaged
the imputed signal over each ncHAR to produce a small tensor
with axes corresponding to three assays, 2640 ncHARs, and 127
cell types. We flattened the assay dimension of this tensor by
taking the first principal component, and then used a biclustering
algorithm to group the ncHARs and cell types (see Methods). The
resulting cell type groups are consistent with tissue of origin
(Fig. 5a, Supplementary Data 2), and the ncHARs cluster based
on enhancer-associated signal in different cell type clusters as
follows: no signal (77% of the ncHARs), brain/ES (13%),
epithelial/mesenchymal (7%), non-immune (2%), and immune
(1%) (Fig. 5a, Supplementary Data 3). Using the same strategy to
cluster the available observed data gives very similar results, as
quantified by the adjusted Rand index (Fig. 5b), especially when
compared to two background models: shuffled, in which the
ncHAR coordinates have been randomly shuffled along the
genome; and other, in which the enhancer-associated marks were
exchanged for three non-enhancer-associated marks (H3K4me3,
H3K27me3, and H3K36me3). A heat map showing the clustering
of observed data is provided in Supplementary Fig. 17.

: PREDICTD
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Fig. 5 Imputation of enhancer marks reveals tissue-specific patterns of enhancer-associated marks at noncoding human accelerated regions (ncHARs). a
Average PREDICTD signal at each ncHAR was compiled for H3K4me1, H3K27ac, and DNase assays from all cell types. The first principal component with
respect to the three assays was used in a biclustering to find six and five clusters along the cell type, and ncHAR dimensions, respectively. The inverse
hyperbolic sine-transformed signal from each of these assays was summed per cell type and ncHAR, and the resulting values were plotted as a heat map.
The column marked with a black triangle at the top designates the color key for the ncHAR clusters. The leftmost column, designated with a black circle,
identifies ncHARs with predicted tissue-specific developmental enhancer activity, based on EnhancerFinder analysis from Capra et al.10. b and c Evaluation
of the clustering results with the adjusted Rand index. The clustering results for observed data and PREDICTD for the ncHAR (b) and cell type clusterings
(c), and also those from Capra et al.10 for the ncHARs, all show higher adjusted Rand index scores than the clustering results for observed data with
shuffled ncHAR coordinates (shuffled) or for observed data from non-enhancer-associated marks (other)
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These biclustering results also agree with and expand upon
previously published tissue specificity predictions from Enhan-
cerFinder10,18. The brain enhancer predictions from that study
are visibly enriched in our brain/ES cluster, and the limb and
heart predictions are enriched in our clusters showing activity in
differentiated, epithelial, and mesenchymal cell types (Fig. 5a). If
we treat the EnhancerFinder tissue assignments10 as another
clustering of the ncHARs, we find that they are more similar to
our clustering (both for observed and imputed data) than to
either background clustering (Fig. 5b). In addition, our results
expand on EnhancerFinder by assigning to cell type-associated
clusters 289 ncHARs (11% of ncHARs) that were characterized by
EnhancerFinder as either having activity in “other” tissues (98
ncHARs) or no developmental enhancer activity (“N/A,” 191
ncHARs). We also find that our clustering successfully predicts
enhancer activity for many functionally validated ncHARs, and
furthermore assigns most of them to the correct cell types
(Supplementary Data 4). Briefly, we correctly identify enhancer
activity in ten of 23 ncHARs with evidence in the VISTA
database10,20, and 6 of 7 ncHARs with validation results
suggesting enhancer activity specific to the human allele and
not the chimp allele10; we find evidence of enhancer identity for
one of three ncHARs associated with AUTS2, a gene associated
with autism spectrum disorder, and this was one of two from that
study that showed transgenic enhancer activity17; NPAS3 is a
gene associated with schizophrenia that lies in a large cluster of 14
ncHARs, and we find enhancer signal for seven of them, six of
which have validated enhancer activity16; last, HAR2 is a ncHAR
with validated human-specific limb enhancer activity that clusters
with our brain/ES category15. Thus, assessing the potential
enhancer activity based on the Roadmap Epigenomics data,

which encompasses different cell types and developmental stages
than ENCODE, agrees with previous results and expands on them
to characterize more ncHARs as having potential tissue-specific
enhancer activity.

Finally, we asked what types of biological processes these
putative enhancers might regulate. We extracted the genomic
coordinates of the ncHARs in each cluster, and used the Genomic
Regions Enrichment of Annotations Tool (GREAT)21 to test for
enriched ontology terms. Using the total list of ncHARs as the
background, we found that the brain/ES cluster of ncHARs is
enriched for GO biological process terms associated with cell
migration in different brain regions; the epithelial/mesenchymal
cluster shows enrichment for terms associated with tissue
development, particularly mesenchymal cell differentiation; and,
although there are no significantly enriched GO biological process
terms for the non-immune cluster, there are enriched terms from
a mouse phenotype ontology indicating these ncHARs could be
associated with embryonic development and morphology
(Table 2, Supplementary Data 5–12). We found no significantly
enriched terms for the immune cluster.

The question of whether ncHARs are active enhancers in modern
humans, or whether they are regions that formerly had enhancer
activity that has been lost over the course of our evolution is a
central question to the study of ncHAR biology. With this analysis,
we shed more light on which ncHARs have enhancer activity, and
even provide some insight into the relevant developmental stage for
such activity, as our cell types are derived from embryonic, fetal, and
adult tissues. Taken together, these results show that PREDICTD
imputed data can capture cell type-specific regulatory signals, and
that PREDICTD can be used as a tool to study the biology of new
and under-characterized cell types in the future.

Table 2 Ontology search results are consistent with ncHAR cluster cell type identities

ncHAR cluster Ontology Enriched term FDR

Non-immune Mouse phenotype Abnormal craniofacial development 2.506e-03
Abnormal embryogenesis/development 8.269e-03
Hemorrhage 2.022e-02
Abnormal embryonic tissue morphology 2.204e-02
Abnormal basioccipital bone morphology 2.907e-02
Partial neonatal lethality 2.944e-02
Abnormal skeleton development 3.439e-02
Abnormal placental labyrinth vasculature morphology 3.465e-02
Perinatal lethality 3.601e-02
Abnormal embryo size 3.605e-02
Abnormal craniofacial morphology 3.703e-02
Decreased embryo size 3.805e-02
Abnormal blood circulation 3.873e-02
Decreased skeletal muscle fiber number 3.931e-02
Abnormal embryonic growth/weight/body size 4.263e-02
Neonatal lethality 4.344e-02

Epithelial/mesenchymal GO biological process Embryonic organ development 2.487e-02
Embryo development ending in birth or egg hatching 2.502e-02
Somite development 2.514e-02
Tissue morphogenesis 2.746e-02
Mesenchyme development 2.948e-02
Stem cell differentiation 3.109e-02
Anterior/posterior pattern specification 3.237e-02
Mesenchymal cell development 3.310e-02
Chordate embryonic development 3.431e-02
Somitogenesis 3.569e-02

Brain/ES GO biological process Telencephalon cell migration 2.150e-02
Cerebral cortex cell migration 2.897e-02
Forebrain cell migration 3.563e-02
Cerebral cortex radially oriented cell migration 4.523e-02

We used GREAT to find enriched ontology terms associated with genes that are possibly regulated by ncHARs from each cluster. The list of all ncHARs was used as the background, and the terms are
significant at FDR < 0.05 for the hypergeometric test, and have at least a two-fold enrichment over expected
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Discussion
PREDICTD imputes thousands of epigenomics maps in parallel
using a 3D tensor factorization model. Our work makes several
important contributions. First, the model leverages a machine
learning method, tensor decomposition, that holds particular
promise in genomics for analyzing increasingly high-dimensional
datasets. Tensor factorization with the PARAFAC/CANDE-
COMP procedure was first proposed by two groups indepen-
dently, in 1970, in the context of analyzing psychometric
electroencephalogram data8,9. Tensor decomposition by this and
related methods has since been applied in many other fields22,23,
and increasingly in biomedical fields as well24–26. Tensor
decomposition has advantages over 2D methods, because taking
into account more than 2D reduces the rotational flexibility of the
model and helps drive the factors to a solution that can explain
patterns in all dimensions at once. Our particular application,
completing a tensor with missing data, is an area of active
research27, and is analogous to methods for matrix factorization
that have proven effective in other machine learning applications
like recommender systems28. To our knowledge, PREDICTD is
just the third application of the tensor decomposition approach to
epigenomics data25,26, and the first to use a tensor completion
approach to impute missing data in this setting. As such, our
method demonstrates another way forward for integrating and
jointly analyzing increasingly large and complex datasets in the
field.

Second, PREDICTD provides some key advantages over the
current state-of-art for epigenomics data imputation. The best
alternative method for predicting raw epigenomics signal is
ChromImpute7. Our tensor factorization approach is simpler and
arguably more elegant than ChromImpute, because it naturally
models the three key dimensions of the imputation problem,
while training on and imputing all data at once. In addition,
PREDICTD is less computationally intensive than ChromImpute,
and scales better to imputing large numbers of experiments (see
Methods—Computing resource requirements). Furthermore, as a
single model that describes all experiments, the parameters
PREDICTD learns during training have the same semantics
across different cell types, assays, and genomic positions. We
show that these parameters contain information that can be used
to distinguish different types of cells, assays, or genomic elements,
and future work will investigate how the PREDICTD model itself
might be used to gain biological insight. Last, we show that
PREDICTD outperforms ChromImpute on the MSEglobal qual-
ity measure, despite generally slightly under-performing Chro-
mImpute on other measures (Fig. 4, Supplementary Fig. 14).
There could be multiple reasons for this observation. First, as a
tree-based model, ChromImpute can learn nonlinear relation-
ships in the data that PREDICTD cannot, and it is possible that
this accounts for some of the difference in performance between
the two approaches. Second, the mean squared error (MSE) is
central to the PREDICTD objective function, and so it is the
quality measure on which the model should perform best; if
another quality measure were used in the objective function, then
PREDICTD might outperform ChromImpute on that one
instead. Nevertheless, the fact that averaging the PREDICTD and
ChromImpute results outperforms both methods alone suggests
that the two approaches are complementary, and we are inter-
ested in exploring additional methods, particularly nonlinear
models like deep neural networks, that might be able to combine
the best of both approaches to further improve the imputed data
quality.

Last, the imputed data represents an important tool for guiding
epigenomics studies. Such data is far cheaper to produce than
observed data, closely matches the data observed from experi-
mental assays, and is useful in a number of contexts to generate

hypotheses that can be explored in the wet lab. We showed that
imputed data can provide insights into ncHARs; and Ernst and
Kellis7 previously showed that imputed data tend to have a higher
signal-to-noise ratio than the observed data, that imputed data
can be used to generate high-quality automated genome anno-
tations, and that regions of the genome with high imputed signal
tend to be enriched in single nucleotide polymorphisms identified
in GWAS. In addition, raw imputed data includes information
about signal amplitude and shape, which can provide insight into
the types of regulators and binding events that are producing that
signal29–31. In contrast, other methods that use epigenomics data
for various prediction tasks32–34 all impute binarized epigenomics
signal (i.e., peak calls), and do not preserve peak shape or
amplitude. Raw imputed datasets, such as those produced by
PREDICTD, make no assumptions about what research questions
they will be used to address, and are widely applicable to any
study that analyzes ChIP-seq or DNase-seq data. Thus, in con-
clusion, imputed data can provide insight into cell type-specific
patterns of chromatin state, and act as a powerful hypothesis
generator. With just one or two epigenomics maps from a new
cell type, PREDICTD can leverage the entire corpus of Roadmap
Epigenomics data to generate high-quality predictions of all
assays.

Methods
Data. We downloaded the consolidated genome-wide signal (−log10 p) coverage
tracks in bigWig format from the Roadmap Epigenomics data portal (http://egg2.
wustl.edu/roadmap/web_portal/processed_data.html#ChipSeq_DNaseSeq)2. These
tracks are uniformly processed and currently represent the best curated collection
of epigenomic maps available. In addition, these are the same tracks that Ernst and
Kellis7 used to train ChromImpute, making it easier to compare our modeling
approaches.

All observed signal tracks show a higher variance at regions of high signal than
at regions of low signal. In order to stabilize this variance across the genome and to
make the data more tractable for PREDICTD’s Gaussian error model, we applied
an inverse hyperbolic sine transform. This transformation, which has been used in
previous studies of epigenomic maps35, is similar to a log transform, but is defined
for zero values.

After variance stabilization, we defined five training and test splits such that
each observed experiment was in one test set. First, we removed any cell types or
assays with fewer than five completed experiments to ensure that there would be
enough support for training in each dimension in our model. This left 127 cell
types, 24 assays, and a total of 1014 completed experiments (66.6% missing). Next,
we split these experiments into five test sets, by randomly generating five disjoint
subsets of experiments that each contained a stratified sample from across the
available cell types and assays. Thus, in each split, 20% of experiments comprise the
test set and 80% comprise the training set. In addition to the held out test set,
PREDICTD requires a held out validation set to detect model convergence. To
ensure that all data in the training dataset contributed equally to the final
imputation, the training data for each test set were further split into eight validation
sets by cell type/assay pair, so that for any pair of test and validation sets the data
split is 20% test (203), 10% validation (100), and 70% training (711). The imputed
values reported in this paper are the average test set predictions from eight models
trained on the eight validation sets corresponding to that test set. 153 experiments
from the first test set were held out of our model tuning procedure as a final test set
to show that the model generalizes (Supplementary Fig. 15).

Last, the data for each experiment was averaged into 25 bp bins across the
genome using the bedtools map command36, and the bins overlapping the
ENCODE Pilot Regions and 1 kb windows centered at ncHARs were extracted for
training the PREDICTD model. The resulting dataset contains just over 1.3 million
bins, or about 1% of the genome. All experiments reported here were conducted
using models trained on this subset of the genome. We find that this is more than
enough data to train the model, and imputing the entire genome is a relatively
simple matter of applying the learned cell type and assay factors across all positions
in the genome.

Model. In the following sections, we present the PREDICTD model. As mentioned
above, the dataset can be represented as a 3D tensor with the axes being the cell
types, the assays, and the locations across the genome. We refer to these axes as the
cell type, assay, and genome dimensions, respectively. We use capital letters, J, K,
and I to refer to the cardinality of each of these dimensions, and lowercase j, k, i, to
refer to specific indices in each corresponding dimension. We use the same con-
vention to refer to the number of latent factors in the model, L, and individual
latent factor indices, l. Each dimension has two learned data structures associated
with it: a factor matrix, and a bias vector. We use bold capital letters to refer to the
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factor matrices, and bold lowercase letters to refer to the bias vectors. The cell type
factor matrix and bias vector, and their dimensions are CJ×L, and cJ×1, respectively.
Similarly, for the assay factor matrix and bias vector, the dimensions are: AK×L, and
aK×1, and for the genome dimension: GI×L, and gI×1.

Three main “axes” contribute to the observed biological signal in epigenomic
maps: the cell type, the assay, and the genomic location that was measured. Having
three axes, on which to distribute the available datasets, naturally lends the full
dataset the structure of the 3D tensor (i.e., a stack of 2D matrices), in which the size
of one dimension corresponds to the number of cell types in the dataset, another to
the number of assays, and the third to the number of genomic locations. One might
want to use other qualities or attributes to analyze the data (subject to one’s
research question and having enough training data), such as the lab that generated
the data, the treatment that was applied, etc., but we are interested in parsing the
data along the main cell type, assay, and genomic locus axes so that our model can
most generally describe the biological phenomena in normal tissues.

Motivated by this 3D structure, we use tensor decomposition because this type
of method factors the full data tensor into smaller components that summarize the
contributions of each axis to the total data. The key to using tensor decomposition
for imputing the missing data is that the smaller components that are learned by
the model do not have missing values by definition. This means that when we
recombine the components to reconstruct the original tensor, the resulting
reconstructed tensor will not only have values that approximate the existing data in
the original tensor, but also predicted values for any missing entries in the original
tensor. Our particular strategy, known in the literature as PARAFAC, finds a 2D
matrix (i.e. one “smaller component”) for each dimension. All such matrices are of
the same size along one dimension; this dimension is what we refer to as the
number of “latent factors.” The number of latent factors determines the complexity
of the model, how well it can capture the information in each axis of the tensor,
and thus how well the reconstructed tensor matches the original tensor. Each
element of the reconstructed tensor is calculated by multiplying the three
corresponding values (one from each matrix) for each latent factor, and then
summing those products to arrive at a single number. In order to perform
imputation, we train the PREDICTD tensor decomposition model, using the
PARAFAC/CANDECOMP procedure8,9, which can very naturally model the 3D
problem explained above. It also has several additional advantages: it is relatively
simple to implement, it has the ability to scale to a large tensor size, and it holds the
possibility of producing latent factors that can provide biological insight. Briefly, in
this procedure the 3D tensor is factored into three low-rank matrices, each with the
same (user specified) number of column vectors. These column vectors are called
“latent factors,” and the tensor is reconstructed by summing the outer products of
the corresponding latent factor vector triplets. These factor matrices have no
missing values, so when they are combined to reconstruct the original data tensor,
the reconstructed tensor contains imputed data values that not only approximate
the existing tensor data, but also fill in the missing values. More precisely, we start
with a 3D data tensor D with dimensions J × K × I, where J= 127 is the number of
cell types, K= 24 is the number of assays, and I= 1,309,125 is the number of
genomic locations (in our case the ENCODE Pilot Regions and 2640 ncHARs at 25
bp resolution), represented by the tensor. This tensor has missing data in fibers
along the genome dimension, corresponding to experiments on cell type/assay
pairs that have yet to be completed. The completed experiments, corresponding to
tensor fibers that contain data, are split into training, validation, and test subsets, or
Strain, Svalid, and Stest, respectively.

We factor the tensor D into three factor matrices and three bias vectors a, c, and
g. These bias vectors are meant to capture global biases for each cell type, assay, or
genomic location, respectively. Essentially, these terms subtract out the mean for
each cell type, assay, and genomic location, which helps to mathematically center
all of the data in the tensor around the same point, so that the patterns that we
want the model to learn are not obscured by trivial differences in scale along the
axes. It is a common strategy for models like PARAFAC, that perform best on data
that is all on the same scale.

We train the model to find the values of these terms that minimize the following
objective function:

argminC;A;G;c;a;g
P

j;k;i2Strain
Dtrain
j;k;i � PL

l¼1
Cj;l � Ak;l � Gi;l þ cj þ ak þ gi

� �� �2

þλC k C k22 þλA k A k22 þλG k G k22
ð1Þ

The objective function (Eq. (1)) has two main parts. The first part calculates the
squared error between the training data, Dtrain

j;k;i and the model’s prediction,PL
l¼1 Cj;l � Ak;l � Gi;l þ cj þ ak þ gi. This term penalizes the distance between the

imputed and observed data. The last three terms, λC k C k22 þλA k A k22 þλG k
G k22 implement L2 regularization on the factor matrices. This type of
regularization penalizes large parameter values, and thus causes the model to
strongly prefer a solution with small values on the parameters. Such regularization
helps to reduce the flexibility of the model and helps to avoid overfitting the
training data. Furthermore, we note that our choice of PARAFAC, which is a linear
model with a limited number of latent dimensions, is itself a form of regularization
in the sense that such a model is less flexible than more complex models, like deep

neural nets. PARAFAC is therefore inherently less prone to overfitting the training
data, compared to a nonlinear model given the same model dimensionality.

Equation (1) cannot be solved analytically, so we solve it numerically using
stochastic gradient descent (SGD). In SGD, we first initialize the three factor
matrices with random values from a uniform distribution on the domain (−0.33 to
0.33), and the three bias vectors with the mean value from each corresponding
plane in the tensor. Then, we randomly iterate over the training set data points in
the tensor at each iteration, calculating the gradient of the objective function (Eq.
(1)) with respect to each factor matrix and bias vector, and then adding a fraction
of this gradient to the corresponding parameter values. Over time, as more and
more gradients are calculated and used to update the parameter values in the factor
matrices and bias vectors, the model as a whole “moves” along the high-
dimensional surface defined by the objective function and “down” toward a
minimum that (ideally) represents a good solution. We track the model’s progress
toward this solution by periodically saving the value of the MSE on the heldout
validation data points. Eventually, the validation MSE stops decreasing, which
indicates that the model parameters have converged on a solution. Importantly,
there is no guarantee that this solution is the best possible one, as in the case of
PREDICTD (and PARAFAC more generally) the objective function is not convex.

We should also note that PREDICTD incorporates several other modifications
to this SGD procedure to improve the speed, reliability, and accuracy of training.
First, in order to take full advantage of our compute cluster, we use parallel SGD37,
which is discussed in detail in the Implementation section below. And second, to
improve model convergence under SGD training, PREDICTD implements the
Adam optimizer38 with Nesterov Accelerated Gradient39 (Fig. 1). Finally, we note
that because there is no non-negativity constraint on the model training, a small
fraction of imputed values are negative (Supplementary Fig. 12). Negative values
are invalid for −log10 p-value tracks, so we set any such imputed values to zero in
the final output.

There are many tensor decomposition methods (reviewed in ref. 23); however,
we chose the PARAFAC model because of its relative simplicity. It is not only
straightforward to implement and parallelize, but it also requires fewer parameters
than other tensor factorization methods22,23. Note that we implemented the model
as described in the original publication8, and we included no additional constraints
on the model during training except what was imposed by the L2 regularization
terms in the objective and the constraints naturally imposed by using a relatively
simple linear model on complex data with potentially nonlinear underlying factors.
The PARAFAC model also has the nice property that as long as mild conditions
hold it will find a solution that is unique with respect to rotation
transformations22,23; this is not a property of other tensor factorization approaches,
including Tucker decomposition, which was used in ref. 25.

Implementation. PREDICTD is implemented in Python 2.7 and built using the
Apache Spark 1.6.2 distributed computation framework (http://spark.apache.org).
The code is open-source and available on BitBucket (https://bitbucket.org/
noblelab/predictd), and the environment we used to train the model is available on
Amazon Web Services (AWS) as an Amazon Machine Image (see the BitBucket
repository for info). Models were trained using AWS Elastic Compute Cloud (EC2)
(http://aws.amazon.com) and Microsoft Azure Spark on HDInsight (http://azure.
microsoft.com). We bootstrapped an EC2 cluster running Apache Spark 1.6.2 by
running the spark-ec2 script (https://github.com/amplab/spark-ec2) on a small
EC2 instance (e.g., m3.medium) that we subsequently terminated after the cluster
was up and running. Standard cluster configuration was a single m4.xlarge head
node instance and one r3.8xlarge worker instance, giving a total cluster size of two
nodes, 36 cores, and 260 GB of memory. Whenever possible, we used SPOT
instances to make the computation more affordable. Microsoft Azure HDInsight
clusters had similar resources. All data input to the model and all model output was
written to cloud storage; either Simple Storage Service (S3) on AWS, or Blob
Storage on Azure.

The data tensor is assembled into a Spark Resilient Distributed Dataset
Structure (RDD) and partitioned among the cluster nodes, such that each partition
is stored on a single node and contains the data for 1000 genomic loci. This results
in about 1300 partitions. The data in each of the 1000 elements in each partition is
represented as a scipy.sparse.csr_matrix40 object storing all observed data values for
a particular genomic position. Each element of the data RDD also contains the
corresponding entries from the G factor matrix, g bias vector, and data structures
for the Adam optimizer38 that are specific to each genomic locus (Fig. 1).

The first step of training selects a random 1% of available genomic positions
(~13,000 positions, or ~0.01% of all 25 bp bins in the genome) for training the cell
type and assay parameters. Although this seems like a small sample of the genome,
our results indicate that this is enough data to faithfully represent the distribution
of signal across the tensor. We do see a slight improvement in performance if we
include more of the genome in training, but at a cost of correspondingly increased
memory usage and compute time. The main training phase then proceeds through
a series of parallel SGD37 iterations (Fig. 1c) on this subset of positions. Briefly, at
the start of each parallel iteration, copies of the cell type and assay parameters, C, c,
A, and a, are sent out to each partition. Each partition undergoes local SGD for
5000 iterations and applies the updates to the local copies of the assay and cell type
parameters. The updated cell type and assay parameter values are then passed back
to the master node where they are averaged element-wise with the results from all
other partitions. The resulting averaged parameters are then copied and distributed
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to the partitions for the next round of parallel SGD. Note that over all rounds of
SGD, we use a learning rate decay schedule of ηt= η × (φη)t−1, where the learning
rate decay parameter φη= 1− 1e−6, and similarly for the Adam first moment
parameter: β1t= β1 × (φβ1)t−1, where φβ1= 1− 1e−6.

Averaging the parameters after the parallel SGD updates allows the model to
share information across the genome dimension; however, the averaging can
initially make it harder for the model to converge. The C and A matrices are
initialized randomly from a uniform distribution on the domain (−0.33, 0.33), and
thus during the first round of parallel SGD, the independent nature of the local
updates can lead to inconsistent updates to the latent factors in different partitions.
When the results of these inconsistent updates are averaged, they produce poor
parameter values, and it then takes many parallel iterations before the parameter
values begin to converge. To combat this effect, the main training phase begins
with a burn-in stage before attempting parallel SGD. In the burn-in stage, local
SGD is performed for half an epoch on 8000 genomic loci in a single partition, and
after this, the updated C, c, A, and a parameters are used in a round of local SGD
across the entire training subset to bring the genome dimension up to the same
number of updates. This burn-in procedure allows the latent factors to have a
consistent initial “identity” across the cluster when starting the parallel SGD
updates.

Every three parallel SGD iterations, the MSE is computed for each subset of
data (training, validation, and test) and recorded. If the validation MSE is the
lowest yet encountered by the model, the parameters from that iteration are copied
and saved. Once a minimum number of parallel iterations have completed, the
model tests for convergence by collecting the MSE on the validation set for
iterations t− 35 to t− 20 (window 1), and t− 15 to t (window 2), and using a
Wilcoxon rank-sum test to determine if window 2+ 1e−5 > window 1, with one-
tailed p < 0.05. If this convergence criterion is met, then one of two things happens.
First, the model will check whether or not the user has requested a line search on
the learning rate. If so, then it will reset the cell type, assay, and genome parameters
to those found at the iteration with the minimum validation MSE and resume
parallel SGD after halving the learning rate, and reducing the Adam first moment
weight β1new= β1old− (1.0− β1old). When training the model, we used a line
search of length three, so the model was restarted from the current minimum and
learning rate halved and β1 adjusted three times. See Supplementary Fig. 18 for an
example of what the error curves from the parallel SGD look like after training a
PREDICTD model. Once the line search is complete, or if no line search was
requested, then the model stops parallel SGD, fixes the assay and cell type
parameters, and finishes training on the genome parameters only.

Once the main phase of training is complete, the last phase of model training
applies the cell type and assay parameters across all genomic positions. This is
accomplished by fixing the cell type and assay parameters and calculating the
second-order solution on the genome parameters only. This requires just a single
parameter update per genomic position, which is possible using least squares
because fixing the cell type and assay parameters makes our objective function
convex over the genome parameters. Once the final genome parameters are
calculated, the assay, cell type, and genome parameters are saved to cloud storage,
and the imputed tensor is computed and saved to the cloud for further analysis. On
average, the entire training takes about 750 parallel iterations, and about 2 h (wall-
clock time).

The above procedure is executed for every validation set associated with a given
test set, and then the final imputed values for the held out test datasets are
calculated as a simple average of the corresponding imputed values from each
validation set. Thus, for the results we report here, each imputed value represents
the consensus of eight trained models.

Hyperparameter selection. One of the challenges of working with this type of
model is that there are many hyperparameters to tune. These include the number
of latent factors L, the learning rate η, the learning rate decay rate φη, the Adam
first moment coefficient β1 and its decay rate φβ1, a regularization coefficient for
each latent parameter matrix (λA, λC, λG), and one more regularization parameter
for the second-order genome updates (λG2).

Of these hyperparameters, perhaps the most important one for PREDICTD
performance is the number of latent factors. This setting controls the
dimensionality of the model, and thus the number of parameters that must be
optimized during model training. Ideally, assuming a perfect match between the
modeling approach and the data, the number of latent factors will equal the true
underlying dimensionality of the dataset. However, in practice this assumption
does not really hold. First, real world data is often noisy enough that the “true”
dimensionality of the input data is the full rank, and so instead we are forced to use
fewer latent factors that approximate the dimensionality of theoretical, noiseless,
data. Second, PREDICTD implements the original PARAFAC specification8, which
relies on simple linear combinations of the corresponding latent factors in each
dimension. However, in real data there could be factors that have nonlinear
relationships, and there is evidence that PARAFAC in some cases will attempt to fit
these relationships by adding additional factors to explicitly take them into account
as if they are additional linear terms. This phenomenon was explored in an
example from the original PARAFAC paper in which the best PARAFAC solution
for a rank-2 synthetic dataset with an interaction between the two latent
dimensions used three latent factors: one for each dimension, plus another for the
product of the two8. In the end, the best number of latent factors to use is simply

the number that minimizes the error of the model while preserving its
generalization performance, and this must be evaluated empirically.

Empirically searching for the best number of latent factors is nontrivial. The
number of latent factors changes the dimensionality of the model, and thus the
balance between bias and variance, which means that the regularization coefficients
must be tuned in parallel with the latent factors. A simple strategy that has been
shown to be surprisingly effective searching high-dimensional hyperparameter
space is simple random search, in which different random hyperparameter values
are tested until a combination is found that provides good performance of the
model41. Although the simplicity of the random choice strategy makes it very
appealing, it can still require many iterations before one is confident that good
hyperparameters have been found, which is a severe drawback when trying to
optimize settings for a model like PREDICTD that takes multiple hours to train.
Thus, hoping to find good hyperparameter settings in as few iterations as possible,
we decided to use an auto-tuning software package called Spearmint42. Spearmint
treats the PREDICTD model as a black box function and iteratively tries different
hyperparameter settings; it uses Bayesian optimization to fit a Gaussian process
that can predict the hyperparameter settings that will maximize the improvement
in model performance in the next iteration. There is still some debate in the field as
to whether or not this kind of auto-tuning strategy reliably finds better
hyperparameter values than simple random search43; however, evidence shows that
such Bayesian approaches tend to converge to a good selection of hyperparameters
in fewer iterations than random search42, and thus minimize the time spent
searching hyperparameters.

We ran Spearmint multiple times as we developed the PREDICTD model, each
time holding out the first test set so that we would have some data to test the
generalizability of PREDICTD. Early Spearmint runs and some manual grid search
of the hyperparameters suggested that 100 latent factors was a good setting for the
model dimensionality. Once we settled on 100 latent factors, we ran Spearmint
again to fine tune the learning rate and regularization coefficients. We let it train
188 PREDICTD models with different hyperparameter settings and selected the
settings from the model that gave the lowest observed validation MSE. During this
process, we discovered that PREDICTD is relatively insensitive to the particular
values of the three regularization coefficients λC, λA, and λG, but that it seemed to
prefer extremely low values (essentially, no regularization) on at least one of the
matrix factors. In contrast, the hyperparameter search revealed that PREDICTD
performance depends more heavily on particular values for the learning rate, η, and
the second-order genome update regularization, λG2. We also found that our
imputation scheme of averaging eight models trained with different validation sets
imposed extra regularization on the ultimate averaged solution, and that to achieve
the best generalizability of our averaged solution we had to compensate for the
regularization introduced by the averaging by choosing a lower λG2 than the one
suggested by Spearmint as the best setting for a single model. After trying different
λG2 values (Supplementary Fig. 21), we decided to reduce λG2 by a factor of 10 since
this showed that the validation MSE stayed roughly constant or a little bit lower
than the minimum validation MSE from the parallel SGD iterations, and thus we
were not lowering the regularization so much that the model overfit and increased
the validation MSE. Our final chosen hyperparameter values are given in Table 3.

In addition to using Spearmint for model selection, we also used it to
systematically explore the effects of changing the model dimensionality by
changing the number of latent factors (Supplementary Figs. 19, 20). In this
hyperparameter search, we fixed the dimensionality at one of 17 levels between two
and 512 latent factors, and then used Spearmint to optimize the other
hyperparameters (η, λC, λA, λG, and λG2). We allowed the Spearmint runs with
larger numbers of latent factors to train longer to give them more chances to
explore the more complex solution space of these higher dimensionality models.
We used a systematic stopping criterion as follows: each Spearmint search had to
train for at least 50 iterations or 40% of the number of latent factors, whichever was
more, and had to stop after it had trained at least 20 iterations or 15% of the
number of latent factors, whichever was more, past its best result (Supplementary

Table 3 Hyperparameter values

Hyperparameter Value Spearmint?

η 0.0045 Y
φη 1–1e−6 N
β1 0.9 N
φβ1 1–1e−6 N
β2 0.999 N
L 100 Y*
λC 4.792 Y
λA 8.757e−27 Y
λG 8.757e−27 Y
λG2 0.4122 Y*

The third column indicates whether the hyperparameter value was selected using Spearmint,
and an asterisk (*) indicates the final value was tuned by hand after Spearmint optimization.
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Fig. 19 blue/red bars). After this search, we noticed that there was a plateau in the
validation MSE from 16 latent factors to 64 latent factors, so to gain more
resolution on this range of latent factors, we trained the 32 and 64 Spearmint
searches out to 120 iterations. We found that the solutions for both models
improved, and 64 latent factors improved more than 32 latent factors, but that
neither model found a better solution than 100 latent factors (Supplementary
Fig. 19 brown/orange bars). In order to avoid biasing Spearmint’s choice of
hyperparameter settings for a particular validation set or subset of genomic
locations, we had allowed the validation set and the training subset of genomic
windows to vary randomly over the course of the hyperparameter search. However,
this meant that any given best Spearmint result could still be due to the model
getting “lucky” and finding a validation set or set of genomic windows that was
particularly favorable for training. To convince ourselves that the trend our
Spearmint search revealed is real, we took the best hyperparameter settings for each
latent factor level (for 32 and 64 latent factors these were the results of the
expanded search) and trained ten models each with fixed validation sets and a fixed
set of genomic windows, only varying the random initialization of the factor
matrices from model to model (Supplementary Fig. 20). The results show the same
trend as a function of model dimensionality as in our original hyperparameter
search (Supplementary Fig. 19), and we also verified that the distribution of
validation MSE for 64 latent factors is significantly different than that for 100 latent
factors (Wilcoxon rank-sum test p < 0.05).

To save time on model training during the Spearmint iterations, we relaxed the
convergence criteria to use a larger shift between the two samples in the Wilcoxon
rank-sum test (5e−05 instead of 1e−05) and we only did a single line search after the
model first converged instead of three. It is important to note that, despite our
efforts, there may be even better hyperparameter settings that our search did not
encounter. As new discoveries concerning hyperparameter tuning unfold in the
machine learning literature the settings for PREDICTD can be revisited to perhaps
further increase its performance.

Imputing the whole genome. Although for the purpose of analyzing the PRE-
DICTD model we only imputed about 1% of the genome, we generated whole
genome imputed tracks in bigWig format for the UCSC Genome Browser. These
tracks are available for download from the ENCODE project website (http://
encodeproject.org).

Imputing data for a novel cell type. We provide a tutorial on the BitBucket site
(https://bitbucket.org/noblelab/predictd/wiki/Home) that details how a user can
train a PREDICTD model to generate imputed data for a new cell type. Briefly, a
user can upload −log10 p-value tracks in bigWig format to an Amazon S3 bucket,
and then PREDICTD will add that data to the Roadmap Epigenomics tensor, train
the model, and write imputed data for the new cell type back to S3 in bigWig
format. The tutorial demonstrates how this is done with seven datasets from the
Fetal Spinal Cord cell type that we downloaded from the ENCODE portal (http://
www.encodeproject.org).

Computing resource requirements. The resource requirements of PREDICTD
are not very great considering the size of the model. We find that training a single
PREDICTD model on the tensor described in the paper (127 × 24 × 1.3e6) takes on
average just under two hours on a two node cluster consisting of a head node with
four cores (Intel Xeon E5-2676 v3 Haswell or Xeon E5-2686 v4 Broadwell pro-
cessors) and 16 GB of memory (e.g., an m4.xlarge AWS EC2 instance), and a
worker node with 32 cores (Intel Xeon E5-2670 v2 Ivy Bridge) and 244 GB of
memory (e.g., an r3.8xlarge AWS EC2 instance). For this manuscript, each
experiment was imputed as an average of eight models trained with random starts
and different validation sets, so one could train these models to use for imputation
in about 16 h. After training the models, imputing values for the limited subset of
genomic positions used for training is quite fast. However, if one needs to impute
the whole genome it takes longer because the learned cell type and assay factors
must be applied across all genomic locations. To do this without having to store the
entire tensor in memory at once (all genomic positions and no missing values), we
read in data for batches of genomic positions, train the corresponding genome
parameters based on the existing cell type and assay parameters, and then write out
the imputed values for each batch. For imputing whole genome data for one new
cell type (that is, 24 whole genome imputed experiments) the cluster configuration
described above requires an additional 24 h, for a total of ~40 h for model training
and whole genome imputation.

In this manuscript we present a more extreme case in which we impute all 3048
possible experiments in the Roadmap Epigenomics tensor at 25 bp resolution, and
to do this we used a larger worker node to increase throughput. If we use a
x1.16xlarge instance as the worker node, which has 64 cores (Intel Xeon E7-8880
v3 Haswell) and 976 GB of memory, we can use the trained models to impute the
whole genome for all 3048 experiments in approximately 88 h. The resulting
imputed tracks represent the consensus of eight models for each experiment, and
these experiments were split into five test sets, giving a total of 40 models that took
about 76.5 h to train. Thus, training and imputation for the 3048 Roadmap
Epigenomics tracks takes a total time of ~164.5 h.

To compare with ChromImpute’s run time, we can convert this wall-clock time
to an approximate number of CPU hours required to run PREDICTD on the full

tensor. Using the smaller cluster to train the 48 models, we calculate PREDICTD
requires about 36 cores × 76.5 h= 2754 CPU hours. Switching to the larger cluster
for imputation, we find that PREDICTD consumes about an additional 68 cores ×
88 h= 5984 CPU hours. Thus, in total PREDICTD can train the models and
impute 3048 experiments in ~8738 CPU hours. This run time is more than an
order of magnitude less than that quoted in the ChromImpute supplement7, which
reports that ChromImpute requires a total run time of 103,560 CPU hours for
model training and output generation. Even taking into account the fact that we
imputed about 25% fewer experiments for this paper than were imputed in the
ChromImpute manuscript, ChromImpute still requires on the order of ten times
more CPU hours to train the models and impute the Roadmap Epigenomics tensor
than PREDICTD does.

Advantages of the consumer cloud. Cloud computing is becoming a powerful
tool for bioinformatics. Large consortia such as the ENCODE1 and The Cancer
Genome Atlas (http://cancergenome.nih.gov) are making their data available on
cloud platforms. As computational analyses grow more complex and require more
computing resources to handle larger datasets, the cloud offers two distinct
advantages. First, cloud services provide a centralized way to host large datasets
used by the community that makes data storage, versioning, and access more
simple and efficient. Transferring gigabytes, or even terabytes, of data is slow and
expensive in terms of network bandwidth, but moving code and computation to
the data is fast and cheap. Second, in addition to hosting datasets, cloud services
can host saved computing environments. Such virtual machine images can help
with reproducibility of results for complex analyses because the code can be written
in such a way that other users can not only use the same code and data as the
original authors, but they can run the analysis in the same computing environment.
One downside of cloud computing for labs that have access to a local cluster is that
cloud resources are charged by usage; nevertheless, generating high-quality
imputed data using PREDICTD is extremely cost effective compared to collecting
the observed data. Training the models and generating the final imputed data for
this paper costs on the order of US $0.10 per dataset, which is orders of magnitude
lower than the cost of completing these experiments in the wet lab, and this cost
can be expected to drop as computational resources become cheaper and more
efficient optimization methods are devised.

Imputation quality measures. We generated tracks for the imputed data by
extracting the data for each 25 bp bin from the imputed results, writing the results
to file in bedGraph format, then converting to bigWig using the bed-
GraphToBigWig utility from UCSC. Imputed tracks were visually inspected
alongside Roadmap Consolidated data tracks and peak calls in the UCSC Genome
Browser. We did not reverse the variance stabilizing inverse hyperbolic sine
transform when evaluating model performance. This is appropriate because it
maintains the Gaussian error model that underlies the PREDICTD optimization.

We also implemented ten different quality assessment measures (listed below),
the last seven of which were first reported for ChromImpute7. We report these
measures for heldout test set experiments and compute them over the ENCODE
Pilot Regions (Supplementary Fig. 14).

● MSEglobal: Mean squared error between the imputed and observed values at
all available genomic positions.

● MSE1obs: Mean squared error between the imputed and observed values in
the top 1% of genomic positions ranked by the observed signal values.

● MSE1imp: Mean squared error between the imputed and observed values in
the top 1% of genomic positions ranked by the imputed signal values.

MSE1imppred: Meansquared error between the imputed and observed
values in the top 1% of genomic positions ranked by the signal values
imputed by PREDICTD.
MSE1impchrimp: Mean squared error between the imputed and observed
values in the top 1% of genomic positions ranked by the signal values
imputed by ChromImpute.
MSE1impme: Mean squared error between the imputed and observed values
in the top 1% of genomic positions ranked by the signal values imputed by
Main Effects.

● GWcorr: Pearson correlation between imputed and observed values at all
available genomic positions.

● Match1: Percentage of the top 1% of genomic positions ranked by observed
signal that are also found in the top 1% of genomic positions ranked by
imputed signal.

● Catch1obs: Percentage of the top 1% of genomic positions ranked by observed
signal that are also found in the top 5% of genomic positions ranked by
imputed signal.

● Catch1imp: Percentage of top 1% of genomic positions ranked by imputed
signal that are also found in the top 5% of genomic positions ranked by
observed signal.

● AucObs1: Recovery of the top 1% of genomic positions ranked by observed
signal from all genomic positions ranked by imputed signal calculated as the
area under the curve of the receiver operating characteristic.
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● AucImp1: Recovery of the top 1% of genomic positions ranked by imputed
signal from all genomic positions ranked by observed signal calculated as the
area under the curve of the receiver operating characteristic.

● CatchPeakObs: Recovery of genomic positions at called peaks in observed
signal from all genomic positions ranked by imputed signal calculated as the
area under the curve of the receiver operating characteristic.

Analyzing model parameters. The parameter values corresponding to individual
latent factors are not individually interpretable, but intuitively we can understand
that each latent factor describes some pattern in the data that the model finds
useful for imputation. For example, the first latent factor (i.e., column 0 in each of
the three factor matrices) might contain values that capture a pattern of high signal
in promoter marks, in blood cell types, at active genes. In such a case the value at
this latent factor for a particular assay might suggest how often that mark is found
at promoters; for a particular cell type its relatedness to blood; and for a genomic
locus how many promoter-associated features occur there in blood cell types. If
these three conditions hold, then the model is likely to have more extreme values
for these parameters that end-up imputing a high value for that cell type/assay pair
at that genomic position.

Clustering cell types and assays. The rows of the cell type and assay factor
matrices, with each row containing the model parameters for a particular cell type
or assay, respectively, were clustered using hierarchical clustering. This analysis was
implemented in Python 2.7 using scipy.spatial.distance.pdist with metric= 'cosine'
to generate the distance matrix, and scipy.cluster.hierarchy.linkage with method
= 'average' to generate clusters. The columns of each factor matrix (i.e., the latent
factor vectors) were also clustered in the same way to help with visualizing the
clusters. The parameter values were plotted as a heat map with rows and columns
ordered according to the results of the hierarchical clustering.

Summarizing latent factor patterns at genomic elements. The genome factor
matrix is too large to usefully visualize as a heat map, so we sought to aggregate the
parameter values across different types of genomic features. We mapped all
annotated protein-coding genes from the GENCODE v19 human genome anno-
tation11 (https://www.gencodegenes.org/releases/19.html) with a designated pri-
mary transcript isoform (called by the APPRIS pipeline) to a canonical gene model
consisting of nine components: promoter, 5′ UTR, first exon, first intron, middle
exon, middle intron, last exon, last intron, and 3′ UTR. The promoter for each gene
was defined as the 2 kb region flanking the 5′ end of the gene annotation, while the
other components were either taken directly from the GENCODE annotation (5′
UTR, exons, 3′ UTR) or were inferred (introns). For each gene, each component
was split into ten evenly spaced bins and the values for each latent factor were
averaged so that there was a single value for each latent factor for each bin. Coding
regions for genes with a single exon or two exons were mapped only to first exon,
or first exon and last exon components, respectively. Genes with only one or two
introns were handled analogously. For genes with multiple middle exons and
introns, each exon/intron was binned independently and the data for each middle
exon/intron bin was averaged across all middle exons/introns. In order to plot the
results, outlier values in the bins (defined as any values outside 1.5 × IQR) were
removed and the remaining values averaged across corresponding bins for all
binned gene models. This resulted in a matrix containing latent factors on the rows
and gene model bins on the columns. The latent factors (rows) were clustered using
hierarchical clustering, with scipy.spatial.distance.pdist(metric= 'euclidean') to
generate the distance matrix and scipy.cluster.hierarchy.linkage(method= 'ward')
to generate clusters, and this matrix was plotted as a heat map.

To compile a reference list of genome coordinates containing distal regulatory
elements that is orthogonal to our imputed data, we downloaded P300 peak data
from six ENCODE cell lines (A549, GM12878, H1, HeLa, HepG2, and K562),
filtered for peaks with FDR < 0.01, merged the peak files with bedtools merge to
create a single reference list, and averaged genome latent factor values as in the
gene model explained above for ten 200 bp bins covering 2 kb windows centered on
these peaks.

To validate that the patterns in the genome parameters were not due to chance,
we generated the same heat map, but before averaging the bins for each gene model
and P300 site we randomly permuted the order of the genome latent factors
(Supplementary Fig. 11).

Comparing to ChromImpute. To compare the performance of PREDICTD with
ChromImpute, we downloaded the ChromImpute results from the Roadmap
Epigenomics website and put them through the same pipeline as for the observed
data: Convert to bedgraph, use bedtools map to calculate the mean signal over 25
bp bins, extract the bins overlapping the ENCODE Pilot Regions, apply the inverse
hyperbolic sine transform, and store the tracks in a Spark RDD containing a list of
scipy.sparse.csr_matrix objects.

We calculated all of the quality measures on these ChromImpute datasets and
plotted these results against those for PREDICTD for each experiment as a ternary
scatter plot (Fig. 4b, Supplementary Fig. 14). We also averaged each element of this
ChromImpute RDD with its corresponding element in the PREDICTD results,
calculated the quality measures, and compared them in the same way (Fig. 4c). In
order to compare both ChromImpute and PREDICTD to the baseline Main Effects

model, we used ternary plots44 to project the three-dimensional (3D) comparison
of each experiment to 2D. Each point on these ternary plots represent the relative
magnitude of each dimension for that point. So, each coordinate (x, y, z) in
Cartesian space is projected to a point (x′, y′, z′) such that x′ ¼ x

xþyþz, y
′ ¼ y

xþyþz,
and z′ ¼ z

xþyþz. Thus, for the case where x ¼ y ¼ z, the corresponding point (x′, y′,
z′)= (0.33, 0.33, 0.33) and will fall at the center of the ternary plot, while points
that lie along the Cartesian axes will fall at the extreme points of the ternary plot
(e.g., (x, y, z) = (1, 0, 0) = (x′, y′, z′).

It is important to emphasize that the quality measure with the best PREDICTD
performance, MSEglobal, is also explicitly optimized by the PREDICTD objective
function during training. This shows that PREDICTD is doing well on its assigned
learning task, and highlights the importance of designing an objective function that
reflects the task that the model will address. As such, it should be possible to tune
the objective function to perform better on other quality measures if need be. For
example, in an attempt to boost PREDICTD’s performance on regions with higher
signal we experimented with weighting genomic positions by ranking them by the
sum of their signal level ranks in each training dataset. This provided some
improvement on the MSE at the top 1% of observed signal windows measure
(MSE1obs), but we ultimately decided to pursue the simpler and more balanced
objective function presented here.

Assessing cell type-specific enhancer signatures at ncHARs. We downloaded
the ncHAR coordinates used in Capra et al.10, removed any that overlapped a
protein-coding exon according to the GENCODE v19 annotations11, and extracted
all available observed and imputed data for the enhancer-associated assays
H3K4me1, H3K27ac, and DNase at these regions. Some cell types were lacking
observed data for H3K27ac (29) and/or DNase (74), but observed data for
H3K4me1 was available in all cell types. We took the mean signal for observed
experiment at each ncHAR coordinate and used that as input to the subsequent
analysis.

First, we extracted the first principal component of the three assays for all
ncHARs and cell types using sklearn.decomposition.TruncatedSVD45 to reduce the
assay dimension length from three to one and construct a matrix of ncHARs by cell
types. This also had the effect of filling in missing values for the observed data. Next
we wanted to cluster the ncHARs and cell types, and so we first used the matrix
based on imputed data to assess how many clusters would be appropriate for the
data. Briefly, for both the ncHAR and cell type dimensions, we conducted an elbow
analysis by calculating the Bayesian information criterion for k-means clustering
results for all values 2 <= k <=40, as well as a silhouette analysis on the same
range of values for k (Supplementary Fig. 16). Based on the results, we decided that
k= 5 for the ncHARs and k= 6 for cell types would give us a good balance of
distance between clusters and number of clusters.

Next, we clustered the imputed and observed matrices with the scikit-learn
sklearn.cluster.bicluster.SpectralBiclustering class45 to generate a biclustering using
six column clusters and five row clusters. And finally, we plotted the clustering
results for the imputed data as a heatmap in which each cell is the inverse
hyperbolic sine-transformed sum of the mean H3K4me1, H3K27ac, and DNase
signals at a particular ncHAR in a particular cell type. We also plotted the tissue
assignments for ncHARs with predicted developmental enhancer activity based on
EnhancerFinder18 calls in the Capra et al.10 paper alongside our ncHAR clusters
(Fig. 5a). The same plot for the observed data is shown in Supplementary Fig. 17.

In order to gain further insight into the genes associated with our ncHAR
clusters, we extracted the genomic coordinates of the ncHARS in each cluster and
input these regions to the GREAT21 to find enriched ontology terms associated
with nearby genes. We used GREAT version 3.0.0 on the human hg19 assembly
with the default association rule parameters (Basal+ extension: 5000 bp upstream,
1000 bp downstream, 1,000,000 bp max extension, curated regulatory domains
included). We first analyzed each cluster for term enrichment against a whole
genome background (Supplementary Data 5, 6, 8, 10, 12), and then ran the test
with the same parameters against the list of all ncHARs as the background (Table 2,
Supplementary Data 7, 9, 11). No terms were significantly enriched for cluster 0
(No Signal) or cluster 4 (Immune) when using the all ncHAR background, and so
we omit these results from the supplement. When reporting the results in the main
text we used the default GREAT filters for significant terms: FDR < 0.05 for the
hypergeometric test with at least a twofold enrichment over expected.

Last, in order to compare the clustering results on the imputed data to the
observed data, we used the adjusted Rand index, which assesses how often pairs of
data points are put in the same or different clusters, on the ncHAR and cell type
clusters independently. As negative controls, we also conducted the same clustering
analysis on the observed data after shuffling the ncHARs to other noncoding
coordinates (Shuffled), and after switching out the enhancer-associated marks for
H3K4me3, H3K36me3, and H3K27me3, which are not associated with enhancers
(Other). We compared the resulting clusters with the enhancer-associated imputed
data and observed data clusters, again using the adjusted Rand index. Last, we used
the adjusted Rand index once more to assess the similarity of our biclustering
results to the grouping of ncHARs based on predicted tissue-specific developmental
enhancer activity from Capra et al.10 (Fig. 5b).

Code availability. The PREDICTD code base is open source and made available
through the MIT License. All code and documentation required to run
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PREDICTD, including tutorials and command line usage, are available through the
PREDICTD repository hosted on BitBucket: https://bitbucket.org/noblelab/
predictd.

Data availability.

● The Roadmap Epigenomics Consolidated Data are available through the
project data portal, http://egg2.wustl.edu/roadmap/web_portal/
processed_data.html#ChipSeq_DNaseSeq.

● ChromImpute datasets are also available through the Roadmap Epigenomics
project data portal, http://egg2.wustl.edu/roadmap/web_portal/imputed.
html#imp_sig.

● All imputed data generated for this paper are available through the ENCODE
project portal, https://www.encodeproject.org/, and the list of accession IDs is
provided in the Supplementary Data 17.xlsx file associated with this
manuscript.

● The Amazon Machine Image for running the PREDICTD software, along with
the associated reference data files, are hosted on AWS. The download
locations are provided in the documentation with the PREDICTD code (see
the code availability statement above).

● Data for the quality measures reported for PREDICTD in Figs. 2b and 4, and
Supplementary Figs. 2, 14, and 15 are provided in Supplementary Data, as are
the results from the GREAT analysis of ncHAR clusters (see Supplementary
Information).
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