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Integrated genomics and functional validation
identifies malignant cell specific dependencies in
triple negative breast cancer
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Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but

demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative

genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs.

CNAs and gene expression alterations are integrated and genes scored for pre-specified

target features revealing 130 candidate genes. We test functional dependence on each of

these genes using RNAi in breast cancer and non-malignant cells, validating malignant cell

selective dependence upon 37 of 130 genes. Further analysis reveals a cluster of 13 TNBC

addiction genes frequently co-upregulated that includes genes regulating cell cycle check-

points, DNA damage response, and malignant cell selective mitotic genes. We validate the

mechanism of addiction to a potential drug target: the mitotic kinesin family member C1

(KIFC1/HSET), essential for successful bipolar division of centrosome-amplified malignant

cells and develop a potential selection biomarker to identify patients with tumors exhibiting

centrosome amplification.
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Triple negative breast cancers (TNBCs) are difficult to treat
and lack expression of the validated breast cancer ther-
apeutic targets: estrogen (ER), progesterone (PR), and

human epidermal growth factor 2 (HER2) receptors1. TNBCs are
heterogeneous2 with substantial numbers of patients in subgroups
that have high risk of early metastatic relapse commonly resistant
to systemic therapy. Despite frequent resistance, chemotherapy is
the only widely accepted systemic therapy option for these
patients, highlighting the need to better understand the under-
lying biology and identify tumor cell-specific therapy targets for
drug discovery or “repositioning” of known therapies.

Identification of tumor addictions (dependence on a gene for
proliferation and survival) has in the past led to the development
of novel therapies, notably the discovery of ERBB2 amplification
and overexpression, now targeted by a number of therapies in
breast cancer3. Despite progress in characterizing the genomic
landscape of breast cancer4,5 and TNBC specifically2,6–8, targe-
table biological dependencies remain elusive and poorly char-
acterized. With the exception of clonally dominant mutations in
TP53, TNBCs demonstrate a high degree of inter-tumor and
intra-tumor heterogeneity at the mutational level with each driver
mutation only present in a subset of tumors and clones within
any individual tumor9.

TNBCs have a high frequency of chromosomal instability
resulting in variable copy number state and levels of gene
expression7,10. Genes that are found in amplified regions and are
highly expressed, may be drivers of important “hallmarks” of
malignancy11 and potentially represent essential tumor addic-
tions. A number of high-throughput loss of function screening
studies have identified gene addictions in cellular models of
cancer including breast cancer models4,5,12 but functional vali-
dation has been limited and studies have rarely been informed by
evidence of upregulation of gene copy number or mRNA in large
numbers of patient tumors. Therefore, the main aim of this study
is to identify and validate recurrently amplified genes as being
important for malignant phenotypes in TNBC. We perform a
pre-specified integrative computational “driver” identification
and RNAi-based functional validation approach, taking into
account both the copy number landscape and whole genome
expression state in individual tumors, using a large discovery
cohort of TNBCs. We further couple this with clinical, functional
and “druggability” annotation to identify, cross reference in
external data sets, and then functionally validate, potential tumor
addictions in TNBC.

As expected this approach identifies both known and novel
genes that are required for the survival of TNBCs. Interestingly,
we identify clusters of genes that are more frequently co-
upregulated in TNBC. Within the largest cluster, recurrent across
external data sets, we focus on a potential drug target the kinesin
family member C1 (KIFC1/HSET) and show that KIFC1 is a
selective essential gene for many malignant breast cancer cells,
demonstrating the mechanism of addiction to be based upon
clustering of abnormal multiple centrosomes relevant to the
majority of TNBCs that have centrosome amplification13. Fur-
thermore, we developed a potential centrosome abnormality
biomarker applicable to routinely fixed paraffin-embedded tumor
tissue to enable patient segmentation of those with cancers sus-
ceptible to KIFC1/centrosome amplification targeted therapy.

Results
Identification of candidate gene addictions. In order to identify
candidate tumor addiction genes, we interrogated the genome-
wide Affymetrix SNP6.0 copy number and Human Exon 1.0ST
gene expression profiles of 140 TNBC, 21 HER2-positive/ER-
negative and 21 HER2-negative/ER-positive breast cancers, and 9

normal breast epithelium samples14–16. All clinico-pathological
features of the cohort are provided in Supplementary Data 1. We
obtained gene-centric copy number levels, frequency and focality
of gene copy number changes as well as the gene expression from
this cohort (Fig. 1a). The data were integrated with analyses of
publicly available databases such as COSMIC17, the membra-
nome18, the druggable genome19, secretome20, CAN genes21, and
kinome22 (Supplementary Data 2). All the above data were col-
lated in the Target ID data platform that was used as a foundation
for the application of a pre-specified selection algorithm for
putative addiction genes in TNBC.

The Target ID data platform informed two complementary
approaches to gene selection for functional validation (mRNA
overexpression and gene amplification/ mRNA expression
correlation) with the aim being to minimize bias and limitations
inherent to any single analytical procedure. First, a copy number-
dependent gene expression analysis selected 1978 candidate genes
amplified in >10% of TNBCs with a gene copy number/gene
expression correlation (r2 > 0.3, p < 0.01, Spearman’s rank corre-
lation). We then linked the candidate genes to features, included
in the Target ID data platform, which are known to be relevant to
hallmarks of malignancy in a weighted scoring system (Fig. 1a
and Supplementary Data 3). The top 85 genes were taken forward
for functional validation.

Second, a complementary gene expression-centered analysis
was used as there is evidence that variations in the expression of
tumor addiction genes may also occur in the absence of in cis
CNAs through multiple mechanisms, for example through
epigenetic regulation23. For the gene expression-centered analysis,
we identified 1001 genes whose average expression in our TNBC
cohort was >2-fold higher than normal breast epithelium
controls. As anticipated by the inclusion of CNA correlated
elevated gene expression in the first approach there was a
substantial overlap with 45 of the genes from the second
approach which were taken forward for functional validation.
An additional 45 genes identified by this second approach were
selected based exclusively on gene annotation and literature
review. This manually curated filtering sought to identify genes
already shown to drive a tumor phenotype in other cancer models
or being involved in biological pathways known to be key in
cancer development and progression. In total our approaches
identified 130 candidate tumor addiction genes (Fig. 1a) with a
high degree of overlap with both TCGA6 and METABRIC7 data
sets and (Supplementary Datas 4 and 5).

Functional validation of candidate genes using RNAi. To assess
the role of each of the 130 candidate gene addictions in the
proliferation and viability of cancer cells, siRNA knockdown and
cell viability assays were carried out in breast cancer cell lines
(BCCLs). In order to increase the feasibility of the initial candi-
date screening experiment, each gene was silenced in a gene-
specific subset of 6–9 BCCLs (out of a panel of 16) and the non-
malignant HMEC normal breast epithelial cell line. Expression
levels of each gene were analyzed in our cell line cohort based on
previously described mRNA analyses14,24. Cell lines were selected
for each gene to capture the widest possible range of expression
levels of each gene (Supplementary Figure 1 and Supplementary
Data 6).

As candidate genes were assessed across multiple cell models,
normalized percent inhibition (NPI) of growth was used to
compare data obtained from multiple experiments with different
cell lines. Repeated measures of the NPI of negative controls
across all cell lines showed a mean of 0.18% with a standard
deviation of 5.94 (Supplementary Figure 2a). Therefore, the
knockdown of a gene was considered as having a growth
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inhibition effect on a cell line, if its knockdown achieved an
NPI ≥ 18.01% (three standard deviations above the mean).

Based on highest scores from the Target ID algorithm,
literature review and expert opinion a group of 10 genes amongst
the 130 candidates (Top 10—see Fig. 1b) were selected as being

more likely to be associated with a malignant cell-specific
addiction in TNBC and were expedited for multiple single oligo
RNAi analysis of effect on phenotype with validation of gene
knockdown from the outset. For these genes, a prioritized
validation procedure was employed which involved independent
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testing of three individual siRNAs per gene for evidence of gene
knockdown by qPCR in relation to phenotypic effect in a
proliferation assay. We aimed to identify genes that, rather than
being essential for the viability of all cells, showed growth
inhibition effect on some but not all cancer cells indicating some
selectivity for an underlying biological context and malignant
phenotype. Therefore, genes from this “top 10” group were
considered a “hit”, if two siRNAs that showed a knockdown >70%
did not affect the growth of HMEC, but did inhibit the growth of
at least two cancer cell lines. We identified seven genes (FZD6,
MASTL, NCSTN, PTK2, PTP4A3, SEC61G, and UBE2T) from this
group as being putative tumor addiction genes (Supplementary
Datas 4 and 7).

The remaining 120 genes identified through the integrated
analyses underwent a two-stage functional validation process.
First, each gene was assessed using a pool of four siRNAs. A gene
was considered a “hit” if its silencing inhibited growth in at least
two cancer cell lines whilst having no effect on HMEC. By
example, we declared TTK/MPS1, a previously validated mitotic
target25, as a “hit” by these criteria in the screen (Fig. 1b–d). As
HMEC themselves may have developed dependencies as a result
of “in vitro” 2D culture on plastic, we also considered a gene a
“hit” if it showed an effect on HMECs, but had a heterogeneous
effect across the cell line panel with no effect in at least two cancer
cell lines indicating that the gene was not essential for all dividing
cells. Primary validation revealed 64 potential tumor addiction
genes (Supplementary Datas 4 and 8 and Supplementary
Figure 2b).

To identify and discard false positive “hits” that were in fact
due to off-target effects within our RNAi pools, we performed a
secondary functional validation step. This required there to be
consistency between relative mRNA knockdown and cell viability
changes for each of the four siRNAs used independently
(selection criteria are described in detail in Online Methods)
(Fig. 1e,f). Of the 64 genes, 30 fully met these secondary
functional validation criteria, and 34 failed (Supplementary
Datas 4 and 9).

Overall, the primary and secondary RNAi-based functional
analyses have validated 37 tumor addiction genes (7 from the
“top 10” and 30 of the remainder (Supplementary Figure 3 and
Table 1.) All “out of patient” functional validation models have
their caveats. The stress of cell culture may change relationships
between gene expression and CNAs and cell addiction in
comparison to that in the patient. Although our identification
of these genes in genomics data was based on integrated copy
number and gene expression with evidence of overexpression or
CNA-driven expression in patient primary tumors, we believe
that a requirement for linkage of amplification or level of gene
expression with phenotype in 2D cell cultures would be a poor
validation criterion for identifying selective dependencies. Rather
we require heterogeneity of siRNA effect on a gene across

multiple cell lines, including a non-malignant model, followed by
validation of linkage between phenotype and mRNA depletion
across multiple siRNAs for these 37 genes believing this to be a
better criterion to find selective tumor addictions, as opposed to
non-selective obligate requirements for a gene for cell growth in
all cells. The targeting of the latter gene would be expected to
create adverse effect in normal tissues in patients. Despite the
caveats raised above, for completeness, we show the depletion
induced phenotype of each validated gene in each cell line used
showing that cell line’s expression of the gene relative to
transformed but non-malignant HMEC cells. We found 10 out
of the 37 genes selected based on our criteria also had evidence of
gene dependency only in cell lines with levels of gene expression
greater than that of HMECs (Supplementary Figure 4).

Identification of functional clusters required by TNBC. Lit-
erature review, the GeneCards database26 and gene annotation
analyses of these 37 genes revealed involvement in the cellular
processes of cell cycle regulation, DNA damage response, epige-
netic regulation, metabolism, proteasome function, protein sort-
ing, signaling, and vesicle trafficking (Table 1). To understand
coordinated upregulation that might drive the biology of TNBCs
we interrogated the pattern of amplification/upregulation of these
genes, across our tumor cohort and, for external validation, in
public databases. Among the 37 genes, we found as expected
genes that frequently had their copy number levels correlated
when they reside in close proximity in the genome (Fig. 2a). We
sought to identify co-upregulation of genes which are not in the
same amplicon or in close vicinity and so performed pairwise
gene to gene expression correlation, through which a set of 13
highly co-upregulated genes was identified (Fig. 2b). Using the
expression levels of these 13 genes to create a composite score
clearly identified a population of ~88% of TNBC patients with a
high expression of this score (Supplementary Figure 5a, b). This
high scoring population contains all the basal-like 1, basal-like 2,
and immunomodulatory Vanderbilt TNBC subtype2 tumors but
does not exclude other types (Supplementary Figure 5c). These 13
genes are involved in the regulation of the transcription of cell
cycle progression genes (FOXM1, LIN9, and MYBL2)27, in the
DNA damage response pathway (CHEK1, DTL, RHNO1, and
UBE2T)28,29, and in mitosis (Fig. 2c). Among these malignant cell
selective addiction genes associated with mitosisMASTL regulates
mitotic entry30, BUB1, BUB1B, NUF2, and TTK act as part of the
spindle assembly checkpoint31, and KIFC1 has been shown to
play an essential role in centrosome clustering to regulate bipo-
larity during mitosis32. These data were supported by analysis of
publicly available data sets (Supplementary Figure 5d–g) where
we found 10 genes (BUB1, CHEK1, DTL, FOXM1, KIFC1, LIN9,
NUF2, RHNO1, TTK, and UBE2T) concordant between analyses
of our data and in the METABRIC study dataset. Moreover, when

Fig. 1 Integrative gene addiction identification and validation. Schematic representation of bioinformatics based “Target ID” and functional validation RNAi
experiment. a Composition of the Guy’s TNBC-enriched cohort of breast cancers, used as a source of DNA and RNA for this study. Two complementary
approaches for candidate gene addiction identification. In green, copy number-dependent gene expression analysis shows initial filter for copy number
gain/amplification and correlation to gene expression and subsequent Target ID algorithm. This pipeline consisted of a weighted scoring system for all
genes based on copy number (CN), gene expression (GEX), gene, and clinical annotation listed here and in the Methods section. In purple, gene
expression-centered analysis followed by manual curation based on gene annotation and literature evidence of an involvement in malignancy. b Workflow
and hit selection criteria from primary functional validation RNAi experiment. *Top 10 genes were subject to different criteria as outlined in Results and
Methods. c Example functional validation for TTK, using pool of four siRNAs across panel of cell lines. Mean normalized percent inhibition (NPI) from three
independent experiments is plotted and error bars represent the standard error of the mean (SEM), n= 3. d Example of data from primary functional
validation carried out in CAL51 cells. Data points represent the mean NPI from three independent replicates. Dashed line represents cut-off for positive hits
at 18.01% NPI. e Mean NPI from CAL51 cell line after deconvolution of pool of TTK siRNAs used independently. Error bars represent SEM, n= 3. f mRNA
knockdown of individual siRNAs in CAL51 cells. Knockdown was evaluated by qPCR and represented as mean percentage of knockdown compared to non-
silencing control. Error bars represent SEM, n= 3
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we investigated the 5′ upstream regions of these genes and
identified an E2F8 transcription factor binding site in 8 out of 13
genes, namely KIFC1, MYBL2, TTK, CHEK1, FOXM1, NUF2,
UBE2T, and MASTL (Supplementary Figure 5h). Expression
levels of E2F8 were highly correlated with each of the eight genes
and might point to a common transcriptional activation network
that further enhances the copy number-dependent expression of
these genes.

Although many cancer therapeutics target the mitotic appara-
tus, the ability to selectively impact mitosis in malignant cells has
largely evaded drug discovery efforts. There is evidence that
KIFC1, a potentially druggable ATP-dependent motor protein33,
is involved in tumorigenesis through its ability to cluster extra
centrosomes in centrosome-amplified cancer cells. In addition,
centrosome amplification is a major cause of aneuploidy and
genomic instability34 all of which are highly prevalent in breast
cancers35. Therefore, we focused on the validation of KIFC1
CNAs and expression in external data sets and the further
investigation of its function in the malignant cell-specific
dependency in TNBC.

The heterogeneous effect of silencing KIFC1 across the panel of
seven cell lines used for its primary and secondary functional
validation (Fig. 3a), suggests a mechanism-specific dependency
rather than simply a requirement for this kinesin motor protein
in all highly proliferative cells. Our secondary functional
validation by deconvolution of the siRNA pool, with demonstra-
tion of effect of all four siRNAs in the pool and proof of
knockdown, reduce the likelihood the phenotype is caused by an
off-target effect of an siRNA (Fig. 3b, c).

We next sought confirmation of the relationship between
KIFC1 CNA and gene expression in external and independent
TCGA Breast and METABRIC data sets6,7 and observed a direct
correlation between KIFC1 gene expression and gene copy
number similar to that seen in our own discovery cohort
(Fig. 3d–f). In addition, to investigate if KIFC1 expression is
breast cancer subtype specific, its expression levels were analyzed
across PAM50 breast cancer subtypes, demonstrating higher
levels of KIFC1 in the basal-like subtype, known to have
significant overlap with, and forming the dominant subtype
within, TNBC (Fig. 3g–i).

Centrosome amplification sensitizes cells to KIFC1 silencing.
KIFC1 has been shown to play a role in centrosome clustering,
generation and maintenance of bipolar mitosis in cells exhibiting
supernumerary centrosomes32,36. To determine whether the
dependency of our breast cancer models on KIFC1 was related to
the degree of centrosome abnormality they demonstrate, 11 cell
lines were scored for the proportion of cells with centrosome
amplification and subsequently tested for functional dependency
on KIFC1 by using RNAi. CAL51, HCC38, CAMA1, SUM149,
and the non-malignant breast cell line, HMEC, had low levels of
centrosome amplification (0–7%), while BT20, MDA-MB-231,
MCF-7, HCC1143, HCC1954, and SKBR3 showed relatively high
levels of centrosome amplification (18–60%) (Fig. 4a, b).

Four independent siRNA oligos, validated to deplete KIFC1
mRNA and/or protein (Supplementary Figure 6a, b), induced a
substantial reduction of cell viability over a 6-day period only in
the cell models with centrosome amplification, regardless of
breast cancer subtype (Fig. 4c). KIFC1 knockdown showed an
even greater impact in a long-term clonogenic survival assay
(14–21 days) in centrosome-amplified cell lines, MDA-MB-231,
HCC1954, and BT20 using an independent shRNA sequence
targeting KIFC1 in an inducible expression system (Fig. 4d;
Supplementary Figures 6c, 9). In contrast, no significant
reduction in clonogenic survival was seen in the CAMA1 cell
line, which has low levels of centrosome amplification (one-way
ANOVA with Tukey’s multiple comparisons test).

To further exclude the possibility that, despite using multiple
RNAi approaches, the observed phenotype was due to an “off
target” effect, we performed a rescue of function experiment by
over-expressing an RNAi-resistant GFP-tagged or a HA-tagged
KIFC1 protein (GFP-KIFC1r/KIFC1r-HA) in MDA-MB-231 cells.
As shown in Fig. 4e, reduction in cell viability by KIFC1 siRNA
knockdown was rescued by the presence of GFP-KIFC1r

(Supplementary Figure 6d). Similarly, the long-term clonogenic
survival phenotype was rescued in the presence of KIFC1r-HA
following knockdown with shRNA (Fig. 4f; Supplementary
Figure 6e), confirming the specificity of the dependency on
KIFC1.

We subsequently examined the consequence of KIFC1
silencing on the tumor growth of centrosome-amplified cell line
xenografts with MDA-MB-231 and HCC1954 cells in vivo. Using
an inducible shRNA expression system with KIFC1 shRNA
doxycycline-induced KIFC1 depletion resulted in significant
tumor growth inhibition in both cell lines (Fig. 4g) in contrast

Table 1 Functional annotation of validated genes

Gene GO Gene Annotation
 elcyC lleC 1BUB
 elcyC lleC B1BUB
 elcyC lleC 1CFIK
 elcyC lleC LTSAM

NUF2 Cell Cycle 
 elcyC lleC 12DAR
 elcyC lleC KTT

CHEK1 Cell Cycle/DNA Damage Response 
DTL Cell Cycle/DNA Damage Response 

C12orf32/RHNO1 Cell Cycle/DNA Damage Response 
LIN9 Cell Cycle/Transcription 

MYBL2 Cell Cycle/Transcription 
FOXM1 Cell Cycle/Transcription 
FANCL DNA Damage Response 
PRKDC DNA Damage Response 
UBE2T DNA Damage Response/Proteasome 
ING4 Epigenetic 

S100A9 Inflammation/Immune Response 
FAM36A Metabolism 
MRPL13 Metabolism 

 msilobateM PKFP
GABRP Motility/Invasion 

 noisavnI/ytilitoM 2KTP
PSMD4 Proteasome 
SEC61G Protein Sorting 

FZD6 Signalling 
GNB4 Signalling 

 gnillangiS NTSCN
 gnillangiS 3A4PTP

SPINT2 Signalling 
NDRG1 Stress Response/Vesicle Trafficking 

ANKRD46 Unknown 
CXorf61 Unknown 

GBA Vesicle Trafficking 
GPR89A Vesicle Trafficking 
TTC35 Vesicle Trafficking 
VPS45 Vesicle Trafficking 

The 37 functionally validated genes and their manually curated gene annotation of biological
function using the GeneCards Suite26. Red, tumor gene addictions novel to cancer, orange,
tumor gene addictions novel to breast cancer
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to non-targeting (NT) control cell xenografts (Supplementary
Figure 7a) (two-way ANOVA with Sidak’s multiple comparisons
test). KIFC1 depletion in tumors was confirmed by immunohis-
tochemistry (IHC; Supplementary Figure 7b). We hypothesized
that the ability of mitotic cells to cluster supernumerary
centrosomes into a bipolar mitosis in xenograft tumors would
be impaired by KIFC1 silencing. Histological analysis of
centrosomes by pericentrin (an integral component of the
pericentriolar material) by IHC and identification of mitotic cells
by nuclear counter staining (Supplementary Figure 7c), con-
firmed that loss of KIFC1 resulted in a reduction in the
proportion of mitoses in centrosome-amplified cells where cells
were capable of clustering their centrosomes into two poles
(bipolar), 4 days after the start of treatment in both cell lines
(Supplementary Figure 7d).

KIFC1 silencing causes multicentrosome multipolar mitosis.
To investigate the mechanism by which centrosome-amplified
breast cancer cells are “addicted” to KIFC1, comparative immu-
nofluorescence imaging of the mitotic spindle was performed in

three cell lines with low levels of centrosome amplification and
five cell lines with relatively high levels of centrosome amplifi-
cation. There was a marked increase in the number of mitotic
spindle poles per cell and consequent multipolar mitoses in the
cell population when KIFC1 was knocked down in the
centrosome-amplified cells (Fig. 5a, b).

Next, using live cell time-lapse imaging of MDA-MB-231 cells,
we investigated the fate of cells undergoing multipolar mitosis
during knockdown of KIFC1. We demonstrated that KIFC1
knockdown arrested cells in mitosis for a prolonged period,
compared to a normal bipolar mitosis (Fig. 5c; Supplementary
Movie 1), and consequently caused the cells to either undergo
mitotic catastrophe (Fig. 5d; Supplementary Movie 2) or to fail
cytokinesis and remain in a multinucleated state (Fig. 5e;
Supplementary Movie 3). The druggability of KIFC1 has
previously been shown where the KIFC1 inhibition tool
compound, AZ82, is predicted to contact the L5 loop in an
ATP competitive manner and showed a signal of efficacy in
centrosome declustering but had poor target potency and had
many off-target non-centrosome amplification selective cytotoxic
effects33. We have confirmed this (Supplementary Figure 8)
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precluding its further use in our work but raising the possibility of
discovery of more potent and specific KIFC1 kinesin motor
inhibitors.

Induced centrosome amplification increases KIFC1 depen-
dency. KIFC1 depletion in vivo resulted in a clear reduction in
tumor growth but not total inhibition of growth. As there is no
specific and potent KIFC1 motor inhibitor we used inducible
shRNA interference to deplete KIFC1 expression. Using RNAi,
continued function of a small amount of residual protein is likely
to limit efficacy in comparison to a drug. In addition, non-
centrosome-amplified sub-populations of cells may be unaffected
and persist leading to a growth impaired but viable tumor. We
therefore sought to augment the effect of KIFC1 depletion by
combining it with a clinically relevant therapy capable of further
induction of centrosome amplification in tumor cells. Platinum-
based chemotherapies are currently considered one of the

standard of care treatments for advanced TNBCs37 and cisplatin
is known to cause centrosome amplification by decoupling the
centrosome duplication cycle from the DNA replication cycle38.
We found that MDA-MB-231 cells show an increase in centro-
some amplification when treated with increasing concentrations
of cisplatin (Fig. 6a). We therefore hypothesized cisplatin would
increase cellular dependency on KIFC1 and by normalizing col-
ony formation assays to vehicle control in the presence or absence
of doxycycline, we show synergy beyond additivity between the
effect of cisplatin treatment and inducible shRNA-induced KIFC1
depletion (Fig. 6b, c) consistent with the increase in centrosome
amplification induced by cisplatin.

We investigated the combination of cisplatin treatment and
KIFC1 silencing in MDA-MB-231 cell line xenografts again using
an inducible shRNA expression system. Cisplatin treatment led to
sensitization to KIFC1 silencing compared to cisplatin or
KIFC1 silencing alone (Fig. 6d) consistent with the synergistic
effect seen in vitro in the same model. Pericentrin staining of
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MDA-MB-231 xenografts after 4 days of cisplatin treatment
revealed significantly increased centrosome abnormalities as
compared to vehicle treated tumors in the absence of doxycycline
(Fig. 6e) (Student's t test).

A potential biomarker for tumor addiction to KIFC1 function.
Use of immunofluorescence-based scoring of the percentage cells

with centrosome amplification that we used in cell lines may be
impractical as a predictive biomarker for KIFC1 motor silencing
in patient formalin-fixed paraffin-embedded (FFPE) tumor
material, because individual cells cannot be assessed throughout
their volume and centrosomes are frequently lost outside the
plane of the histological section. Centrosomes cannot be accu-
rately counted and assigned to any individual cells. Therefore, we
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sought to develop a potential predictive biomarker based on
identification of centrosome abnormalities in a light microscopy
“field of view” using a pericentrin IHC assay. We developed an
automated scoring system for analyzing the size of pericentrin
stained centrosomes detected by IHC in interphase cells in FFPE
tissue. Using image analysis, we sought to define the average size
of a centrosome body in a normal breast tissue section (Fig. 7a)
finding this to be 1.44 µm2 with the largest normal breast epi-
thelial cell centrosome body being 7 µm2. We then set this as the
cut-off for the upper limit of normal pericentrin stained centro-
some size. A pericentrin staining body of greater size than this
was termed “abnormal”. Based on this approach, we developed a
pericentrin abnormality (PCAB) score, which we defined as the
percentage of abnormal pericentrin stained bodies over total
stained bodies in a whole section of FFPE-embedded cell line
pellets or tumor sections. We subsequently compared centrosome
body size and PCAB score in breast tumor sections that a
pathologist determined demonstrated “normal” or “abnormal”
centrosomes. We found that the former (Fig. 7b) had a centro-
some body size and PCAB score in the range of that of normal
breast tissue in contrast to the latter where our automated
method correctly detected a higher PCAB score due to a number
of “abnormal” pericentrin stained centrosome bodies within the
field of view (Fig. 7c).

When the PCAB score was calculated in breast cancer cell line
(BCCL) pellet FFPE blocks from lines previously characterized for
KIFC1 dependency this revealed a linear correlation between
PCAB score and the NPI caused by KIFC1 knockdown (Fig. 7d).
In order to ascertain the proportion of TNBCs that might show
centrosome amplification at a level we associate with KIFC1
dependency in vitro, automated PCAB scoring was performed on
a panel of FFPE primary TNBCs. We found 63% of tumors had a
PCAB score above 20%, above which no KIFC1-insensitive cell
line was scored (Fig. 7e). This suggests that a substantial
proportion of TNBCs have centrosome amplification at a level
that may be associated with addiction to the centrosome
clustering functions of KIFC1. The data also indicate patients
with a high-PCAB score (>20%) had a shorter time to recurrence
in the Guy’s TNBC-enriched cohort (Fig. 7f).

Discussion
A number of comprehensive analyses have documented the
genomic landscape of breast cancers and associated mutations,
copy number variations and gene expression patterns but very
few of these genomic features have been subjected to functional
validation for their selective requirement for growth or other
malignant phenotypes in breast cancer model systems5,12. TNBCs
have few known targetable addictions8,39 and are dominated by

copy number aberrations (CNAs) with in cis or in trans asso-
ciated gene expression changes7,10. We have used a discovery
cohort of triple negative enriched primary breast cancers and
employed a pre-specified systematic integration of copy number
and gene expression data within each tumor to identify and
functionally validate genes, the expression of which are required
for growth of cell models of breast cancer but not required by all
proliferating cells.

Our analysis led to the identification of 37 functionally vali-
dated genes, (Table 1) many of which are novel, as well as con-
firmation of several known addictions in breast cancer that
validate our approach.

Our findings identify a number of known oncogenes such as
BUB1, BUB1B, and CHEK1 and less known and characterized
gene addictions in TNBC such as FANCL, GABRP, GNB4,
NUF2, and VPS45 which we find validated in other data sets4,5.
Furthermore, comparison of validated hits and data from the
COLT-Cancer data12 found concordance between our siRNA
NPI scores and the zGARP shRNA scores for 11 genes (BUB1B,
CHEK1, FOXM1, GABRP, MYBL2, PRKDC, PSMD4, S100A9,
GPR89, FANCL, GNB4) (Supplementary Data 11). As expected
given the differences in RNAi methodologies, phenotypic end-
point and lack of validation of knockdown effects of RNAi in the
COLT-Cancer screen we observed little statistical correlation
between the results overall12.

A correlation analysis showed several co-amplification and co-
expression patterns across our tumors. Genes that were frequently
co-amplified because of their association with the same amplicon,
were not necessarily also co-upregulated. Interestingly 13 genes
belonging to different amplicons and chromosomes showed a
higher correlation in mRNA expression. Our data suggest that as
well as being individually essential for TNBC survival, a sub-
stantial proportion of TNBCs rely on the function of specific
genes within common cellular processes: such as the DNA
damage response (CHEK1, DTL, RHNO1, and UBE2T); tran-
scriptional regulation of the cell cycle as in the case of FOXM1,
LIN9, and MYBL2 which control the DREAM/LINC complex
known to regulate entry/exit from quiescence and cancer cell
proliferation27; and mitosis (BUB1, BUB1B, KIFC1, MASTL,
NUF2, and TTK). Interestingly, CHEK1, DTL, and MASTL are
implicated in the G2 checkpoint, while NUF2, BUB1, TTK, and
BUB1B control the mitotic spindle assembly checkpoint.

In addition, this correlation analysis revealed cancer-specific
addiction associated with coordinated upregulation of another
subset of genes that reside in the same region of chromosome 1
and are involved in vesicle and protein trafficking (GBA, GPR89A,
NCSTN, PSMD4, VPS45). Indeed, gene annotation analysis of the
37 functionally validated hits indicated others involved in vesicle

Fig. 4 KIFC1 is specifically required for survival of cancer cells exhibiting centrosome amplification. a Centrosome amplification (CA) scores for panel of
breast cancer cell lines. Cell lines were dichotomized into low CA (black) and high-CA (red) groups. b Representative immunofluorescence images
showing centrosome marker Aurora A (green) and centriole marker CP110 (red) used for calculating CA score. Scale bar is 5 μm. Top right inset shows red
channel, bottom right inset for each image shows green channel. c Mean normalized percent inhibition (NPI) of panel of cell lines dichotomized into low
and high-CA groups for siRNA #2, #4, #5, and #6. Error bars represent the SEM, n > 3. Student's t test: **p < 0.01, ***p < 0.001, ****p < 0.0001. d Colony
formation assay of two low centrosome-amplified cell line (CAMA1 and SUM149) and two high-centrosome-amplified cell lines (MDA-MB-231, HCC1954
and BT20) infected with either non-targeting shRNA (NT) or shRNA-targeting KIFC1 (KIFC1 shRNA). Cells were grown for 14–21 days in the presence or
absence of doxycycline, fixed and stained in crystal violet and colonies quantified. Mean surviving fraction normalized to NT, error bars represent the SEM,
n= 3. One-way ANOVA with Tukey’s multiple comparisons test: ***p < 0.001, ****p < 0.0001. e NPI of MDA-MB-231 cells infected with either GFP alone
(GFP) or GFP-tagged RNAi-resistant KIFC1 (GFP-KIFC1r) with KIFC1 siRNA #4 and #6. Error bars represent the SEM, n= 3, one-way ANOVA with Tukey’s
multiple comparisons test: *p < 0.05, **p < 0.01. f Colony formation assay of MDA-MB-231 cells infected with inducible KIFC1 shRNA and infected with
inducible RNAi-resistant HA-tagged KIFC1 (KIFC1-HAr) or with empty vector (EV) control. Mean surviving fraction normalized to NT, error bars represent
SEM, n= 3. One-way ANOVA with Tukey’s multiple comparisons test: ****p < 0.0001. g Nude hosts were orthotopically injected with either MDA-MB-231
or HCC1954 cells with inducible KIFC1 shRNA and were treated with (red) or without (black) doxycycline when tumors reached >2 × 2mm (4.2 mm3).
Mean tumor volumes at time points indicated, error bars represent the SEM, from two independent experiments. Two-way ANOVA with Sidak’s multiple
comparisons test: *p < 0.05, **p < 0.01, ****p < 0.0001
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and protein trafficking (SEC61G, TTC35, and NRDG1). Alteration
of these processes have been suggested to be a causative event in
cancer development40.

The largest of the clusters arising from the STRING protein
interaction database network analysis identified malignant cell-
specific dependencies on groups of mitosis and cell division
control genes. Most basal-like cancers, which substantially over-
lap with TNBCs, exhibit high expression of proliferative genes

and have a higher mitotic index than other breast cancer sub-
types41–43. Importantly we find that knockdown of these genes is
dispensable in non-malignant cells as well as some rapidly pro-
liferating cancer models suggesting a specific requirement for the
genes in these clusters due to selective addiction rather than an
essential function in cell cycle progression and mitosis in all
proliferating cells. Furthermore, the METABRIC study identified
a common trans-acting chromosome 5q deletion that resulted in
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altered expression of signaling molecules and cell division genes
in breast cancers of the intClust 10 subtype7. These genes include
AURKB, BUB1, CHEK1, FOXM1, KIFC1, and TTK7, five of
which, BUB1, CHEK1, FOXM1, KIFC1, and TTK, we have also
identified and have functionally validated to have a selective

requirement for cell growth in breast cancer cell models. The
TTK/MPS1 kinase, is a druggable mitotic checkpoint kinase that
has already been identified as a malignant cell selective target the
depletion or inhibition of which causes failure of cell population
growth associated with PTEN pathway deficiency25. The
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identification and functional validation of TTK/MPS1 is con-
sistent with PTEN loss of function being a common feature of
TNBC and its cell models and provides validation of our
approach.

Targeting mitosis and cell division as an anti-cancer strategy is
not novel and has been the basis of successful systemic micro-
tubule targeting chemotherapies such as the taxanes, vinca alka-
loids, and eribulin. However, the impact on patient benefit has
been constrained by the fact these agents have substantial normal
tissue toxicity due to effects in non-malignant tissues with high
cellular turnover leading to a narrow therapeutic window. In
contrast the specificity of the dependency on the KIFC1 kinesin to
centrosome-amplified cancer cells offers the possibility of a
potentially druggable malignant cell-specific target and a
mechanism-based patient selection biomarker of centrosome
abnormality that can be applied to routinely collected formalin-

fixed tumors. In a non-malignant setting, KIFC1 is not required
for the faithful division of somatic cells44 suggesting its inhibition
would be well tolerated by non-malignant tissues in patients;
however, as it is known to play a role in spermiogenesis and
oocyte development45 possible germ cell toxicity may be antici-
pated. In a malignant setting, KIFC1 expression has been corre-
lated with poor prognosis in breast cancer46, and higher level
expression is observed in ovarian adenocarcinoma patients47 and
in other cancer types, including glioblastoma, lung, colon, and
cervical tumor samples when compared to corresponding normal
tissues. Although the centrosome clustering-independent
mechanisms have been suggested to be relevant to KIFC1
addiction in breast cancer48, we find across multiple model sys-
tems that there is a strong dependency on the centrosome clus-
tering function of KIFC1 by detection of mitotic catastrophe and
correlation of centrosome amplification with sensitivity to KIFC1

a Normal breast Tumor 1 Tumor 2b

–10 0 10 20 30 40 50

10

20

30

40

50

NPI (%) upon KIFC1 silencing

P
C

A
B

 s
co

re
c

d e f

TNBC
0

10

20

30

40

50

P
C

A
B

 s
co

re

60

70

D
A

B
- a

re
a 

(µ
m

2 )

D
A

B
- a

re
a 

(µ
m

2 )

D
A

B
- a

re
a 

(µ
m

2 )

DAB - mean intensity DAB - mean intensity DAB - mean intensity
0 100 200 0 100 200 0 100 200

0 0 0

10

20 20

10

20

10

0.19% 1.19% 12.34%

R
ec

ur
re

nc
e-

fr
ee

 s
ur

vi
va

l

0 3 6 9 12 15 18 21 24 27 30

0.0

0.2

0.4

0.6

0.8

1.0

54 41 35 31 24 18 11 3 1< 20% PCAB
110 80 66 42 24 14 2 1>20% PCAB

Below 20% PCAB

Above 20% PCAB

Wald test p=0.049
HR= 1.95; CI(1− 3.89)

777

25 µm25 µm25 µm

Fig. 7 Pericentrin abnormality score: a potential predictive biomarker for sensitivity to KIFC1 inhibition. a Normal breast tissue section stained for
pericentrin as a centrosome marker and below, a scatter graph of DAB staining area versus DAB mean intensity. Cut-off for normal centrosome size was
set at 7 µm2. b Tumor 1 with centrosomes that appear normal. Below, scatter graph of DAB staining area vs DAB mean intensity showing a PCAB score of
1.19%. c Tumor 2 with centrosomes that appear abnormal. Below, scatter graph of DAB staining area vs DAB mean intensity showing a PCAB score of
12.34%. d PCAB score vs NPI (%) upon KIFC1 silencing across panel of breast cancer cell lines. Linear regression analysis, r2= 0.71, p < 0.05. Scale bars
represent 25 μm. e. PCAB score of TMAs of cohort of 82 TNBCs. Dashed red line depicts the median PCAB score (32%) of breast cancer cell lines
sensitive to KIFC1. f Kaplan–Meier curves illustrating the duration of recurrence free survival according to a 20% PCAB cut-off. Wald test, p < 0.05, hazard
ratio (HR)= 1.95, confidence intervals (CI)= 1–3.89

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03283-z

12 NATURE COMMUNICATIONS |  (2018) 9:1044 | DOI: 10.1038/s41467-018-03283-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


depletion. KIFC1 expression in non-small cell lung carcinoma
was found to be highly predictive of the development of brain
metastasis in both early and advanced disease49 suggesting
association of expression with highly aggressive forms of com-
mon cancers.

Effects of KIFC1 on treatment resistance may contribute to
poor prognosis. It has been shown that KIFC1 overexpression is
correlated with resistance to the mitotic spindle-stabilizing agent
docetaxel50. A possible explanation of these findings is based on
recent evidence showing that the mechanism of action of clini-
cally relevant doses of paclitaxel is through induction of multi-
polar mitosis51,52 raising the possibility that a KIFC1-dependent
mechanism of microtubule-organizing center re-clustering may
be involved in the development of taxane resistance.

Our data show that inhibiting KIFC1 in BCCL models leads to
cell population growth arrest both in in vitro culture and in vivo
models, and that this is specific to centrosome-amplified cells.
This is supported by previous findings in non-breast cancer iso-
genic cell line model systems with artificially induced centrosome
amplification36. Centrosome amplification is a well-characterized
phenomenon that is specific to cancer cells, first described by
Theodor Boveri over a 100 years ago53. Since then studies have
identified that centrosome amplification is sufficient to initiate
tumorigenesis34,54 and that centrosome amplification can also
mimic the effects of oncogenes in triggering cellular invasion55.
Therefore, targeting centrosome-amplified cells by KIFC1 inhi-
bition would be expected to have effects in many cancer types. To
identify tumors with centrosome amplification we have also
presented the preliminary development of a method, PCAB,
which quantifies centrosome features in excess of those of normal
tissue cells that might be used to stratify patients and predict a
population that appear to have adverse prognosis and may benefit
from inhibition of the KIFC1 kinesin motor. We show that this
PCAB score developed in malignant and normal breast tissue
identifies a large proportion of TNBC patients with centrosome
amplification who have poor prognosis and associates with
KIFC1 addiction in breast cancer cell models.

Our in vivo studies showed a significant growth inhibition of
KIFC1-depleted centrosome-amplified cell xenografts (two-way
ANOVA with Sidak’s multiple comparisons test). The fact that
our inducible shRNA in vivo model depletes but does not com-
pletely ablate the expression of KIFC1 may explain why inducible
expression of KIFC1 shRNA impairs but does not eradicate the
tumor. This highlights the potential value in now developing
potent and selective small molecule KIFC1 motor inhibitor
compounds and examining their efficacy in preclinical models.
We have demonstrated a synergistic effect between
KIFC1 silencing and cisplatin treatment, a therapy that induces
centrosome amplification in cancer cells, on long-term clonal
growth in culture and in vivo xenografts growth suggesting
potential for combination approaches with a standard of care
chemotherapy increasingly used in TNBC.

In summary, our work describes an integrated CNA
and gene expression-driven gene dependency identification and
functional validation approach that identifies novel malignant cell
selective addictions, potential targetable genes or pathways and
associated patient selection biomarkers in TNBC. We reveal a
number of genes, biological processes, and clusters of interacting
proteins that merit further investigation. In particular, we identify
and mechanistically validate KIFC1, a potentially druggable
kinesin, as a highly selective malignant cell target, with
mechanistic evidence of synergy in combination with cisplatin.
Furthermore, we developed a potential patient selection centro-
some abnormality biomarker appropriate for analysis of
formalin-fixed tumor material that is associated with KIFC1
addiction.

Methods
Patient demographics. All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institutional and/
or national research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Informed consent was obtained
from all human participants. Access to pseudo-anonymized samples and clinical
data was obtained in accordance with the principles of the Guy’s and St Thomas’
Research Tissue and Data Bank (REC No 07/H0804/131). Fresh-frozen needle
macro-dissected invasive ductal carcinomas obtained from 191 breast cancer
patients with no prior therapy at diagnosis and control tissue from reduction
mammoplasties, and peripheral blood lymphocytes were obtained from King’s
Health Partners Cancer Biobank. The patient demographics and clinico-
pathological information have been previously published14,15,56 and are described
in Supplementary Data 1.

Immunohistochemistry on tumor samples. IHC expression of ER, PR, HER2,
EGFR, and CK5/6 were assessed on triplicate tissue microarrays (TMA) and
reviewed by two pathologists. The tissue was formalin-fixed, processed and
paraffin-embedded using routine protocols. Three-micron sections were cut and
stained with hematoxylin and eosin (Dako). Standard IHC protocols were used.
Antigen retrieval was carried out using citric acid buffer pH 6 (Dako). For
visualization of nuclei, hematoxylin counterstain was used. Secondary antibodies
conjugated to horseradish peroxidase (HRP) (Dako) were used for visualization
with 3,3-diaminobenzidine (DAB) (Dako), according to manufacturer’s protocol.

Microarray-based gene expression and copy number profiling. Gene expression
and copy number profiles were generated using Affymetrix Human Exon 1.0ST
and SNP6.0 arrays (E-MTAB-5270 and E-MTAB-2626) and data was processed
using specific gene expression and copy number pipelines from Aroma
Framework15,16,39,56–59. The data comprised 140 ER-negative and HER2-negative,
21 HER2-positive, 21 ER-positive breast carcinomas, and 9 RNA samples derived
from organoids of reduction mammoplasties. ER and HER2 IHC-based expression
levels were confirmed by gene expression for each sample.

Target ID data platform. A gene-centric database was compiled (Supplementary
Data 2), encompassing information from five different categories: (A) gene
expression block, (B) copy number block, (C) copy number-gene expression
association block, (D) clinical annotation block, and (E) gene annotation block
using publicly available databases such as COSMIC17, the Membranome18, the
Druggable Genome19, Secretome20, CAN genes21, and Kinome22. At our first filter,
we eliminated genes with weak correlation between gene expression and copy
number. We therefore identified genes which had a gain (absolute copy numbers ≥
2.38 based on cbs-segmented copy number) in at least 10% of TNBC cases, and
which gene expression showed a Spearman’s rank correlation of at least 0.3 with a
p-value of at least 0.01.

These genes were included in our Target ID platform, consisting of (A) the
“gene expression block”, capturing the fold change and the significance of
differential gene expression between TNBC and normal mammary gland tissue, all
tumors and normal mammary gland tissue as determined by the limma analyses60,
and the frequency of samples in which the respective gene had expression levels
twice as high as in the normal mammary gland tissue. (B) The “copy number
block”, reporting for each gene the frequency of copy number gain/amplification in
TNBCs, the average copy number levels in TNBC, and the focality of CNA
determined by GISTIC61. (C) The “copy number-gene expression association
block”, states the Spearman’s rank correlation between each genes copy number
and gene expression; and a multi-Mann–Whitney U test using categorical copy
number states as the grouping variable and the expression of the gene as the
dependent variable as previously described62. Benjamini and Hochberg adjusted p
< 0.05 were considered significant63. (D) The “clinical annotation block”, reporting
fold change and p-value of differential gene expression between TNBC with and
without recurrences as determined by limma60. (E) The “ gene annotation block”
collated publicly available information such as: gene description; mutational status
in cancer derived from COSMIC17; cell surface protein location and length of the
extracellular domain retrieved from Membranome18; druggability potential
retrieved from “the druggable genome”19; other information such as Secretome20,
CAN genes64, and Kinome22. Supplementary Data 2 lists all of these features, their
block affiliation, block description, priority weighting, thresholds, and scores.

The feature weighting module assigned scores for each feature in the binning
approach. If the feature value is smaller than threshold1, then it is assigned a
0 score, if it lies between theshold1 and threshold2 it is assigned Score 1, if it is
greater than threshold2 it gets Score 2. The aggregated scores are reported for each
individual gene. The features are then combined to make five different blocks of
features and a limit on total block score is assigned for each block in order to
minimize the bias towards any specific block. The aggregated scores from each
block are then normalized with respect to the block limit and their summation is
reported as block normalized score.

Cell lines. BCCLs were obtained from the ATCC and HMEC from Life Tech-
nologies. Growth conditions were as recommended by the suppliers. Cells were
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authenticated by short tandem repeat (STR) analysis and matched to the German
Collection of Microorganisms and Cell Cultures (DSMZ), and they were used for
no more than 25 passages after STR typing. Mycoplasma tests were routinely
performed using MycoAlert Mycoplasma Detection Kit (Lonza). Although MCF7
and BT20 are included in the database of commonly misidentified cell lines, they
were authenticated by STR, and we included them in our work as part of a
comprehensive validation.

Breast cancer cell line gene expression data. Gene expression for 25 BCCLs
based on the Illumina Human WG-6v2.0 and for 27 BCCLs based on the Affy-
metrix Human Exon 1.0ST microarrays were reported previously24,39, with 20
BCCLs common to both data sets. Both normalized gene expression cohorts were
independently median-centered.

Target ID data platform and algorithm. A gene-centric database was compiled
(Supplementary Data 2). This encompassed information from five different cate-
gories: (A) gene expression block, (B) copy number block, (C) copy number-gene
expression association block, (D) clinical annotation block, and (E) gene annota-
tion block using publicly available databases such as COSMIC17, the Membra-
nome18, the Druggable Genome19, Secretome20, CAN genes21, and Kinome22.

To identify potential CNA-regulated addiction genes for TNBC malignant
phenotypes, genes with cbs-smoothed Log2 ratio ≥2.38 in ≥10% TNBCs were
selected. We then selected those with Spearman’s rank correlation between
expression and copy number data ≥0.30 and p > 0.01 in the TNBCs in our
discovery cohort were taken forward. Next genes were assigned a score that was
derived through a custom defined weighted evaluation of the five blocks in the
Target ID Data Platform (Supplementary Data 3). All code for the algorithm used
was implemented using the R statistical language.

RNAi-based functional validation. Gene “lots” and their assigned cell lines were
established as follows: the three highest and lowest expressing BCCLs for each gene
were determined. Those genes having at least one cell line in common, among the
highest and lowest expressing cell lines, were grouped into gene “lots”. Thus, the
candidate genes were divided into five lots each to be tested in 6 to 9 breast cell
lines, resulting in a total of 16 BCCLs, and on one non-malignant cell line HMEC
(Supplementary Figure 1).

The “top 10” gene set was grouped into a separate lot and siRNA-mediated
knockdown was carried out by transfection of three siRNAs (Ambion)
independently at a concentration of 50 nM. Cells were plated in 96-well plates and
cell viability assays were performed in eight cell lines over three rounds using
CellTiter-Blue Cell Viability Assay (Promega) over 6-days and gene knockdown by
each siRNA was assessed by RT-PCR.

For the remaining five lots, siRNA-mediated knockdown was carried out by
transfection of pools of four siGenome siRNAs (Dharmacon) targeting the same
gene, at the total concentration of 50 nM. Cell viability assays were performed in
three rounds for each gene lot using the CellTiter-Blue Cell Viability Assay
(Promega) over 6-days. After normalization against the plate median and
correlation between the three rounds analyzed (Supplementary Data 10), the data
from the three rounds were pooled and the mean was plotted ± SEM. siRNA
against PLK1 and scrambled “non-silencing” siRNAs were used as positive and
negative controls, respectively.

The effect on cell viability was expressed as NPI where:

NPIx% ¼ x � μneg

� �
= μpos � μneg

� �
´ 100

NPIx is the NPI of the x sample and µpos and µneg are the averages of positive or
negative controls, respectively, within that plate.

From the top ten gene list, genes having at least two siRNAs with KD ≥ 70%
showing an NPI < 18.01% in HMEC and an NPI ≥ 18.01% in at least two malignant
cell lines were considered as validated. For the remaining lots, genes showing NPI
< 18.01% in HMEC and an NPI ≥ 18.01% in at least two malignant cell lines, or if
they had an NPI ≥ 18.01% in HMEC then have an NPI < 18.01% in at least two
malignant cell lines and an NPI ≥ 18.01% in at least two malignant cell lines were
considered as passing the primary functional validation experiment.

Quality control of the siRNA candidate screen. Prior to carrying out the
functional validation experiments, siRNA transfection conditions were optimized
for each cell lines such that PLK1 siRNAs produced a >70% reduction in CellTiter-
Blue readings after 6 days compared to non-silencing siRNA with minimal
transfection reagent toxicity. Experiments were carried out in 96-well plates,
excluding the use of more external rows and columns, to avoid edge effects
(Supplementary Figure 2b). To achieve higher data robustness, multiple positive
and negative controls were added to each plate and each round of the validation
consisted of triplicate plates. A good separation between positive and negative
controls was also seen across all cell lines (Supplementary Figure 2b). Position
dependent effects were ruled out. Valid experiments had a Z’ factor ≥0.3 and
replicates were excluded if the r2 between them and other replicates were <0.5.
Overall the mean r2 values for all replicates within the analysis were 0.7, indicative

of good quality data (Supplementary Data 4).

Z′-factor ¼ 1� 3SD of pos controlsþ 3SD of neg controls
mean of pos controls�mean of neg controls

Secondary functional validation. Single oligo deconvolution of the pooled siRNA
from the primary functional validation experiments were performed by grouping
the genes in “lots”, each to be tested against a small number of cell lines which
appeared in the primary validation to be relatively more addicted to some of the
genes in that lot. Each of the four individual oligos were assessed for both
knockdown efficiency, by RT-PCR, and effect on cell viability and the results
integrated. Genes having more than one individual siRNA sequence showing NPI
< 18.01% despite KD ≥ 70% were considered as a fail. Those genes for which at least
two siRNAs showed KD ≥ 40% and an NPI ≥ 18.01% were considered as validated.

Centrosome scoring. Confocal imaging of a panel of BCCLs generated centrosome
amplification score. Cells were double immunostained with α-IAK1 (BD Bios-
ciences) and α-CP110 (gift from E. Nigg) for centrosomes and centrioles, respec-
tively. Cells were counted as centrosome-amplified if they had more than two
centriole markers per centrosome and/or if they had more than two centrosomes
per cell. Centrosome amplification score was calculated as the percentage of
centrosome-amplified cells. For cisplatin-treated cells, centrosomes were scored
using the Perkin Elmer Operetta High Content Imaging System (Perkin Elmer) and
Harmony (Perkin Elmer).

Multipolar mitosis assay. Cells were plated in 96-well plates and transfected with
individual oligonucleotides (10 nM) including non-silencing negative control.
Knockdown of target gene was confirmed by western blot 72 h post-transfection
and cells were fixed in methanol and stained with α-IAK1 as a mitotic spindle
marker. Image acquisition was performed using the Perkin Elmer Operetta High
Content Imaging System (Perkin Elmer) and analyzed using Harmony (Perkin
Elmer). Mitotic cells with more than two mitotic spindle poles were scored as
multipolar and the percentage of multipolar mitoses was calculated from all visible
mitoses in a well of a 96-well plate (n > 100 for each replicate).

Time-lapse microscopy. MDA-MB-231 stable inducible NT and KIFC1 shRNA
cells were transduced a constitutive lentiviral vector expressing a mCherry-tagged
histone H2B as a fluorescent DNA marker. The cells were treated with doxycycline
for a 72-h period to ensure full expression of the shRNA before the start of the live-
cell imaging. Image acquisition was performed using Nikon Eclipse TE2000 with a
Hamamatsu Digital Camera. Images were acquired with a ×20 objective and images
were taken every 4 min for 50 h. Mitotic cells were scored as either bipolar or
multipolar and normal or apoptotic.

Animal studies. All applicable international, national, and/or institutional guide-
lines for the care and use of animals were followed. All procedures performed in
studies involving animals were in accordance with the ethical standards of the
institution or practice at which the studies were conducted. All animal experiments
were approved by the King’s College London Institutional Committees on Animal
Welfare (Animal Welfare and Ethical Review Body) and in compliance with the
United Kingdom Home Office Animals Scientific Procedures Act, 1986. Female
CD-1 Nu/Nu mice were obtained from Charles River UK Ltd. Procedures were
carried out after 20–35 days of age, mice were maintained behind a barrier facility
and handled in accordance with local guidelines. One million MDA-MB-231 or
HCC1954 stable inducible NT and KIFC1 shRNA cells were injected into the right
inguinal mammary fat pad of mice following standard procedures. When tumors
reached 2 × 2mm (4.2 mm3) (as assessed by palpation and caliper measurement)
mice were randomized into two groups and one group were fed chow ad libitum
containing Doxycycline at 625 mg kg−1 (Harlan Teklad Diets). Tumor growth was
monitored over time (assessed by palpation and caliper measurement). When the
first control tumors reached 10 mm in diameter, all mice for that experiment were
culled and tumors were excised and snap-frozen or processed for IHC (FFPE).
Tumor volume was calculated using the formula: V= (π × length × width2/6),
where the length is the largest tumor diameter and width is the perpendicular
diameter. Statistical analysis was performed using Prism.

Immunohistochemical analysis. All primary antibodies used in this study are
shown in Supplementary Data 12. All the histological samples were scanned at ×20
(0.46 µm per pixel), except with Pericentrin staining which were scanned at ×40
(0.25 µm per pixel) digital magnification using Hamamatsu Nanozoomer 2.0 HT
(Hamamatsu). The IHC assessment was performed using semi-automated Image
Analysis software HistoQuest 4.0 (TissueGnostic).

Pericentrin staining was assessed in mitotic cells by a trained histopathologist.
The mitoses were scored as having either normal centrosomes or abnormal
centrosomes. Abnormal centrosomes were defined by either size (twice the
diameter of centrosomes in normal breast epithelium) or number (>2)
(Supplementary Figure 5c). Mitoses were further classified by polarity based on the
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orientation of DNA and centrosomes in a cell. Mitotic cells with abnormal
centrosomes fell within the category of bipolar, multipolar, or those with diffuse
pericentrin and no polarity.

Pericentrin abnormality score. HistoQuest image analysis software was set up to
count the number of pericentrin events and staining area per event for cell line
pellets, whole tissue sections and TMAs. PCAB score was developed using by using
a cut-off for normal centrosome size (7 µm2) defined by analysis of pericentrin
centrosome size in normal breast tissue. The score is the number of abnormal
pericentrin bodies as a percentage of total bodies within a selected field. For whole
sections the tumor region was selected as the field of interest. For cell pellets and
TMAs the entire section or core, respectively, was selected as the field of interest
with at least 20 pericentrin bodies being score per case (average 440 pericentrin
bodies being scored per case).

KIFC1 si and shRNA sequences. KIFC1 siRNA #1: GGACUUAAAGGGUCA-
GUUA, KIFC1 siRNA #2: GUGCUAAGAUGCUCAUGUU, KIFC1 siRNA #3:
GGAGCUCACUGUCACCAAU, KIFC1 siRNA #4: UGACCUAAAUGCAGAA-
CUA, KIFC1 siRNA #5: CUCUACGCUUUGCCUCCAA, KIFC1 siRNA #6:
GUAGAGAUCUACAAUGAGA, KIFC1 shRNA:
AAGCTACGTAGAGATCTACAAT.

Generation of stable inducible NT and KIFC1 shRNA cell lines. Oligonucleotides
with both NT and KIFC1-targeting (KIFC1 shRNA) shRNAs with flanking AgeI and
EcoRI restriction sites were cloned into the Tet-pLK0-puro plasmid (a gift from
Dmitri Wiederschain via Addgene). Lentiviral particles were subsequently produced
by transfecting HEK293T cells with the plasmid and lentiviral packaging vectors
pSPAX2 and pMD2.G. Next, CAMA1, BT20, HCC1954, and MDA-MB-231 were
infected with the lentivirus and then cultured in the presence of 1.5 μgml−1 pur-
omycin. Knockdown was confirmed in vitro by addition of 1 μgml−1 doxycycline for
72 h followed by Western blot.

Colony formation assays. Surviving fraction of cells was analyzed using colony
formation assays. Cell lines expressing the inducible vectors were generated as
above. Cells were plated at low density and shRNA expression was induced by
addition of doxycycline. Knockdown of target gene was confirmed by Western blot
96 h post-transduction and colonies were fixed with ice-cold methanol and stained
with 0.5% crystal violet at 14 days post-transduction. Colony size was defined as a
minimum of 50 cells and colonies were counted using BIO-RAD XRS+system
(BIO-RAD) and Image Lab XRS+software (BIO-RAD).

Statistical analysis. Gene expression and copy number statistical analyses were
performed in the R environment as described above. For in vitro studies, no
samples were processed and then excluded; all completed experiments are reported.
Unpaired two-sided t-tests and one-way ANOVA with Tukey’s multiple compar-
ison were performed using GraphPad Prism software for analysis of all in vitro and
in vivo studies. For in vivo studies, we estimated that we would need at least six
samples per treatment group to see an effect, for a power of 80% and for a
probability of Type I error (α)= 0.05. Experiments were repeated at least twice to
confirm treatment response. The total number of mice per group is indicated. Mice
were excluded from the study if body weight was reduced during treatment by
more than 15% as compared to that at the start of treatment. Investigators were
blinded to the group allocation during the experiment and drug treatment.
Investigators were also blinded when assessing the outcome by IHC. Mice were
randomized to treatment groups when tumors reached a predetermined diameter
on a per experiment basis, as described above. The sample size for all in vitro
experiments were not chosen with consideration of the power needed to detect a
pre-specified effect size. For each data set, the data meet the assumptions of the
statistical test used, as determined by distribution and variance.

Data availability. All data is available from ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) under following accession codes (E-MTAB-5270 and E-MTAB-
2626), and can be interrogated via our web portal upon request.
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