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The bacteria-derived clustered regularly interspaced short palindromic repeat (CRISPR)–Cas

systems are powerful tools for genome engineering. Recently, in addition to Cas protein

engineering, the improvement of guide RNAs are also performed, contributing to broadening

the research area of CRISPR–Cas9 systems. Here we develop a fusion guide RNA (fgRNA)

that functions with both Cas9 and Cpf1 proteins to induce mutations in human cells. Fur-

thermore, we demonstrate that fgRNAs can be used in multiplex genome editing and

orthogonal genome manipulation with two types of Cas proteins. Our results show that

fgRNAs can be used as a tool for performing multiple gene manipulations.
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C lustered, regularly interspaced, short palindromic repeat
(CRISPR)-Cas9 systems are widely used in the field of
genome manipulation for gene editing and transcriptional

and epigenetic perturbation1. Recently, others and we have shown
that another Cas protein, Cpf1 (class 2, type V), can be suc-
cessfully repurposed for genome editing of eukaryotic cells, ani-
mals, and plants2–6. Although both Cas9 and Cpf1 proteins are
guide RNA (gRNA)-mediated endonucleases, the Cpf1 protein
has several distinct properties compared with Cas9 protein (e.g.,
T-rich protospacer adjacent motif (PAM) sequences, PAM-distal
region cutting, 5′-overhang sticky-end DSBs, and RNase activity),
which provide significant increase in the potential application of
the CRISPR-based genome manipulation toolbox.

In addition to the considerable effort expended on improving
and developing Cas proteins7–12, gRNA engineering is being
performed to refine the CRISPR–Cas9 and Cpf1 systems. Addi-
tional 5′-guanine or truncated gRNAs can reduce the mismatch
tolerance and increase target specificity without sacrificing on-
target activity13,14. Moreover, in addition to improving the spe-
cificity of CRISPR–Cas9 systems, gRNA engineering has broa-
dened the set of potential applications of CRISPR–Cas9 systems.
For example, aptamer-fused Cas9 gRNAs can recruit additional
effector proteins, such as VP64, KRAB, and APOBEC, for gen-
ome manipulation15–17. Moreover, Cpf1 gRNAs have been
engineered to simplify multiplex genome editing by exploiting the

crRNA processing activity of the Cpf1 protein18. In this study, we
develop a gRNA engineering method by creating a synthetic
fusion gRNA (fgRNA) that can interact with both Cas9 and Cpf1
proteins. Using the fgRNAs, we demonstrate that fgRNAs can
simultaneously induce endogenous mutations at both target sites
of Cas9 and Cpf1, and that the mismatch tolerance of the fgRNAs
is similar to that of conventional gRNAs. Furthermore, we show
that the fgRNAs can work with dCas9 variants and Cpf1 to
induce gene activation and disruption at endogenous target sites.
On the basis of these results, fgRNAs have the potential to expand
multiple gene manipulation using the orthogonality of various
types of Cas proteins.

Results
fgRNAs mediated endogenous mutation. First, we carefully
compared the gRNA composition of the Cas9 and Cpf1 systems.
In CRISPR–Cas9 systems, the chimeric single gRNA (sgRNA)
requires a tracrRNA fused at the 3′-end of the crRNA. In
CRISPR–Cpf1 systems, crRNAs are composed of target-specific
gRNA with a 5′-scaffold. In other words, the 3′-scaffold is
necessary for CRISPR–Cas9 gRNAs and the 5′-scaffold is
necessary for CRISPR–Cpf1 gRNAs. From these features, we
constructed fgRNAs containing both the 5′-scaffold of Cpf1 and
the 3′-scaffold of Cas9, with the expectation that the resultant
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Fig. 1 fgRNA can induce endogenous mutations. a Schematic overview of the fgRNA construct. Cpf1 guide RNAs have 5′-scaffold sequences in front of the
target sequences, and Cas9 guide RNAs have 3′-scaffold sequences behind the target sequences. fgRNAs have scaffolds for each Cas protein, enabling
genome editing with both Cas9 and Cpf1. b Top, human VEGFA target sequences. PAM sequences of LbCpf1 and spCas9 are colored in blue and red,
respectively. Target sequences of LbCpf1 and spCas9 completely overlap. Bottom, fgRNA-mediated endogenous indel frequencies measured by targeted
deep sequencing. spCas9 and LbCpf1 could induce endogenous mutations with both fgRNAs and their guide RNAs. c, d Indel frequencies of four additional
target sites of LbCpf1 (c) and two additional target sites of spCas9 (d). Both LbCpf1 and spCas9 can introduce indels using fgRNAs at similar levels to their
guide RNAs. Error bars indicate s.e.m. (n= 2)
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fgRNAs would recruit both Cas9 and Cpf1 proteins to their target
sites (Fig. 1a).

To investigate whether fgRNAs can guide both Cas9 and Cpf1
proteins to induce mutations in human cells, we chose VEGFA
target sites that could be shared by LbCpf1 (Lachnospiraceae
bacterium ND2006 Cpf1) and spCas9 (Streptococcus pyogenes
Cas9). Using targeted deep sequencing, we found that fgRNAs
could introduce endogenous indels with both Cas9 and Cpf1
proteins with comparable mutation frequencies to those of
conventional gRNAs of spCas9 and LbCpf1 (95.5 and 86.9%,
respectively, with spCas9 and 70.6 and 55.0%, respectively, with
LbCpf1) (Fig. 1b). These findings were consistent with the results
of other endogenous target sites, including FANCF and RUNX
(Fig. 1c, d). We also fused fgRNAs with the 5′-scaffold of AsCpf1
(Acidaminococcus sp. BV3L6 Cpf1) instead of LbCpf1 and found
that fgRNAs could also induce mutations at the endogenous
RUNX locus in two different human cell lines, namely, HeLa and
HEK293T (Supplementary Fig. 1a, b). In contrast to Cas9, Cpf1
possesses both RNase and DNase activities, which allow it to
process its own pre-crRNA and subsequently use the processed
RNA to recognize and cleave the target DNA. We also confirmed
that fgRNAs recruit both Cpf1 and Cas9 proteins without any
modification and might function with both Cpf1 and Cas9
proteins at each targeted locus (Supplementary Fig. 2). These

results showed that fgRNAs can be used with both Cas9 and Cpf1
in targeted mutagenesis in human cells.

Potential off-target effects of fgRNAs. To assess the specificity of
fgRNAs, we constructed a series of mismatched fgRNAs targeting
human VEGFA sites and analyzed their mutagenesis activities
using targeted deep sequencing (Fig. 2a). We found that fgRNAs
had a similar level of mismatch tolerance to the conventional
gRNAs of LbCpf1 and spCas9. We also investigated the specificity
of human DNMT1-targeting fgRNA at several endogenous
potential off-target sites defined in previous studies19,20. Notably,
fgRNAs exhibited indel frequencies comparable to those of Cpf1
gRNAs at all potential off-target sites in HeLa cells (Fig. 2b).

Multiplex genome editing with fgRNAs. We next tested whether
fgRNAs could be used in multiplex genome editing with Cas9 and
Cpf1 proteins. For this purpose, the length of target-specific
sequences between the 5′- and 3′-scaffolds were extended up to
40-bp for two different target sites. In preliminary experiments,
we compared the mutagenesis activities of five fgRNAs containing
sequences of different lengths between each scaffold and observed
whether these fgRNAs could induce indels at human endogenous
VEGFA sites. With both spCas9 and LbCpf1 proteins, no
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Fig. 2 Comparison of mismatch tolerance of fgRNAs with those of guide RNAs. a Mismatched fgRNAs or gRNAs that differed from human VEGFA target
sites by one nucleotide were transfected into HeLa cells. b Comparison of off-target effects between the fgRNAs and conventional gRNAs of LbCpf1. No
significant difference was observed between the two types of guide RNAs at four different potential off-target sites. Mismatched nucleotides are colored in
red. Error bars indicate s.e.m. (n= 2)
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significant difference was observed in mutagenesis activities
among all lengths of fgRNAs (22.5–28.8% with LbCpf1 and
68.6–75.8% with spCas9; Fig. 3). On the basis of these results, we
hypothesized that fgRNAs could be simultaneously used to target
two different genes with LbCpf1 and spCas9 (Fig. 4a). By co-
transfecting fgRNA with LbCpf1 and spCas9, we successfully
induced indels at endogenous VEGFA and FANCF loci (24.3 and
57.3%, respectively) and at VEGFA and TREX2 loci (29.9 and
64.1%, respectively) (Fig. 4b, c). We also successfully induced
ssODN-mediated HDR in the VEGFA locus and gene disruption
of the PRKDC locus in the same cells using fgRNAs (Supple-
mentary Fig. 3).

Orthogonal genome manipulation with fgRNAs. Finally, we
investigated whether fgRNAs could be used for orthogonal gen-
ome manipulation, especially for gene knockout and transcrip-
tional activation of two different genes (Fig. 4a). For this purpose,
we constructed fgRNAs containing target sequences of both
endogenous MYOD and VEGFA genes. MYOD genes were suc-
cessfully activated using a modified CRISPR–Cas9 system in a
previous study21, and we designed fgRNAs that could simulta-
neously activate theMYOD gene and disrupt the VEGFA gene. By
co-transfecting fgRNA-encoding plasmids with a MS2 loop,
LbCpf1, dCas9-VP64, and MCP-p65-HSF1, we observed that
MYOD mRNA expression levels increased >80-fold and found
indel frequencies at the VEGFA locus to be 29.0% (Fig. 4d, e). We
also observed orthogonal gene activation and disruption of
endogenous ASCL1 and DNMT1 genes (Supplementary Fig. 4).
These results revealed that fgRNAs could indeed be used in
orthogonal gene disruption and activation with Cas9 variants and
Cpf1 proteins. Taken together, these data highlight the utility of

fgRNAs that recruit both Cas9 and Cpf1 proteins for efficient
genome editing in human cells.

Discussion
CRISPR–Cas systems are widely used in various biological
research fields for genome manipulation, and several efforts have
been made to improve the nature of these systems. For example,
Cas9 and Cpf1, which are representative proteins of the CRISPR
system, are engineered for altering PAM sequences and
improving target specificities8,9,14,22. Also, catalytically inactive
Cas9 and Cpf1 are developed and widely used as programmable
DNA-binding proteins for transcriptional and epigenetic per-
turbations1. As well as Cas proteins engineering, their gRNAs are
also improved to increase indel frequencies, target specificities,
and induce multiple genome editing13,14,18,23.

Cas9 and Cpf1 proteins have distinct characteristics, among
which they have different gRNA structures. For this reason, it is
necessary to make independent gRNAs even if they recognize the
same target sequences. This is why there are no attempt to use the
orthogonality of these two different types of Cas proteins, even
though they might be complementary because of their distinct
characteristics. In this study, we developed and validated fgRNAs
—new gRNA constructs that can work with both Cas9 and Cpf1
proteins. In addition, by extending the target sequences of
fgRNAs, we demonstrated that fgRNAs can be used for targeting
two independent endogenous sites using Cas9 and Cpf1 proteins.
We also demonstrated that fgRNAs could be used to induce gene
disruption and activation simultaneously. With this concept, we
believe that a variety of applications will be possible. For example,
if fgRNAs are designed to direct dCas9 variants to key factors of
DNA repair mechanisms and Cpf1 to wanted-target genes, it may
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be possible to alter the mutation frequencies or patterns of Cpf1.
In addition to the fgRNA itself, fgRNAs combined with the
above-mentioned engineered-Cas proteins and improved-gRNAs
technologies would give rise to various possibilities applications.
Taken together, fgRNAs have the potential to simplify multiple
gene manipulation with various Cas proteins and expand the use
of genome editing tools in biological research.

Methods
Construction of plasmid DNA. We used human codon-optimized spCas9 [p3s-
Cas9HC (Addgene plasmids #43945)], LbCpf1 [pY016 (Addgene plasmids
#69988)], and AsCpf1 [pY010 (Addgene plasmids #69982)]. Plasmid DNAs for
orthogonal gene manipulation, lenti dCAS-VP64_Blast (Addgene plasmid #61425)
and lenti MS2-p65-HSF1_Hygro (Addgene plasmid #61426) were gifts from Feng
Zhang. pU6-As-crRNA (Addgene plasmid #78956) and pU6-Lb-crRNA (Addgene
plasmid #78957) were used for cloning the gRNA of LbCpf1 and AsCpf1. To
construct fgRNA-cloning vector, 5′-scaffold sequences of LbCpf1 (5′-AATTTC-
TACTAAGTGTAGAT-3′) and AsCpf1 (5′-TAATTTCTACTCTTGTAGAT-3′)
were inserted behind the U6 promoter sequences of the Cas9 gRNA-cloning vector.
The target sequences of each gRNA are listed in Supplementary Table 1.

Cell culture and transfection. HEK293T/17 (ATCC, CRL-11268) and HeLa
(ATCC, CCL-2) cell lines were maintained in DMEM (WelGENE Inc.) supple-
mented with 10% FBS. 24 h before transfection, 2 × 105 HEK293T cells and 8 × 104

HeLa cells were seeded in 24-well plates (Corning). All transfection experiments
were conducted using Lipofectamine 2000 (Life Technologies) according to the
manufacturer’s protocol. Cas protein expression plasmid DNA and gRNA-
encoding plasmid DNA were transfected in each well of the 24-well plates in a 1:1
ratio. Each transfection was performed in duplicate. For ssODN-mediated HDR,
2 × 105 HeLa cells were nucleofected with spCas9 expression plasmid (200 ng),
LbCpf1 expression plasmid (200 ng), VEGFA–PRKDC-targeting fgRNA (400 ng)
and ssODN (100 pmol) according to the manufacturer’s protocols (Lonza). To
perform single-clone analysis, cells were seeded in a 96-well plate at 0.5-cells per
well density and single clones were analyzed 1 week after seeding. Cells were not
tested for mycoplasma contamination.

NGS analysis for measuring mutation frequencies. Genomic DNA was
extracted 72 h after transfection using the DNeasy Blood & Tissue Kit (Qiagen)
according to the manufacturer’s protocol. The target region was amplified using
Phusion High-Fidelity DNA Polymerase (New England Biolabs), and the PCR
amplicons were subjected to paired-end sequencing using the Illumina MiSeq. The
PCR primer sequences are listed in Supplementary Table 2. We used Cas-Analyzer
(http://www.rgenome.net/cas-analyzer/) to analyze the mutation frequencies.

RNA expression level analysis. To analyze expression levels of MYOD and
ASCL1 mRNA, total RNA was extracted using Riboclear (GeneAll) and cDNA was
synthesized using AccuPower® CycleScript RT PreMix (Bioneer). Each cDNA
sample was mixed with 2 × SYBR Green SuperMix (Bio-Rad) and subjected to real-
time quantitative PCR (qPCR). MYOD and ACDL1 activation levels were calcu-
lated using the comparative CT method. Primer sequences used in qPCR are listed
in Supplementary Table 2.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request. All targeted deep
sequencing data were deposited at NCBI Sequence Reads Archive database with
accession number SRP116368.
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