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An extracellular matrix-related prognostic and
predictive indicator for early-stage non-small cell
lung cancer
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The prognosis and prediction of adjuvant chemotherapy (ACT) response in early-stage non-
small cell lung cancer (NSCLC) patients remain poor in this era of personalized medicine. We
hypothesize that extracellular matrix (ECM)-associated components could be potential
markers for better diagnosis and prognosis due to their differential expression in 1,943
primary NSCLC tumors as compared to 303 normal lung tissues. Here we develop a 29-gene
ECM-related prognostic and predictive indicator (EPPI). We validate a robust performance of
the EPPI risk scoring system in multiple independent data sets, comprising a total of 2,071
early-stage NSCLC tumors. Patients are stratified according to the universal cutoff score
based on the EPPI when applied in the clinical setting; the low-risk group has significantly
better survival outcome. The functional EPPI gene set represents a potential genomic tool to
improve patient selection in early-stage NSCLC to further derive the best benefits of ACT and
prevent unnecessary treatment or ACT-associated morbidity.
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umor stage is currently the best-established prognostic

factor of patient survival'. Aside from this stage classifi-

cation, much effort has been devoted to determine single
oncogenes or biomarkers. In particular, recent successes in
oncogene-directed therapies have improved patient survival®. For
example, Oncotype DX testing (Genomic Health Inc, Redwood
City, CA) has allowed improved prediction of recurrence risk and
allocation of chemotherapy to patients who would most likely to
benefit in breast cancer’. In contrast, lung cancer has seen few
medical advances. A 5-year survival remains at 50-60% for stage
I, 30-40% for stage II, and 15-20% for stage III lung cancer®. In
particular, non-small cell lung cancer (NSCLC) remains the
leading cause of cancer-related fatalities®. Although advanced or
metastatic (late-stage) NSCLC has routine testing for targets such
as epidermal growth factor receptor (EGFR) mutations and
anaplastic lymphoma kinase (ALK) rearrangements, there is still
lack of validated genetic risk stratification score to select patients
who may best benefit from adjuvant chemotherapy (ACT) among
early-stage resected NSCLC patients?. Adjuvant studies that
randomized EGFR mutant lung cancer to adjuvant EGFR tyrosine
kinase inhibitors or chemotherapy have also demonstrated no
survival benefits®. Immense efforts in uncovering potential mul-
tigene assays for molecular prognostic tests have recently resulted
in two genetic tests being marketed as Pervenio Lung RS (Life
Technologies, West Sacramento, CA, USA) and myPlan Lung
Cancer (Myriad Genetics, Inc., Salt Lake City, UT, USA).
Althou%h both assays have been validated in some patient
cohorts”® using formalin-fixed and paraffin-embedded (FFPE)
specimens, the success of a prospective randomized clinical trial is
still warranted for their immediate clinical utility.

Bidirectional crosstalk between tumor cells and their sur-
rounding stroma is critical in tumor growth and progression’
Whereas cancer has been previously examined for genetic or
epigenetic mutations in epithelial cells, it is now clear that the
extracellular cues in tumor microenvironment (TME) also reg-
ulate cancer development and metastasis!’. The extracellular
matrix (ECM) components, in particular, have been perceived as
important regulators in cancer progression”. Stromal and epi-
thelial cells in cancer microenvironment jointly disrupt them and

their dynamics has become a hallmark of cancer'?. Abnormal
ECM, such as disrupted organization and changes in essential
composition or topography of the ECM, has been implicated in
cancer initiation and metastasis by remodeling the behavior of
stromal cells and promoting tumor-associated angiogenesis and
inflammation!!. Hence, understanding how tumor-derived ECM
components manifest in the diseased state may help identify new
prognostic or therapeutic targets.

Here, our developed bioinformatics pipeline for large scale
meta-analysis revealed differential expressions and significant
enrichment of ECM-associated components in 1,943 primary
NSCLC tumors relative to 303 normal lung tissues. We thus
hypothesized that ECM genes play a significant role in predicting
metastasis, recurrence risk and survival. A 29-gene ECM-related
prognostic and predictive indicator (EPPI)!® was specifically
constructed and its robust performance was validated in multiple
independent data sets comprising 2,071 early-stage NSCLC
patients. To facilitate its clinical utility, the universal cutoff EPPI
risk score, which stratifies patients with better overall survival
(OS) was identified. This was further validated in identifying
patients who would benefit from ACT in an independent vali-
dation cohort.

Results

Construction of a 29-gene EPPI related to NSCLC. The
bioinformatics workflow of our integrative genomic analysis is
illustrated in Fig. 1. Batch effects arising from 10 independent
microarray data sets were successfully adjusted as validated using
principal components analysis (PCA). The first two principal
components of the ComBat-transformed data (discovery set)
which capture the most variance are shown in Fig. 2a. The PCA
plot of samples adjusted for batch effect showed a clear separation
between 925 primary NSCLC tumors and 193 normal lung tissue
samples (Fig. 2b). We identified a total of 103 differentially
expressed genes (DEG) that met our stringent statistical threshold
in NSCLC compared to normal phenotype (Supplementary
Table 1). Figure 2c shows a volcano plot revealing 32 upregulated
and 71 downregulated genes in NSCLC. To dispel the existing
bias against feature selection methods based on ranking genes, the
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Fig. 1 Schematic representation of the bioinformatics workflow. We constructed a 29-gene EPPI signature from 2,246 samples including primary NSCLC
tumors and normal lung tissues using an integrative genomic approach. The EPPI risk scoring system was developed from discovery set comprising early-
stage patients. The prognostic and predictive performance of the EPPI risk score was further validated in multiple independent validation sets comprising

2,071 early-stage NSCLC patients
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Fig. 2 Construction of a 29-gene EPPI. a PCA plot of merged microarray data sets demonstrating the batch effect removal. Ellipses representing one
standard deviation away from the mean of the Gaussian fitted to each data set. b PCA plot showing a clear separation between 925 primary tumors (blue)
and 193 normal lung tissues (red). ¢ Volcano plot of differential gene expression using merged microarray data. Upregulated and downregulated genes with
absolute values of log2 fold-change >1.5 in primary NSCLC tumors are shown in red and blue, respectively. Gray dots represent statistically non-significant
genes. d Schematic representation of random sampling steps for comparing the overlap between DEG lists using merged microarray data sets (left). Kernel
density estimates of overlap coefficients computed from 10,000 iterations are shown (right). e PCA plot of TCGA data sets (LUAD, LUSC) showing a clear
separation between primary 1,018 tumors (blue) and 110 normal lung tissues (red). f Comparison of log 2 fold-change estimate results from two different
platforms. Upregulated and downregulated genes are shown in red and blue, respectively. g GSEA-generated enrichment plots of the upregulated and
downregulated gene set in a TCGA cohort. The cumulative enrichment score is plotted as the green curve, which is the running sum of the weighted ES as
the analysis walks down the ranked list computed from GSEA software. The vertical black lines on the middle portion of the plot indicate the position of
inputted gene signatures in the ranked list of genes. Genes on the far left (red) and right (blue) correspond to high enrichment in NSCLC and normal
phenotype, respectively. The bottom plot (gray) shows the value of the ranking metric as the computation goes down the list of ranked genes. The
normalized enrichment score (NES) and the false discovery rate (FDR) are shown on the graph. h Pie chart of differentially expressed genes annotated with
ECM-related molecules and their major categories for ECM constituents
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overlap between DEG lists derived from random sampling was
computed for 10,000 iterations (Fig. 2d). We took smaller subsets
randomly from the discovery set and applied the same statistical
criteria used to define the DEG list. The mean of the overlap
coefficients computed for the iterations (mean overlap coefficient
=0.899) suggests there is significant overlap using the discovery
set comprising 1,118 samples.

Since the DEGs used to construct the EPPI were identified
from merged microarray data sets, we further validated the 103
DEGs in an independent cohort comprising RNA-Seq transcrip-
tional profiling of 1,018 primary NSCLC tumors and 110 normal
lung tissues from lung adenocarcinoma and squamous cell
carcinoma patients (Fig. 2e). The estimates of log 2 fold changes
of gene expression values between the samples across the two
different platforms were highly correlated as shown in Fig. 2f
(Spearman correlation = 0.914, P < 2.2e-16). Gene set enrichment
analysis (GSEA)-generated results further showed significant
enrichment scores for both upregulated (ES=0.929, P <0.001)
and downregulated gene set (ES=-0.904, P<0.001) in the
diseased phenotype compared to normal tissues in the RNA-Seq
platform (Fig. 2g).

Interestingly, gene ontology enrichment analysis of the 103
DEGs identified ECM-associated molecules, comprising 28% of
the DEGs (n =29), to be the most differentially enriched cellular
components in the diseased state (Fig. 2h). We hypothesized that
these identified ECM components play a significant role in the
molecular pathways associated with NSCLC malignancy and their
gene expression patterns may collectively predict clinical out-
comes. Using three gene ontology databases, we constructed the
EPPI gene set comprising the 29 ECM-related genes that were
identified to be differentially expressed in primary NSCLC tumors
(Supplementary Table 2).

Personalized EPPI risk scoring system for patient classifica-
tion. We systematically analyzed the patient groups in the dis-
covery data set to develop the EPPI based risk scoring system.
Patients without complete survival information or at late-stage
NSCLC were excluded in the univariate Cox regression analysis.
Altogether, 489 early-stage NSCLC patients from the initial dis-
covery set were included to generate the Cox regression coeffi-
cient of each EPPI gene (Supplementary Table 3). The EPPI risk
score of each patient in the discovery set was then computed
using the regression coefficient and represented collectively in the
EPPI gene expression heatmap in Fig. 3a. The data are sorted in
increasing EPPI risk scores and each patient’s survival status is
depicted as well. Forest plots illustrating the hazard ratios (HRs)
and 95% confidence intervals (Cls) for each EPPI gene are pre-
sented with its respective Cox regression coefficient (Fig. 3b).

Time-dependent area under a receiver operating characteristic
(ROC) curve (AUC) analyses were further performed in order to
compare the prognostic performance of different patient
classification methods. The AUC analyses for a 10-year survival
demonstrated better performance of the EPPI risk scoring system
compared to an unsupervised hierarchical clustering technique in
classifying patients with different survival outcomes (Fig. 3c). The
prognostic performance of different cutoff score was also
compared in the AUC analyses to determine the best cutoff
computation method. An optimal cutoff score, defined as the
EPPI risk score with the most significant split using log-rank test,
was selected to demonstrate the prognostic performance of the 29
EPPI genes in multiple independent data sets.

Robust prognostic performance in early-stage tumors. The
ability of the 29-gene EPPI signature in stratifying early-stage
NSCLC tumors with different prognosis was confirmed in
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multiple validation cohorts comprising a total of 2071 early-stage
NSCLC patients. Only stage IA to IIB patients with complete
demographic information were included and patients were cen-
sored at their last examination, or at 10 years follow-up in all
validation runs. The histology profiles of the samples included
two studies comprising exclusively of lung adenocarcinomas
(GSE68465, TCGA), and one of squamous cell carcinoma
(GSE4573), and six of mixed histological types (GSE3141,
GSE37745, GSE30219, GSE42127, GSE41271, and GSE11969).
Patients annotated with ACT were excluded from the survival
analyses.

Unsupervised hierarchical clustering of each validation cohort
was first performed to demonstrate a robust prognostic
performance of the EPPI gene signature in classifying patients
with different survival outcomes (Supplementary Fig. 1). As
demonstrated by consistently high HRs across validation cohorts,
there was a significant association between survival and EPPI
gene panel. We further tested the potential of the clinical utility of
our developed EPPI risk scoring system in stratifying patients.
The optimal cutoff value was determined for each cohort to
divide early-stage patients into two classes, designated as low-risk
and high-risk groups. Remarkably, the 29-gene EPPI was closely
associated with OS in all validation cohorts (Fig. 4a). The
predicted high-risk group had statistically significant shorter OS
compared with those in the low-risk group as shown in univariate
Cox regression analyses.

All validation cohorts demonstrated significant log-rank P-
value (P <0.05) despite the absence of few EPPI genes in some
microarray platforms, demonstrating the strong prognostic
performance of the EPPI gene signature in early-stage NSCLC
patients. We also tested the association between the EPPI and
RFS in the data sets using RFS as an endpoint (GSE50081 and
GSE31210 from the discovery set, and GSE68465; Fig. 4b). The
predicted high-risk group consistently had worse RES outcomes
than the low-risk group as shown in Fig. 4b.

Since only data sets with almost complete demographic
information were evaluated, we further conducted multivariate
Cox regression survival analyses to adjust for other clinical
variables such as histology (ADC: adenocarcinoma; LCC: large
cell carcinoma; SCC: squamous cell carcinoma), sex, smoking
history, AJCC tumor staging (Stage IA-IIB) and age. Importantly,
multivariate survival analyses showed that the EPPI signature
remains to be an independent indicator of survival outcomes after
the adjustment (Table 1). We further directly compared our
model to these clinicopathological factors that are known to be
associated with survival to some extent (Supplementary Fig. 3).
Despite significant p-values for tumor staging, age and histology
in few data sets, our gene signature has the strongest prognostic
performance in most data sets (8 out of 10 validation cohorts).
Although EPPI model also shows statistically significance in the
other two data sets, histology and tumor staging shows better
performance in GSE30219 and TCGA, respectively. Nevertheless,
our gene panel remains to be the most significant factor
compared to five clinicopathological factors in majority of
early-stage NSCLC patients.

Gene clusters generated from hierarchical clustering using
validation cohorts probed with the full-gene platforms (Discovery
set, GSE3141, GSE37745, and GSE30219) revealed that high-risk
groups associated with worse survival displayed consistently
elevated expressions of collagens (COL10A1, COLI11A1I), matrix
metallopeptidases (MMP1, MMP12), secreted factors (S100A2),
glycoproteins (CTHRC1, SPPI), and ECM-affiliated proteins, or
genes encoding proteins affiliated structurally or functionally to
ECM proteins (GREMI) and low expressions of surfactant
proteins (SFTPC, SFTPA2, SFTPD), secreted proteins (CHRDLI,
WIFI), ECM-regulated genes (CPB2, MAMDC2, HHIP, LPL,
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classification methods were assessed in the discovery set

CD36, ADAMTSS), collagen (COL6A6), ECM-affiliated proteins
(FCN3), ECM glycoproteins (TNNCI, ABI3BP), and proteoglycan
(OGN). Using the patient demographic information, we further
compared how patients designated into different risk group differ
in terms of other clinical variables (Fig. 4c). The high-risk group
consisted of patients with a slightly higher proportion of men,
patients with squamous cell carcinoma, patients with smoking
history, and stage II patients compared to low-risk group.

The universal EPPI cutoff score for patient stratification. To
evaluate the clinical application of the EPPI risk score, we per-
formed AUC analyses to determine a universal threshold that can
be applied to all early-stage NSCLC patients. As different
microarray platforms measure the same gene with varying
expression levels on different scales and ranges'®, the most
commonly available platform in a public repository of gene
expression profiles was chosen to assess the potential of defining a
universal EPPI risk score. The common cutoff value was deter-
mined as the median of the optimal cutoff scores at 5-year and
10-year survival, identified from the time-dependent AUC

NATURE COMMUNICATIONS | 8:1734

analyses using the discovery set, as shown in Fig. 5a (cutoff score
=20.8). The cutoff was applied to stratify patients into low-risk
and high-risk group in multiple independent data sets that were
probed with the same platform (Fig. 5b). Figure 5c shows that the
common threshold separated patients into groups with sig-
nificantly different survival outcomes in both discovery and
validation cohorts.

Prediction of the adjuvant chemotherapy response. We further
tested the therapeutic predictive utility of the EPPI signature in an
independent validation cohort, hypothesizing that the high-risk
group would likely benefit from the ACT: 144 tumors from
GSE42127 comprising 35 patients who received ACT and 109
patients who did not receive ACT. We systematically compared
the predictive performance of our EPPI scoring system with
known clinical prognostic markers using ROC/AUC analyses.
The tested clinical variables included AJCC staging, histology,
and gender. In order to assess the predictive accuracy of these
models, time-dependent AUC analyses for 10-year survival were
compared (Fig. 6a). The data suggest that the EPPI risk score has
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with significantly different a overall survival (OS); and b relapse free survival (RFS). The adjusted hazard ratio (HR), log-rank p-value (P), and the number of
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a best prognostic accuracy in predicting survival post surgery.
With estimation of sensitivity and specificity using ROC curves,
the optimal cutoff score was further determined to assign patients
into different groups and identify those who may benefit from
ACT (cutoff score =21.7; Fig. 6b). Patients were ranked by their
EPPI risk score and separated into low-risk and high-risk groups
with the optimal cutoff score (Fig. 6¢). Figure 6d shows that the
OBS cohort experienced shorter survival than those with ACT in
the high-risk group whereas patients who received ACT had no
significant survival benefits relative to those without ACT in the
low-risk group.

Discussion

Although numerous gene panels have been claimed to be prog-
nostic for early-stage NSCLC tumors (Supplementary Table 5),
EPPI gene panel comprising specific ECM molecules has critical
biological and clinical significance. As opposed to these existing
signatures where genes were first ranked and selected solely based
on their prognostic power using prior information of known
survival outcomes, we were completely blinded to survival data
when drawing EPPI signature; only existing biological knowledge
was used for gene selection, particularly for biological motives
representing ECM matrix that links tumor cells and surrounding
enzymes in tumor microenvironment using multiple gene
ontology databases. For this, we found it remarkable that early-
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stage tumors of a particular kind of lung cancer, NSCLC, can be
stratified with different prognosis based on ECM molecules alone,
considering their highly variable and dynamic properties'®. The
diverse expression levels shown in each patient further suggests
inter-tumor heterogeneity in relation to ECM components in the
tumor microenvironment.

Potential involvement of these 29 specific ECM molecules in
resistance to therapeutic intervention further highlights the sig-
nificance of downstream analysis of ECM mediated signaling
pathways in identifying druggable targets against NSCLC tumors.
This finding is significant not just in demonstrating predictive
value for prognosis but also in uncovering gene signature for the
prioritization of tumor microenvironment-targeting therapeutic
approaches. Despite immense efforts, designing rational therapy
targeting cancer-associated fibroblasts (CAFs), for example, has
been challenged and resulted in significant toxicity due to lack of
definitive biomarkers in distinguishing ‘activated’” CAFs from
normal fibroblasts'®. Such lack of specificity and prior knowledge
of tumor microenvironment at the molecular level truly neces-
sitates specific ECM biomarkers to develop more precise and less
toxic targeted therapies for medical utility. In this regard, our
gene panel holds great promise in providing novel potential
targets for stroma-directed therapeutic approaches—in fact, one
of our ECM component, COL11AI, has very recently been
reported as a highly specific biomarker of activated CAFs together
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Table 1 The EPPI signature is an independent predictor of survival outcome in early-stage NSCLC patients
Variables  GSE3141 GSE37745  GSE30219 GSE68465 GSE4573 GSE42127 GSE41271 GSE11969 TCGA

HR (P) HR (P) HR (P) HR (P) HR (P) HR (P) HR (P) HR (P) HR (P)
29-gene EPPI
Low-risk 1 1 1 1 1 1 1 1 1
High-risk 2.4 (0.002) 1.6 (0.09) 2.9 (0.0006) 1.9 (0.003) 1.9 (0.04) 3.0 (0.001M) 2.2 (0.006) 2.5 (0.01) 2.1 (0.005)
Histology
ADC? 1 1 1 b c 1 1 d d
Lccd 096 (09 0 15.2 (0.01)
Scce 0.65 (0.12) 0.93 (0.7) 2.9 (0.001) 0.99 (0.98) 0.8 (0.6)
Gender
Female - 1 1 1 1 1 1 1 1
Male 0.93 (0.7) 0.6 (1.2) 11(0.8) 1.4 (0.3) 0.98 (0.95) 13 (0.4) 1.2 (0.8) 1.0 (0.96)
Smoking
Never - - - 1 1 - 1 1 1
Ever 0.9 (0.7) 0.3 (0.D 15 (0.5) 0.9 (0.9) 2.1 (0.15)
AJCC Staging
IA - 1 - - 1 1 1 1 1
1B 15(0.2) 13 (0.4) 12 (0.6) 0.96 (0.9) 1.6 (0.3) 0.9 (0.8)
1A 1.2 (0.8) 23(0.2) 1.8 (0.3) 11(0.8) 29(0.2) 2.6 (0.02)
1B 1.6 (0.1 12 (0.7 12 (0.8) 13 (0.6) 2.10 (0.2) 2.4 (0.02)
Age - 1.0 (0.02) 1.02 (0.11) 11 (1.4E-05) 1.0 (0.7) 1.0 (0.07) 1.0 (0.03) 1.0 (0.05) 1.0 (0.02)
—Data not provided
@Adenocarcinoma
bE><dusive\y comprising adenocarcinoma samples
CExclusively comprising squamous cell carcinoma samples
dlarge cell carcinoma
€Squamous cell carcinoma

with other co-expressed genes, which has further validated in 13
different types of cancers in TCGA data'®.

We have thoroughly revisited gene panels from 61 studies that
have been previously claimed to be prognostically important
(Supplementary Table 5). For fair comparison to our ECM gene
panel, signatures selected based on biological motives were
included for schematic demonstration (Supplementary Fig. 2).
Here, only three factors that are considered to be most significant
in developing clinically applicable multigene assay in a routine
clinical setting are shown: (1). Hazard ratios for stratifying per-
formance; (2). Validation sample size for statistical robustness;
and (3). Number of genes used in the panel for feasibility and
practicality. Some of these signatures with biological implications
include cancer-related genes such as TOP2A%1718, PI3K_related
genes!”, and VEGFA', which are known to be significantly
associated with clinopathological factors>®?!, Even when com-
paring to these signatures, our ECM gene panel demonstrates
comparable and even stronger prognostic performance in greater
number of validation cohorts (Supplementary Fig. 2). Never-
theless, as Subramanian et al.?? critically pointed out, hazard ratio
is not sufficient enough to demonstrate predictive power; thus
ROC curves were further obtained to demonstrate that EPPI risk
score is a statistically better predictor of survival than known
standard risk factors, including AJCC staging, histology, smoking
status and gender, which were often missed in prior studies.

The differences observed in terms of traditional clinical factors
between the low-risk and high-risk groups may exert undue bias,
as shown from previously published studies?>. In order to account
for these clinical parameters, we performed multivariate Cox
regression independently for each validation cohort adjusting for
each clinical prognostic indicator to compute if these variables
had any influence in assessing the predictive value of the EPPI.
Consistently, the EPPI was shown to be the best prognostic factor
among all the established clinical variables and remained to have
statistical significance in predicting survival of early-stage NSCLC
patients (Table 1). Direct comparison to traditional clin-
icopathological factors was further done and our EPPI gene panel
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again remains to be better predictor of survival than known risk
factors in most validation cohorts (Supplementary Fig. 3).

As our gene panel involves a minimal number of genes that can
be quantified for its expression in a standard way using RT-PCR,
genetic assays can be directly applied to FFPE specimens, which
are usually available after surgical resection, for prospectively
conducted validation study. In fact, Pervenio Lung RS and
myPlan Lung Cancer have been tested with FFPE samples to
derive risk score and demonstrated the feasibility of using FFPE
tumor blocks or consecutive slides with defined criteria for tumor
size and density?%. In situations where samples have incomplete
EPPI expression data, we have demonstrated that the clinical
utility remains strong. Nevertheless, it is noteworthy that the use
of the entire gene set is favored.

The developed genomic algorithm greatly reduced the com-
putational complexity of the integrative genomic analysis. The
stringent statistical criteria for differential expression analysis
applied in this study narrowed down more than 20,000 genes to
statistically significant and stable genes that may significantly
contribute to cancer-associated molecular pathways, particularly
in ECM remodeling. Interestingly, subsets of the genes in the
EPPI had been previously reported for their differential expres-
sion in lung cancer or even other lung diseases such as idiopathic
pulmonary fibrosis (IPF), chronic obstructive pulmonary disease
(COPD), and cystic fibrosis (CF) when compared with normal
lung tissues (Supplementary Table 4; Fig. 7a). The EPPI and
previously identified differentially expressed genes from pub-
lished transcriptome analysis of diseased lung tissues for IPF
patients, in particular, demonstrate significant overlapping gene
expression patterns. Among them, three genes, SPP1, MMP]I, and
S100A2, were strikingly upregulated and four genes, FCN3, HHIP,
S100A12, and CPB2, were downregulated in both NSCLC and
IPF. We thus speculate that the patterns of the EPPI gene
expression might be a critical gauge for impaired lung function,
and 29 genes in the EPPI might form a network and collectively
mediate tumor initiation. The EPPI signature may further be
associated with the underlying mechanism of carcinogenesis such
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Fig. 5 Identification and validation of a common cutoff score using AUC analyses. a Time-dependent survival ROC curves at 5-year and 10-year from the
discovery set are shown with best trade-off between sensitivity and specificity. b Violin plot depicting the score distribution in each data set probed with
Affymetrix-GPL570 platform; a cutoff score of 20.8 was used to stratify patients into 2 groups. ¢ Validation of prognostic performance in multiple data sets
probed in Affymetrix-GPL570 platforms. The adjusted hazard ratio (HR), p-value (P), and the number of patients successfully stratified (N) determined
from univariate Cox regression analyses are shown on each survival KM curve. Black and red KM curves represent predicted low-risk and high-risk group,

respectively

as epithelial-mesenchymal transition (EMT) or mesenchymal-
epithelial transition (MET). For example, in vivo development of
the alveolar epithelial EMT was found to be regulated by the ECM
components during IPF?. It could therefore be valuable to
investigate the association of each EPPI signature with the
initiation of EMT, which may explain the fundamentals of tumor
initiation.

Individual components of the EPPI have also been confirmed
to have strong predictive value in other cancer types. Particularly,
two genes of the EPPI gene signature, namely SPP1 and OGN,
which encodes ECM glycoprotein and proteoglycan, respectively,
were identified among 26 stromal gene signatures that stratified
disease outcome in primary breast tumors'?, Consistent with
these findings, 79 differentially expressed genes identified in
another study?® between primary breast cancers and paired
lymph node metastases further overlapped with four genes from
the EPPI: COL11A1, CTHRCI, PCOLCE2, and OGN. These dif-
ferentially expressed genes were found to predict tumors with
high risk of developing metastasis within 43 months, establishing
their potential prognostic value in predicting clinical outcome of
node-positive patients. Beyond the shared expression patterns of
the EPPI gene signature in other lung diseases, the potential
prognostic performance in other types of cancer further provide
the possible association of cancer progression to be related to
ECM-dependent molecular pathways.

Prior assessment of primary breast carcinomas and matching
lymph node metastases?” revealed ECM molecules, comprising
18% of differentially expressed genes, to be most differentially
enriched. Additionally, a recent single-cell RNA-seq study”®
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found unexpected high abundance of ECM transcripts in sub-
stantial proportion of enriched circulating tumor cells (CTCs),
which were shed from matched primary pancreatic tumors into
the bloodstream. The knockdown of one of highly expressed
ECM proteins in cancer cells, SPARC, suppressed cell migration
and invasion, suggesting the potential role of CTCs in the classical
“seed” carrying their own “soil” to metastasize?®. Most interest-
ingly, four genes of our EPPI overlapped with their differentially
expressed genes in CTCs vs. matched primary pancreatic tumors:
SPP1, ABI3BP, OGN, and SFTPD. While this study has demon-
strated potential benefits of applying the EPPI as a selection tool
for ACT in patients at high risk of relapse, this further remains to
be validated in larger subsets of patients or in a prospectively
conducted study.

One of the limitations of this study is the small sample size
used to predict the survival benefits of ACT using the EPPI risk
score. This is due to the incomplete demographic information in
the many available public data sets. We therefore plan to assess
the EPPI signature in a larger validation data set cohort. This will
aid to establish the cutoff value over a wider range of patient
subtypes. Another limitation is the cross platform compatibility
of our EPPI risk scoring matrix, as other platforms use different
scale range and have varying gene expression values. Never-
theless, we established our work using the most widely
adopted platforms, demonstrating its successful classifications of
early-stage patients. In our attempt to meet the criteria set by
Subramanian et al.?? for a clinically applicable gene expression-
based prognostic signature, we have thoroughly revisited and
analyzed our findings again and believe that the EPPI gene panel
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Fig. 6 Predictive value of the EPPI gene signature. a Time-dependent AUC analysis of EPPI risk score and other clinical variables in GSE42127 regardless of
adjuvant chemotherapy (ACT) history. b Time-dependent ROC curves at 10 year are shown with best trade-off between sensitivity and specificity (optimal
cutoff =21.7). ¢ The EPPI risk score distribution, survival status and patient stratification based on optimal cutoff determined from ROC analysis are shown
(high-risk vs. low-risk group). d Hazard ratio (HR), p-value (P), and the number of patients successfully classified (N) determined from univariate Cox

regression survival analyses are shown. Black and red KM curves represent ACT and OBS (observation group: patients without ACT) group, respectively

fulfill most of the stated standards (Fig. 7b). This shows the
promising results for its clinical application and our informatics
analyses can be easily translated to other platforms as well.

Although our current universal cutoff score was determined at
the intersection point of sensitivity and specificity, this score may
not always be the most optimal point in the clinical practice; we
believe that achieving higher sensitivity is more critical (even at
the expense of having low specificity; that is producing a higher
proportion of false-positive results) as treatment and survival
outcomes greatly depends on the stage of cancer at diagnosis in
NSCLC. If patients are put at considerable risk by receiving false-
positive results, it may be reasonable to compromise sensitivity—
in which we believe is less significant than identifying more
patients with early-stage cancer for greater benefits. Taken toge-
ther, our study demonstrated a critical and important analysis
technique that will complement current disease management.
With potential role of ECM proteins in cancer progression
highlighted, we believe understanding the role of specific EPPI
gene molecules in metastasis may further provide potential tar-
gets for future intervention and therapy. A prospective rando-
mized clinical interventional study based on the EPPI signature
will better confirm our analysis to maximize the benefit of the
treatment administered to patients.

Methods
Microarray data. Transcriptional profiles and clinical annotations were down-
loaded from the National Center for Biotechnology Information Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) via the inSilicoDb package?® in
R/Bioconductor. In order to minimize undesired variations from different plat-
forms, only samples probed with Affymetrix Human Genome U133 Plus 2.0 (HG-
U133_Plus_2) Array were selected as the discovery set. Manual curation was done
to include only primary NSCLC tumors such as adenocarcinoma, squamous cell
carcinoma (SCC), and large cell carcinoma (LCC) and normal lung tissues. Ten
primary NSCLC tumor data sets (Fig. 2a) from the GEO repository were down-
loaded, pre-processed and normalized using frozen Robust Multi-array Average
(fRMA).

Since combining multiple data sets into one large—scale analysis carry over non-
biological experimental variations or batch-effects*’, direct adjustment for the
undesired batch effects with the Empirical Bayes algorithm implemented in
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ComBat was performed in these fRMA-normalized NSCLC data sets using the
inSilicoMerging package®!. Principal Component Analysis (PCA) was carried out
using the prcomp function to collapse high-dimensional data into the first two
components and they were visualized using via the ggbiplot package” in order to
validate the batch-effect removal in Combat-transformed data. A total cohort of
1118 human samples including 925 primary NSCLC tumors and 193 normal lung
epithelial tissues were generated for the identification of differentially expressed
genes. The genefilter package? was subsequently used to apply a filter to remove
genes with low variance across samples, improving the computational processing
time by focusing only on statistically significant genes.

Construction of the EPPI signature. Differential expression was assessed by a
linear regression method using the R/Bioconductor limma package®*. We applied
stringent statistical cutoffs of log2FC > 1.5 and adjusted p-value < 1.0E-10 for
genes to be determined as differentially expressed in the integrated primary NSCLC
tumor data for subsequent discovery and analysis. Volcano plot was generated
using the ggplot2 package®® to graphically reveal genes that differ significantly
between two phenotypes of diseased and normal samples. Limma-generated dif-
ferentially expressed genes that met our statistical criteria were filtered to construct
the ECM-related gene list using the Matrisome database®®, Gene Ontology (GO)
Consortium'3 and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database®”. A descriptive list of 29 EPPI genes including the fold change (log2-base)
and adjusted p-value (false discovery rate) is shown in Supplementary Table 2.

RNA-Seq data. Level-3 RNAseqV2 gene expression profiles were downloaded
from the Cancer Genome Atlas (TCGA) using the TCGA-Assembler package’®.
The data comprised clinical information and gene expression values of 1018 pri-
mary tumors and 110 normal lung tissues from patients with adenocarcinoma
(LUAD) and squamous cell carcinoma (LUSC). The raw data were processed with
RNA-Seq by expectancy maximization (RSEM), and genes without least zero
RSEM count in at least 20% of the samples were removed for further differential
expression analysis. Differential expression analysis was performed using the voom
function in the limma package, with normalization by Trimmed Mean of M-values
(TMM) via the edgeR package®.

Gene set enrichment analysis. The enrichment of identified upregulated and
downregulated gene set identified using the discovery set was assessed in TCGA
cohorts using GSEA v2.2.2. GSEA computes the enrichment score by applying
weighted Kolmogorov—Smirnov statistic to a running sum of the ranked list with
1000 permutations. The enrichment score (ES) was further normalized to account
for the size of each inputted gene set. The false discovery rates (FDR) <0.001 were
assumed to be statistically significant.
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Gene Full name

COL11A1  Collagen, type Xl, alpha 1

COL10A1 Collagen, type X, alpha 1

COL6A6  Collagen, type VI, alpha 6

SPP1 Secreted phosphoprotein 1

TNNC1 Troponin C type 1

CTHRC1  Collagen triple helix repeat containing 1
ABI3BP ABI family, member 3 (NESH) binding protein
PCOLCE2 Procollagen C-endopeptidase enhancer 2
OGN Osteoglycin

MMP12 Matrix metallopeptidase 12

MMP1 Matrix metallopeptidase 1

ADAMTS8 ADAM metallopeptidase with thrombospondin type 1 motif, 8
SFTPC Surfactant protein C

GREM1 Gremlin 1, DAN family BMP antagonist
SFTPA2 Surfactant protein A2

SFTPD Surfactant protein D

FCN3 Ficolin (collagen/fibrinogen domain containing) 3
WIF1 WNT inhibitory factor 1

CHRDL1  Chordin-like 1

S100A2 S100 calcium binding protein A2

CXCL2 Chemokine (C-X-C Motif) ligand 2

CXCL13  Chemokine (C-X-C Motif) ligand 13

IL6 Interleukin 6

HHIP Hedgehog interacting protein
S100A12  S100 calcium binding protein A12
CPB2 Carboxypeptidase B2

MAMDC2 MAM Domain containing 2

LPL Lipoprotein lipase
CD36 CD36 molecule (thrombospondin receptor)

Fig. 7 Biological and clinical significance of the EPPI gene signature. a Schematic representation of the expression patterns of the EPPI gene signature in
lung cancer and other lung-related diseases. Differential expression levels in prior works were calculated using their own statistical methods from diseased
lung tissues vs. matched normal lung tissues. b Summary of our gene panel in terms of critical factors to be considered in developing gene expression-

based prognostic signatures

EPPI classifier validation and its prognostic evaluation. To validate the prog-
nostic value of the EPPI in predicting OS and RFS, normalized gene expression
profiles (log2 transformed) from eight independent microarray data sets across
four different platforms of Affymetrix (HG-U133A and HG-U133_Plus_2), Illu-
mina (HumanWG-6 v3.0 Expression), and Agilent (014850 Whole Human Gen-
ome Microarray 4 x 44K G4112F) were downloaded via the GEO repository
directly. For all validation cohorts, manual curation was done to select only pri-
mary tumors resected from stage IA to IIB (early-stage) patients and the survival
data were censored at 10 years follow-up post surgery. Using a Spearman rank
correlation as a distance metric selection, an unsupervised hierarchical clustering
algorithm was first performed to test the prognostic value of the EPPI signature in
the validation cohort (Supplementary Fig. 1) using the Institute of Genomic
Research MultiExperiment Viewer (TIGR MeV) version 10.2 software. The EPPI
risk score of each patient was then computed and used to divide patients into low
and high-risk group based on the optimal cutoff score identified in each data set.
The optimal cutoff EPPI risk score, which is defined as the score with the most
significant split using log-rank test, was determined using the Cutoff Finder
algorithm*C.

Personalized EPPI risk score and gene expression heat maps. The regression
coefficient of each EPPI gene was derived from 489 early-stage NSCLC patients
who had complete survival information from the initial discovery set. The EPPI
risk score was calculated as a sum of multiplication of the expression level of each
EPPI gene and its respective Cox regression coefficient identified from the dis-
covery set (EPPI risk score =29+ (expression level of gene) X (Cox regression
coefficient)). Each Cox regression coefficient used for EPPI risk score computation
is shown in Supplementary Table 3. A constant was added to ensure all scores are
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positive. The risk score generated for each patient in the discovery set was visua-
lized with a personalized two-dimensional heatmap using Gene-E open software
(Broad Institute).

Time-dependent ROC, AUC, and survival analyses. Time-dependent receiver
operator characteristic (ROC) and area under the curve (AUC) were computed
using the survivalROC package*! in R. OS and RFS time were computed from the
date of surgery until death and relapse of last follow-up contact, respectively. For all
survival analyses in this study, both univariate and multivariate Cox proportional
hazards model and Kaplan—Meier (KM) survival curves were used via the survival
package in R/Bioconductor*?. Hazard ratios were adjusted for available clinical
variables in each data set such as smoking status, gender, age at diagnosis, histology
and tumor stage. The Cox proportional hazard assumption was checked by
Schoenfeld test using cox.zph function in survival library*2.

Data availability. Data for all the bioinformatics analyses using open-source R
packages have been described throughout the text and are available under accession
codes GSE10245, GSE10445, GSE10799, GSE12667, GSE18842, GSE19188,
GSE28571, GSE31210, GSE33356, GSE50081, GSE3141, GSE37745, GSE30219,
GSE68465, GSE4573, GSE42127, GSE41271, and GSE11969 from the National
Center for Biotechnology Information Gene Expression Omnibus (GEO). All the
statistical analyses have been performed using open-source R packages and
described in Methods section. All other data associated with this work are available
in the Supplementary Information or from the corresponding author upon rea-
sonable request.
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