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Spatio-temporally separated cortical flows and
spindle geometry establish physical asymmetry in
fly neural stem cells
Chantal Roubinet 1,3, Anna Tsankova1,4, Tri Thanh Pham1,2, Arnaud Monnard1,2, Emmanuel Caussinus1,5,

Markus Affolter1 & Clemens Cabernard 1,2

Asymmetric cell division, creating sibling cells with distinct developmental potentials, can be

manifested in sibling cell size asymmetry. This form of physical asymmetry occurs in several

metazoan cells, but the underlying mechanisms and function are incompletely understood.

Here we use Drosophila neural stem cells to elucidate the mechanisms involved in physical

asymmetry establishment. We show that Myosin relocalizes to the cleavage furrow via two

distinct cortical Myosin flows: at anaphase onset, a polarity induced, basally directed Myosin

flow clears Myosin from the apical cortex. Subsequently, mitotic spindle cues establish a

Myosin gradient at the lateral neuroblast cortex, necessary to trigger an apically directed

flow, removing Actomyosin from the basal cortex. On the basis of the data presented here,

we propose that spatiotemporally controlled Myosin flows in conjunction with spindle

positioning and spindle asymmetry are key determinants for correct cleavage furrow place-

ment and cortical expansion, thereby establishing physical asymmetry.
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Asymmetric cell division is an evolutionary conserved
mechanism to create sister cells with divergent fate1. One
manifestation of asymmetric cell division is the difference

in sibling cell size and occurs in various cell types and
organisms2, 3. Several mechanisms underlying the generation of
physical asymmetry have been proposed but how they are spa-
tiotemporally coordinated and molecularly controlled is incom-
pletely understood4. Controlled cleavage furrow positioning can
generate sibling cell size asymmetry by assembling an
actomyosin-containing contractile ring at the correct position
underneath the cell membrane. In most metazoan cells, the
positional cues regulating ring positioning and assembly originate
from the mitotic spindle in the form of the conserved Cen-
tralspindlin complex, composed of the mitotic kinesin-like pro-
tein 1 (MKLP1) (Pavarotti; Pav in Drosophila; Zen-4 in
Caenorrhabditi elegans) and MgcRacGAP (Tumbleweed; Tum in
Drosophila; CYK-4 in C. elegans)5–7. Centralspindlin’s localiza-
tion to the central spindle is controlled by the chromosomal
passenger complex (CPC), consisting of Aurora B kinase, the
inner centromere protein (INCENP), Survivin and Borealin8. It
has been proposed that Pav travels along stable microtubules,
delivering Tum to the cell equator where it activates the RhoGEF
ECT2 (Pebble; Pbl in Drosophila; LET-21 in C. elegans)9–11.
Equatorial localization of Pbl induces the activation of the small
GTPase RhoA (Rho1 in Drosophila), promoting Actin poly-
merization and Myosin activation, resulting in the formation of
the actomyosin-containing contractile ring5, 6.

This generalized model can explain equatorial Non-muscle
Myosin II (Myosin, hereafter) localization in a number of cell
types. However, cell type-specific variations, highlighting funda-
mental mechanistic differences in Myosin dynamics, also exist.
For instance, in Sea urchins, phosphorylated Myosin is localized
on the cell cortex until metaphase but subsequently disappears
from the entire cortex before reappearing in a confined spindle-
induced band at the equatorial furrow10. In Drosophila neuro-
blasts, the neural stem cells in the developing fly brain, Myosin
remains at the cell cortex throughout mitosis but the polarity
proteins Discs large 1 (Dlg1; Dlg in vertebrates) and Partner of
Inscuteable (Pins; LGN/AGS3) are used to transform Myosin
from a uniform cortical distribution to an asymmetric localization
before it enriches at the forming cleavage furrow12. Spindle-
independent furrow positioning mechanisms are not confined to
the neuroblast system but have also been reported in other
organisms and cell types13–17.

Myosin localization also influences the stability and dynamic
behavior of the cell cortex. For instance, asymmetric Myosin
localization regulates biased cortical expansion, shifting the
cleavage furrow towards one cell pole, thereby generating unequal
sized sibling cells and thus physical asymmetry13, 18. However,
how Myosin dynamics and activity are spatiotemporally regulated
to ensure the correct establishment of physical asymmetry,
remains unclear.

Here we use photoconversion, live cell imaging, laser cutting and
nanobody experiments in the Drosophila neuroblast system to
specifically investigate the molecular mechanisms underlying sibling
cell size asymmetry. We show that Myosin relocalizes to the clea-
vage furrow via two distinct cortical Myosin flows: a polarity
induced, basally directed Myosin flow, causing Myosin to clear on
the apical cortex at anaphase onset. Subsequently, mitotic spindle
cues establish a Myosin gradient at the lateral neuroblast cortex,
necessary to trigger an apically directed flow, removing Myosin
from the basal cortex. On the basis of the data presented here, we
propose that both spatiotemporally controlled Myosin flows in
conjunction with spindle positioning and spindle asymmetry are
key determinants for correct cleavage furrow placement and cortical
expansion and thus the establishment of physical asymmetry.

Results
Cell cycle and polarity cues regulate Myosin dynamics. To learn
how Myosin dynamics contributes towards sibling cell size
asymmetry, we used live cell imaging and measured the reloca-
lization dynamics of Non-muscle Myosin II (visualized with Sqh::
GFP19; Myosin (Myo), hereafter) together with the cell cycle
marker His2A::mRFP in wild-type fly neuroblasts. We confirmed
that Myosin was localized almost uniformly around the cortex by
late metaphase12, 18, 20. Approximately 20 s after anaphase onset,
Myosin first disappeared from the apical cortex and ~ 80 s later
from the basal cortex, resulting in a ~ 1-minute delay between
apical and basal Myosin depletion. Myosin also accumulated at
the basally shifted cleavage furrow (Fig. 1a–c). Live cell imaging
with high temporal resolution revealed that apical relocalization
preceded Myosin enrichment at the lateral cortex—the future
furrow position—by 25 s (+/− 8 s; n= 17. “+/−“ refers to standard
deviation (s.d); “n” refers to number of measured cells). Myosin
enrichment at the lateral cortex also preceded basal Myosin
clearing by 30 s (+/−17 s; n= 17). Myosin then continued to
enrich at the prospective furrow position once basal clearing was
initiated (Fig. 1d).

This stereotypic Myosin relocalization sequence (summarized
in Supplementary Fig. 1a) depended on both cell cycle and
polarity cues. Partial inhibition of Cyclin dependent kinase 1
(Cdk1) has been shown to be sufficient to initiate cytokinesis21.
We used Flavopiridol to partially inhibit Cdk1 in wild-type fly
neuroblasts and measured the time between nuclear envelope
breakdown and apical clearing, basal clearing and Myosin
enrichment in the furrow region. We found that apical and basal
Myosin relocalization occurred earlier compared to wild-type
neuroblasts. Similarly, Myosin enrichment at the future cleavage
furrow also occurred prematurely (Fig. 1e–g).

Previously, we showed that the polarity proteins Pins and Dlg
are necessary for the correct localization of Myosin12, 18, 20. Since
neuroblast polarity is connected with the cell cycle
machinery22, 23, we analyzed Myosin relocalization timing in
dlg;;pins double mutants. Compared to wild-type, apical Myosin
disappeared later, whereas basal Myosin cleared earlier in dlg;;pins
mutant neuroblasts. The time difference between apical and basal
Myosin clearing decreased significantly (Fig. 1h and Supplemen-
tary Fig. 1b, c). Taken together, we conclude that cell cycle and
polarity cues regulate the onset and temporal sequence of Myosin
relocalization in Drosophila neuroblasts.

Apical and basal Myosin relocalize to the cleavage furrow. The
high temporal resolution live cell imaging results suggest that
equatorial Myosin originates from both the apical and basal
cortex. To test this hypothesis, we devised photoconversion
experiments to investigate the fate of apical and basal Myosin
molecules. To this end, we generated transgenic flies, expressing
either the regulatory subunit (encoded by spaghetti squash; sqh24)
or the Myosin heavy chain (encoded by zipper; zip25) tagged with
the photoconvertable fluorescent protein mDendra226; both
constructs are expressed by endogenous regulatory elements (see
methods). We obtained identical results with both lines and will
collectively call these fusion proteins Myo::mDendra2 hereafter.
We first photoconverted Myo::mDendra2 selectively on the apical
cortex shortly before apical Myosin clearing and followed the
subsequent relocalization of these photoconverted filaments with
live cell imaging in intact fly larval brains or isolated neuroblasts
(see methods). This pool of photoconverted Myosin spread
almost over the entire cortex and subsequently focused at the
cleavage furrow region (Fig. 2a, Supplementary Fig. 2m, Supple-
mentary Movies 1 and 2). Similarly, Myo::mDendra2 filaments
that were photoconverted on the basal cortex in early anaphase
accumulated at the forming cleavage furrow later in anaphase
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Fig. 1 Cell cycle and polarity cues regulate Myosin’s dynamic relocalization. a Representative image sequence showing a wild-type neuroblast expressing
Sqh::GFP (Myosin, white; top row, green; bottom row) and the DNA marker His2A::mRFP (red; bottom row). Cortical Myosin intensity was measured at the
apical (dark green dashed box) and basal cortex (light green dashed box) throughout mitosis and plotted in b. Chromatid segregation starts at “0 s”. c
Mean apical and basal Myosin clearing time and standard deviation in relation to chromatid segregation. The blue and orange numbers represent the mean
value. d Kymographs showing Myosin intensity at the apical (blue boxes), lateral (green boxes) and basal neuroblast cortex (orange boxes) for one
representative wild-type neuroblast. Kymographs were generated from high temporal resolution time-lapse movies (2 s acquisition time). The graph shows
Myosin intensity at the apical (blue plot), lateral (green plot) and basal cortex (orange plot). Apical e basal f Myosin clearing time after nuclear envelope
breakdown (NEB) in control and Flavopiridol-treated neuroblasts. g Equatorial Myosin accumulation time after NEB. h Scatter plot showing the apical and
basal Myosin clearing time in relation to anaphase onset, for wild-type and dlg;;pinsmutant neuroblasts. For this and all subsequent figures: since polarity is
lost in dlg;;pins mutants, we refer to the cortex clearing slightly earlier or associated with the slightly bigger cell as “apical”, whereas the other cortex is
referred to as “basal”. Center values and error bars represent the mean and standard deviation (s.d), respectively. Asterisks denote statistical significance,
derived from unpaired t-tests: *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****P≤ 0.0001. Each measured cell (n) is represented with a dot in the scatter plots. For
other graphs, the number of measured cells is indicated in the corresponding panels. For each experiment, the data was collected from at least 3
independent experiments. For each independent experiment, at least 5 larvae were dissected. Time: seconds (s). Scale bar: 5 µm. Time scale bar (open
white box) in (d): 20 s. n.s. not significant

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01391-w ARTICLE

NATURE COMMUNICATIONS |8:  1383 |DOI: 10.1038/s41467-017-01391-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Fig. 2b, Supplementary Fig. 2m and Supplementary Movie 3).
Thus, consistent with the high temporal live cell imaging results,
both pre-anaphase apical and early anaphase basal Myosin
molecules contribute to the forming contractile ring.

Myosin filaments flow towards the cleavage furrow region.
Apical and basal cortical Myosin filaments could locally

disassemble and redistribute through the cytoplasm, thereby
reaching the cleavage furrow. Alternatively, the contractile
properties of the actomyosin cytoskeleton could induce the
onset of first an apical—basal (basal directed) and subsequently a
basal—apical (apical directed) cortical flow27. To distinguish
between these scenarios, we converted Myo::mDendra2 at the
lateral cortex shortly after apical clearing. If cortical Myosin
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filaments would contribute to the cleavage furrow through
cytoplasmic relocalization, we anticipated that Myosin would
label the furrow symmetrically. Alternatively, laterally photo-
converted Myosin filaments should predominantly stay at the
lateral neuroblast cortex if cortical flow is a major mechanism

(Supplementary Fig. 2a, b). In all cells (100%; n= 49), we
observed that photoconverted Myosin remains asymmetrically
localized after photoconverting in early anaphase neuroblasts,
labeling predominantly one side of the neuroblast cortex
during anaphase and early telophase. Furthermore, apically
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and laterally photoconverted Myo::mDendra2 flowed to the fur-
row region and the photoconverted patch became more confined
at the onset of furrow ingression (Fig. 2c, d and Supplementary
Movie 4). We developed software to quantify Myosin flow velo-
city from these photoconversion data sets (see methods and
Supplementary Fig. 2c). Velocity measurements were only per-
formed until cell deformation set in to exclude an overestimation
of Myosin flow speed. These measurements did not reveal a
statistical significant difference between the basally and apically
directed Myosin flow, albeit some variability was detected (Apical
—Basal: 206.8+/− 131 nm/s, n= 9. Basal—Apical: 96.4+/− 160
nm/s, n= 15; Fig. 2d–f). We also performed FRAP experiments in
metaphase and early anaphase neuroblasts, measuring the
recovery of Sqh::GFP in the bleached region. In contrast to
metaphase, we found that Myosin filled in the bleached region
from both the apical and the basal edge, supporting the photo-
conversion data and confirming the existence of a basal- and
apical-directed Myosin flow (Fig. 2g, f and Supplementary Fig. 2d,
e). FRAP experiments on neuroblasts expressing membrane
tethered mCherry (mCherry::CAAX) showed much faster

recovery dynamics than simultaneously bleached Sqh::GFP
(Supplementary Fig. 2f–i), which was expected for a membrane-
associated protein not restricted in its lateral movement by the
actin cytoskeleton28, 29. Myosin flow velocity quantifications from
kymographs revealed values comparable to the photoconversion
data sets (Apical—Basal: 196.7+/− 84.3 nm/s, n= 26; Basal—
Apical: 187.3+/− 68.9 nm/s, n= 26; Fig. 2f). Overall, the two
converging Myosin flows showed no statistically significant
velocity difference.

The observed flows are not a consequence of cell shape changes
since photoconverted Gap43::mEos30—a membrane marker—
from the apical, basal or lateral neuroblast cortex distributed over
the entire neuroblast membrane. Unlike Myosin, photoconverted
Gap43::mEos did not specifically enrich at the cleavage furrow
(Supplementary Fig. 2j–m, Supplementary Movie 5 and 6).
Although we cannot directly pinpoint the spatial origin, these
results strongly suggest that Myosin’s dynamic relocalization is
due to two cortical flows: an apical—basal flow and a
basal—apical flow. Furthermore, spatiotemporally controlled
down- or upregulation of Myosin activity could precede both
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the apically and basally directed flows. Taken together, we
conclude that cortical flow is a major mechanism to relocalize
Myosin filaments from both poles to the cleavage furrow in
mitotic fly neuroblasts but do not exclude the contribution of
cytoplasmic Myosin molecules to the cleavage furrow during
anaphase (see also below).

Myosin clearing is independent of chromatin derived cues.
Next, we investigated the molecular mechanisms underlying
spatiotemporally controlled Myosin flows. The contribution of
cell polarity to Myosin relocalization, as described above, is
reported elsewhere31. Here we focus on how the mitotic spindle
induces Myosin relocalization.
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Neuroblasts lacking mitotic spindles (colcemid-treatment) and
the spindle-assembly checkpoint component Rod32, displayed a
strong delay in basal Myosin clearing12, 18, 20 (and Fig. 3a–c). In
addition, the neuroblast’s chromatin failed to reach the basal
cortex (Fig. 3a). Since chromatin-derived cues have recently been
implicated in cortical remodeling33, 34, we investigated its role
during asymmetric cell division in more detail. In wild-type
neuroblasts, chromatids approached the basal cortex more than
the apical cortex (Fig. 3d and Supplementary Fig. 3a). In
colcemid-treated rod mutant neuroblasts, the chromosomes
stayed relatively close to the apical cortex, progressively moving
away from the basal cortex during anaphase (Fig. 3e, f and
Supplementary Fig. 3b).

On the basis of these data, we tested a potential connection
between DNA-derived cues and basal Myosin relocalization. We
first tested whether the small GTPase Ran, the phosphatase Pp1-
87B and its regulatory subunit Sds22—all of which were
previously implicated in chromatid-associated cortex remodel-
ing33–35—are required for apical and basal Myosin clearing. Ran
accumulated around the chromatin in metaphase as reported for
other cell types36–38 but subsequently enriched on the sister
chromatids, segregating into the neuroblast (Supplementary
Fig. 3c). Pp1-87B was associated with neuroblast chromatin in
interphase and late telophase but was widely distributed
throughout the neuroblast’s cytoplasm during anaphase when
Myosin relocalization starts (Supplementary Fig. 3f). Thus,
neither Ran’s nor Pp1-87B’s localization correlated with the
sequence of basal Myosin clearing. Knocking-down Ran, Pp1-87B
or sds22 with inducible RNAi, expression of the dominant-
negative RanT24N 39 or using mutant alleles to remove sds22 and
Pp1-87B, respectively did neither compromise apical nor basal
Myosin clearing (Supplementary Fig. 3d, e, g–j). However, we
noticed that sibling cell size asymmetry was perturbed after
knocking-down Sds22 (see below).

Finally, to exclude the involvement of another chromosome-
derived signal, we treated neuroblasts with colcemid or induced
local membrane and cell cortex lesions in metaphase neuroblasts
to artificially push chromatin close to the cell cortex. Never-
theless, we did not observe local Myosin depletion in both
experiments (100%; n= 34; Fig. 3g–j and Supplementary
Fig. 3k–m).

Taken together, we conclude that neither Ran, Pp1-87B, Sds22
nor any other chromatin-derived cues are necessary to induce
local Myosin depletion. Furthermore, chromatin-derived cues are
not sufficient to clear cortical Myosin in mitotic neuroblasts.
Thus, the lack of basal Myosin clearing in colcemid treated
neuroblasts is directly related to a lack of spindle-dependent cues.

The central spindle pathway induces the basal Myosin flow. We
next asked how the mitotic spindle could induce an apically

directed Myosin flow. The equatorial stimulation model proposes
that microtubules contacting the equatorial cortex (of central
spindle or astral origin) lead to Myosin activation at the cell
equator through centralspindlin-dependent activation of RhoA5.
Due to the intrinsic contractile properties of Myosin, such an
increase in activated Myosin generates a cortical flow towards the
highest Myosin density40. To test whether this model could
explain the basal—apical Myosin flow in neuroblasts, we first
analyzed the localization of the centralspindlin complex using
Tum::Venus41. From anaphase onset onwards, Tum was detected
on bundled microtubules in the cell center, but also decorated
microtubules contacting the lateral cortex (Fig. 4a, b and Sup-
plementary Fig. 4a). Importantly, Tum preceded Myosin’s
focused enrichment on the lateral cortex (Fig. 4b; compare 60 s vs.
90 s time point). Subsequently, both Tum and Myosin enrich-
ment shifted closer to the basal cortex during anaphase (Fig. 4b;
Timepoints 60 s–255 s). Tum localization and subsequent Myosin
enrichment agrees with the equatorial stimulation model. To
confirm it, we (1) depleted the mitotic spindle completely (rodH4.8

mutants treated with colcemid), (2) removed the centralspindlin
components Tum and Pav, (3) knocked-down the CPC compo-
nent AurB, acting upstream of the centralspindlin complex42 and
(4) removed the RhoGEF Pebble (Ect2 in mammals). Apical
Myosin relocalization is not affected under these conditions20 but
lateral enrichment was abolished. Furthermore, Myosin enriched
on the basal cortex and cleared with a significant delay (Fig. 4c–f
and Supplementary Fig. 4b–d). We further tested whether pre-
mature activation of the central spindle pathway can induce an
apically directed Myosin flow earlier. Partial Cdk1 inactivation
has been shown to be sufficient to promote central spindle for-
mation and to activate the spindle-dependent equatorial Myosin
activation pathway21, 43. Indeed, in relation to apical Myosin
clearing, neuroblasts exposed to Flavopiridol accumulated Myo-
sin earlier at the prospective cleavage furrow and prematurely
induced basal Myosin clearing. Premature basal Myosin clearing
reduced the time window between apical and basal Myosin
clearing, similar to dlg;;pins mutant neuroblasts (Fig. 1h, Sup-
plementary Fig. 1b, c and Supplementary Fig. 4e–h). Taken
together, we conclude that the central spindle pathway is neces-
sary for basal Myosin relocalization.

Actomyosin enriches laterally prior to furrowing. Since cortical
Myosin is bound to filamentous Actin (F-Actin), locally activated
Myosin should induce an F-Actin flow. Thus, we reasoned that F-
Actin should relocalize with similar dynamics than Myosin and
therefore also clear on the basal cortex after Myosin accumulated
at the prospective furrow region. To test this hypothesis, we
analyzed the dynamics of Lifeact—a probe for F-Actin44—in
wild-type neuroblasts. Similar to Myosin, F-Actin accumulation
in the prospective furrow region started about 120—60 s prior to

Fig. 5 Lateral Actomyosin enrichment precedes basal actomyosin clearing. a Representative image sequence of a wild-type neuroblast expressing Sqh::
mCherry (Myosin), LifeAct::GFP (Actin) and the Myosin activity FRET sensor. Curvature is determined for each pixel along the yellow line (4th row).
Ingression occurs when curvature changes from “−“ to “ + ”. The region corresponding to the future cleavage furrow is indicated in red and plotted in the
graphs below (grey line). Blue arrows emphasize furrowing. b Plot of a representative neuroblast showing Myosin (green line) and Actin (red line) intensity
changes in the prospective furrow region, in relation to curvature changes. For this and subsequent plots, curves were smoothened (dashed black line with
black triangles) and plotted in the same graph. The time difference between an increase in Myosin and Actin intensity in the prospective furrow region and
furrowing (dashed lines and green and red arrows, respectively), was extracted from the smoothened curves and plotted in (c). d Plot showing changes in
FRET ratios in the prospective furrow region in relation to furrowing. The time difference between the onset of FRET ratio increases and furrowing (dashed
blue lines and blue arrows, respectively) are shown in e. f Actin (purple line) and Myosin (orange line) intensity changes were plotted for the basal cortex.
The time difference between actomyosin intensity drops and furrowing (dashed lines and purple and orange arrows, respectively) were plotted in g.
Asterisks denote statistical significance, derived from unpaired t tests: *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001. Each measured cell (n) is
represented with a dot in the scatter plots. For each experiment, the data were collected from at least 3 independent experiments. For each independent
experiment, at least 5 larvae were dissected. Time: seconds (s). Scale bars: 5 µm. n.s. not significant
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furrow ingression (Fig. 5a–c). Increase in Myosin and F-Actin
should result in an increase in active tension. To test this idea, we
constructed a Myosin activity sensor by adding two Vinculin
domains that bind filamentous Actin (F-Actin) and a FRET
module, separated by a flexible spider silk protein (31, 45. See also
methods). If Actin filaments are pulled together due to Myosin
motor activity the sensor will respond with high FRET signals
(Supplementary Fig. 5a, b). In most cases, this sensor showed an
increase in FRET ratios between 10–50 s prior to furrow ingres-
sion in wild-type neuroblasts (Fig. 5a, d, e). Neuroblasts, treated
with the Rho kinase inhibitor Y27632 showed a significant
reduction in FRET ratios in the cleavage furrow region although
ingression was initiated (Supplementary Fig. 5c–f), suggesting that
the sensor accurately, albeit indirectly, monitors Myosin activity.

Per equatorial stimulation model, increase of activated Myosin
should precede or coincide with basal actomyosin clearing. We
detected a concomitant intensity drop for both Myosin and F-
Actin on the basal neuroblast cortex, concurring with the
detection of activated Myosin in the prospective furrow region
but shortly before furrowing initiated (Fig. 5d–g). Taken together,
these measurements show that Myosin and F-Actin first
accumulated at the lateral cortex, followed by an increase in
FRET signal—an indirect readout for active tension—in the
prospective furrow region and a concomitant decrease of Myosin
and F-Actin on the basal cortex. These data suggest that the
increase in activated Myosin at the lateral cortex could be the
motor for basal Myosin clearing.

The anaphase spindle is focusing Myosin at the lateral cortex.
Our photoconversion experiments showed that directed Myosin
flows contribute to lateral Myosin enrichment but we wanted to

know whether Myosin can also be recruited to the equatorial
cortex from the cytoplasm. Cytoplasmic recruitment could con-
tribute towards the lateral enrichment of Myosin as shown above.
To this end, we used a pulsed UV laser to induce local lesions in
the neuroblast cortex (see methods). Cutting the cortex caused
cortical Myosin to fall into the cytoplasm within ~ 40 s, thereby
creating a neuroblast cortex that is essentially devoid of cortical
Myosin. Under these conditions, the spatiotemporal relocaliza-
tion of Myosin can be followed. Indeed, 1–2 minutes after the
metaphase cortex was cut, cytoplasmic Myosin returned to the
neuroblast cortex with a uniform cortical distribution (Fig. 6a and
Supplementary Fig. 6a, b). However, if the cortex was cut in early
anaphase (after apical Myosin depletion), Myosin also returned to
the cortex but did not spread uniformly anymore; Myosin was
localized in a confined band, coinciding with the ingressing
cleavage furrow (Fig. 6b, d and Supplementary Movie 7). Sur-
prisingly, in neuroblasts devoid of mitotic spindles (colcemid-
treated rod mutants) Myosin was still able to return to the cortex
after cutting. However, furrow confinement was lost and Myosin
spread out on the basal cortex (Fig. 6c, d and Supplementary
Movie 8). We conclude that (1) cytoplasmic Myosin can be
recruited to the equatorial cortex independently of the mitotic
spindle but (2) spindle-dependent cues are required to focus
Myosin to the cleavage furrow region.

Regulated Myosin flows contribute to physical asymmetry.
Since unequal cortical expansion is dependent on Myosin
localization18 the differential Myosin flow onset described here
would provide an intuitive model for basal cleavage furrow
positioning and thus physical asymmetry. To test this hypothesis,
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we identified mutant conditions, altering Myosin flow onset on
both poles and tested whether these manipulations altered phy-
sical asymmetry (Fig. 7a). In wild-type neuroblasts, the temporal
difference between the two flows is ~ 60 s (Mean: 65.56 s;+/−

13.33; n= 9) although significant variations between individual
cells exist (Fig. 7b, c). rod mutant neuroblasts treated with col-
cemid showed a strong delay in basal Myosin clearing, increasing
the time between apical and basal Myosin flow onset to almost 3

a b c

A

B

A

B

A

B

A

B

R
at

io
 a

pi
ca

l /
 b

as
al

 le
ng

th
 (

A
/B

) 

ΔT between apical and basal flow onset (s)

<20

40

80

120

160

200

240

280
B

as
al

 M
yo

si
n 

cl
ea

rin
g 

tim
e 

af
te

r 
ap

ic
al

 d
ep

le
tio

n 
(s

)

****

****
****

***

W
ild

 ty
pe

Flav
op

irid
ol

Colc
em

id

dlg
;;p

ins pin
s

rod & colcemidWild type Flavopiridol dlg;;pins

M
yo

si
n

–193 s 88 s 193 s 246 s 290 s

–146 s 132 s 234 s 308 s 419 s

M
yo

si
n

Time 

d e
Wild type

sqh; ALD-RockCA::VhhGFP4

M
yo

si
n 

M
ts

M
yo

si
n 

M
ts

1.0

2.0

3.0

0.5

1.5

2.5

<20 20 30 40 50 7060 80 90 100 >100

Pearson correlation coefficient: 0.9356
P value <0.0001 (****)

>200

9

8

7

6

5

4

3

2

1

WT
Flavopiridol
dlg pins

pins Colcemid

10

f g

1

2

0

R
at

io
 a

pi
ca

l /
 b

as
al

 e
xp

an
si

on

A>B B>A

***
A

pi
ca

l /
 b

as
al

 m
yo

si
n 

in
te

ns
ity

 a
t 

an
ap

ha
se

 o
ns

et

0

0.5

1.5

1

2

3

2.5

****

h i
Wild type

sqh; ALD-RockCA
::VhhGFP4

Time 

A
pi

ca
l f

lo
w

on
se

t b
ef

or
e

ba
sa

l f
lo

w

B
as

al
 fl

ow
on

se
t 

de
la

ye
d

A
pi

ca
l f

lo
w

on
se

t =
 b

as
al

flo
w

 o
ns

et

sqh; ALD-RockCA::VhhGFP4

Wild type

Fig. 7 Myosin flows are instrumental in establishing sibling cell size asymmetry. a Schematic illustration of the model to be tested: if cleavage furrow
positioning and thus physical asymmetry depends on Myosin flows, then altering Myosin flow onset on the apical and/or basal cortex will misposition the
cleavage furrow. b Scatter plot showing basal Myosin clearing time in relation to apical Myosin relocalization in wild-type, neuroblasts exposed to
Flavopiridol or colcemid, dlg;;pins and pins mutants. c Scatter plot showing the correlation between Myosin clearing on the apical and basal cortex and the
asymmetry of the division in anaphase. A Pearson coefficient of “1” indicates a perfect correlation between Myosin clearing and furrow positioning. d
Representative image sequence and (e) kymograph showing a wild-type neuroblast (endogenous untagged Sqh still present) expressing Sqh::GFP (Myosin,
white; top row, green; bottom row) and Cherry::Jupiter (MTs; red; bottom row). f Representative image sequence and g kymograph of a sqh mutant
neuroblast, coexpressing Sqh::GFP and ALD-RockCA::VhhGFP4, a fusion between the single-chain GFP antibody (VhhGFP4), Inscuteable’s apical
localization domain (ALD) and Rho kinase’s kinase domain. h Kymographs were used to calculate apical/basal Myosin intensity ratios and (i) apical and
basal cortical expansions. The resulting ratios are represented as a scatter plot. Center values and error bars represent the mean and standard deviation (s.
d), respectively. Asterisks denote statistical significance, derived from unpaired t-tests: *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001. Each measured
cell (n) is represented with a dot in the scatter plots. For each experiment, the data were collected from at least 3 independent experiments. For each
independent experiment, at least 5 larvae were dissected. Time: seconds (s). Scale bar: 5 µm. Time scale bar (open white box) in (e, g): 58 s. n.s. not
significant

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01391-w

10 NATURE COMMUNICATIONS |8:  1383 |DOI: 10.1038/s41467-017-01391-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


minutes (Mean: 173.1 s;+/− 32.69; n= 13; Fig. 7b). Neuroblasts
depleted for intrinsic polarity such as pins single or, as shown
above, dlg;;pins double mutants displayed a reduced delay
between apical and basal Myosin clearing (Mean: 11 s;+/− 8.062;
n= 15; Fig. 1h, Fig. 7b and Supplementary Fig. 1b, c). Similarly,
the delay between apical and basal Myosin flow onset was
minimal in Flavopiridol treated neuroblasts (Mean: 16.36 s;+/−
19.12; n= 11; Fig. 7b and Supplementary Fig. 4e, f), mimicking
dlg;;pins mutant neuroblasts.

Myosin relocalization times also correlated well with cortical
expansion. Wild-type neuroblasts showed more apical than basal
cortical expansion. In colcemid-treated neuroblasts only basal

growth was reduced, also due to a retraction of the cortex. dlg;;
pins double mutants and Flavopiridol-treated cells showed
comparable cortical expansion (18; Supplementary Fig. 8a, b).

Next, we correlated Myosin relocalization timing with the
establishment of physical asymmetry. To this end, we measured
the distance from the cleavage furrow to the apical and basal
cortex, respectively to determine an asymmetry ratio and plotted
it against the individual clearing time delay. The measured
clearing times showed a good correlation with the resulting
asymmetry index; the larger the difference between apical and
basal clearing, the bigger the asymmetry index. For instance,
Myosin clearing times varied between individual wild-type cells
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cues. The chromosomal passenger and centralspindlin complexes are required to enrich for Myosin on the lateral cortex, initiating basal Myosin clearing.
Spindle positioning and geometry are key factors to localize the site of cleavage furrow formation, confining Myosin enrichment to the lateral cortex. See
text for details. Center values and error bars represent the mean and standard deviation (s.d), respectively. Asterisks denote statistical significance, derived
from unpaired t tests: *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****P≤ 0.0001. Each measured cell (n) is represented with a dot in the scatter plots. For each
experiment, the data were collected from at least 3 independent experiments. For each independent experiment, at least 5 larvae were dissected. Scale
bars: 5 µm. n.s. not significant
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and the resulting sibling cell size asymmetry ratio increased from
1.5–3 with increasing clearing time differences. dlg;;pins double
mutants showed an asymmetry index close to 1. Colcemid treated
rod mutant neuroblasts delayed basal Myosin clearing consider-
ably, resulting in an extreme asymmetry ratio. The calculated
correlation (Pearson) coefficient is close to 1, suggesting that
spatiotemporally regulated Myosin relocalization is a major
contributor for physical asymmetry (Fig. 7c).

To further test how Myosin relocalization dynamics influence
sibling cell size asymmetry, we modified the recently published
anti-GFP nanobody (called VhhGFP446 and Caussinus et al., in
preparation), by functionalizing it with the constitutively active
kinase domain from Drosophila Rho kinase45. We reasoned that
biasing Myosin activity to the apical cortex should invert sibling
cell size asymmetry, creating a small neuroblast and a large GMC.
To this end, we tethered this RockCA::VhhGFP4 with Inscute-
able’s apical localization domain (ALD;47, see also methods) and
expressed ALD-RockCA::VhhGFP4 in neuroblasts depleted for
endogenous sqh (Myosin’s regulatory subunit). Thus, the entire
pool of Sqh is tagged with GFP and becomes susceptible to
VhhGFP4 binding. In contrast to wild-type neuroblasts, showing
stereotypic apical Myosin clearing and subsequent apical expan-
sion, expressing ALD-RockCA::VhhGFP4 together with Sqh::GFP
in sqh mutant neuroblasts resulted in a failure to clear apical
Myosin and a predominant expansion of the basal side. This
inversion of physical asymmetry was predominantly observed in
older sqh mutant larvae expressing ALD-RockCA::VhhGFP4
together with Sqh::GFP, presumably due to maternal contribu-
tion. However, old wild-type or sqh mutant larvae expressing
Sqh::GFP never showed this physical inversion (Fig. 7d–i,
Supplementary Fig. 7a, b, and Supplementary Movie 9). Tethering
RockCA (ALD-RockCA:mCherry) to the apical neuroblast cortex
without the VhhGFP4 domain was not sufficient to increase
apical Myosin phosphorylation (Supplementary Fig. 7c). Expres-
sing ALD-RockCA::VhhGFP4 in either wild-type or sqh mutant
neuroblasts did not perturb neuroblast intrinsic polarity but
showed enrichment of phosphorylated Myosin on the apical
neuroblast cortex (Supplementary Fig. 7c, d). ALD-RockCA::
VhhGFP4 could retain Myosin on the apical neuroblast cortex by
either trapping Myosin apically, maintain or increase the activity
of apical Myosin, or preventing local Myosin clearing and apical
expansion due to a combination of both. Taken together, these
data strongly suggest that by perturbing Myosin clearing on the
apical cortex during anaphase, unequal cortical expansion and
thus the establishment of correct physical asymmetry is
compromised.

Spindle asymmetry and positioning refine furrow placement.
We noticed that Flavopiridol-treated and pins single mutant
neuroblasts had comparable Myosin clearing times to dlg;;pins.
Nevertheless, in contrast to dlg;;pins, the former two conditions
only partially reduced physical asymmetry (Fig. 7c and Supple-
mentary Fig. 8d), suggesting that in addition to spatiotemporally
regulated Myosin flow onset additional factors contribute to final
furrow positioning and sibling cell size asymmetry. A prime
suspect is spindle geometry since previous reports correlated
spindle asymmetry and positioning with sibling cell size asym-
metry48–50. We set out to analyze both spindle positioning and
spindle asymmetry by measuring the distance of the centrosomes
to the cortex (positioning) and the length of the apical and basal
spindle half at metaphase and telophase (asymmetry), respec-
tively. We found that compared to wild-type, Flavopiridol-treated
and dlg;;pins mutant neuroblasts show normally positioned
spindles in metaphase. However, metaphase neuroblasts lacking
Sds22 displayed spindles that were shifted significantly towards
the basal cortex (Fig. 8a, b and Supplementary Fig. 7e).

Interestingly, metaphase spindle asymmetry was normal in all
conditions with the exception of dlg;;pins mutant neuroblasts,
which displayed symmetric spindles (Fig. 8a, c). Although we
could not measure spindle asymmetry and positioning during
anaphase, we found that in telophase, spindles of wild-type, sds22
mutants and neuroblasts treated with Flavopiridol, were displaced
towards the basal cortex. Only dlg;;pins mutants contained cen-
tered telophase spindles (Fig. 8d, e). However, telophase asym-
metry was mostly affected in dlg;;pins and—although overall not
significant—also compromised in some Flavopiridol-treated or
sds22 deficient neuroblasts (Fig. 8d, f). Measuring the timing
between Myosin clearing at the apical and basal cortex in sds22
deficient neuroblasts did not show a correlation between Myosin
relocalization dynamics and sibling cell size asymmetry (Sup-
plementary Fig. 7f). Spindle geometry correlated well with the
shift in furrow positioning (Supplementary Fig. 8c). We conclude
that in addition to temporally regulated Myosin flow onset,
spindle positioning and spindle asymmetry are important con-
tributors to cleavage furrow positioning and final sibling cell size
asymmetry.

Discussion
We have used asymmetrically dividing Drosophila neuroblasts to
provide mechanistic insight into how sibling cell size asymmetry
can be established. Understanding the mechanisms underlying
the formation of physical asymmetry opens the door to targeted
sibling cell size manipulations so that its contribution to cell fate
and behavior can be systematically assessed3. Sibling cell size
asymmetry can be generated through biased cortical expansion,
determined through asymmetric Myosin localization; cortical
regions containing fewer Myosin filaments will be allowed to
expand whereas regions containing high levels of Myosin are
prevented to grow18, 13, 18. However, the spatiotemporal regula-
tion controlling asymmetric Myosin localization and its dynamics
remained elusive.

Here we have shown that two opposing cortical Myosin flows,
starting at different times and locations, are a major mechanism
to establish asymmetric Myosin distribution. For instance, shortly
after anaphase onset, Myosin starts to flow towards the basal
cortex, enabling the apical cortex to expand. With a delay of
about 1 minute, Myosin subsequently flows from the basal cortex
towards the apical pole. This spatiotemporally regulated flow
pattern ultimately regulates unequal cortical expansion, necessary
for the establishment of physical asymmetry. Our data show that
apical Myosin clearing and the delay between the apical and basal
Myosin flow onset is regulated through cell cycle and polarity
cues.

Cortical flow is triggered through Myosin contractility, pulling
Actin filaments and associated proteins towards the contractile
Myosin filaments40. For cortical flow to start, Myosin contractility
would need to be increased or inhibited locally51. Here we pro-
pose that Myosin flow onset on the basal cortex is induced
through a lateral enhancement of Myosin activity, regulated
through local delivery of the centralspindlin complex. This model
is supported with the following data: (1) the centralspindlin
complex component Tumbleweed is accumulating at the lateral
neuroblast cortex in a confined position prior to focused lateral
Myosin enrichment, which also precedes basal Myosin relocali-
zation. (2) Actomyosin intensified at the lateral neuroblast cortex
followed by an increase of activated Myosin. (3) Removal of the
mitotic spindle or knocking-down centralspindlin complex
components such as tum, pav, or its upstream regulator aurB20

perturbs basal Myosin clearing. (4) Premature activation of the
centralspindlin pathway leads to precocious accumulation of
Myosin in the cleavage furrow region, and induces a premature
onset of the apically directed Myosin flow.
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These results are consistent with a model, proposing that
localized activation of the small GTPase Rho1 through the cen-
tralspindlin complex results in local Actomyosin filament for-
mation and Myosin activation (Fig. 8g). Furthermore, our laser
cutting experiments clearly show that the mitotic spindle is not
required to bring Myosin to the cortex but to focus it on the
lateral cortex, corresponding to the furrow position. This result is
consistent with our earlier observation, showing that the cen-
tralspindlin component Pav is already localized at the neuroblast
cortex by metaphase (similar to Myosin)52. Thus, we conclude
that the mitotic neuroblast cortex is primed to bind Myosin
filaments already before anaphase but that spindle-dependent
cues build up a lateral Myosin gradient, specifically from early
anaphase onwards. It is important to note that Myosin flow onset
on the apical cortex is independent of both chromatin and spindle
cues (20,52and the data shown here), but regulated through
polarity-induced localization of Protein Kinase N (Pkn) and
Rock31. Furthermore, theoretical modeling predicted that a gra-
dient of Myosin activity from the poles to the equator is sufficient
to induce a cortical flow to the cell equator53. However, we
currently cannot exclude the existence of cues, modulating
Myosin activity on the apical or basal cortex to weaken its con-
tractility and thus enabling the apically or basally directed Myosin
flow.

Our results also imply that spindle geometry is an important
factor in determining the lateral position of the Myosin gradient,
providing an additional layer of regulation, which influences the
site of Actomyosin ring formation and subsequent cleavage fur-
row positioning. Our data are consistent with this notion,
showing that compromising either spindle positioning, spindle
asymmetry or both have an influence on the site of cleavage
furrow formation (Supplementary Fig. 8c) and subsequent phy-
sical asymmetry (Supplementary Fig. 8d, e).

Metazoan cells have developed different mechanisms to either
prevent or induce sibling cell size asymmetry33, 54, 55. In fly
neuroblasts, the spatiotemporal regulation of Myosin flow
dynamics seems to be necessary and sufficient to induce physical
asymmetry; retaining activated Myosin on the apical cortex is
causing neuroblasts to invert their physical asymmetry (this study
&31). Having identified mechanisms to establish physical asym-
metry, it will be interesting to test how they will affect cell
behavior and fate in fly and other metazoan cells.

Methods
Fly strains and genetics. All mutant chromosomes were balanced over FM7actin::
GFP, CyO actin::GFP or TM6B, Tb. The following mutant alleles and RNAi lines
were used: pinsP89 56, dlgm52 57, FRT82B sas4M 58, rodH4.8 32, Pav RNAi (v46137;
VDRC), Tum RNAi (BL28982; Bloomington; v106850; VDRC), AurB RNAi
(VDRC), Sds22 RNAi (IR GD11788)59, sds22PB1173 59, Pp1-87B RNAi (v35025;
VDRC), Pp1-87BBg3 (BL23696; Bloomington), Pp1-87BBg6 60, Df(3R)Exel6164
(removes Pp1-87B; Bloomington), SqhAX3 61.

Transgenes and fluorescent markers. worGal4, UAS-cherry::Jupiter, Sqh::GFP,
Histone2A::mRFP1 (Bloomington stock center), UAS-mCherry::CAAX (Bloo-
mington stock center), UAS-Pp1-87B-HA (Bloomington stock center),
UAS-Tum::Venus41. UAS-Ran-Q69L, UAS-Ran-T24N62. UAS-Gap43::mEos30. Sqh::
mCherry63. pUAST-attB-ALD-RockCA::VhhGFP4::HA, pUAST-attB-ALD-RockCA::
mCherry (this study).

Transgenes were expressed using the neuroblast-specific driver worGal464.
Zipper::mDendra2 MiMIC65 line: Mi02518 was crossed to phiC31 integrase

(expressed under the vasa promotor; Bloomington stock center) and the resulting
progeny were injected with the mDendra2 exchange cassette65. Injections were
performed by BestGene. Positive lines were initially screened for loss of yellow
body marker and tested for the expression of Zipper::mDendra2.

Generation of constructs. Sqh::mDendra2: The mDendra2 coding sequence was
PCR amplified and inserted into AscI and NotI restriction sites of attP-Sqh. attP-
Sqh was generated by removing EGFP with AscI and NotI. The construct was
injected into attP (VK00033 and VK00037).

pUAST-attB-TSmod-Vt: The TSmod-Vt45 fragment, consisting of mTFP1, the
spinder silk protein SSP, Venus and the F-Actin binding domain of Vinculin (Vt)
was PCR amplified from the VinTS cDNA obtained from addgene (Plasmid
#26019) and subcloned into pUAST-attB between EcoR1 (5′) and Kpn1 (3′) using
In-Fusion technology (Takara, Clontech). The construct was inserted at VK00033.

pUAST-attB-ALD-RockCA::VhhGFP4::HA: Inscuteable’s apical localization
domain (ALD47) was PCR amplified and inserted into AscI and MluI restriction
sites. Rock’s kinase domain and VhhGFP4 fused to HA were PCR amplified and
inserted into MluI and XbaI restriction sites using In-Fusion technology (Takara,
Clontech). The construct was inserted at VK00033 and VK00037, respectively
(Bestgene).

pUAST-attB-ALD-RockCA::mCherry: Inscuteable’s apical localization domain
(ALD47) was PCR amplified and inserted into AscI and MluI restriction sites. Rok’s
kinase domain and mCherry were PCR amplified and inserted into MluI and XbaI
restriction sites using In-Fusion technology (Takara, Clontech). The construct was
inserted at VK00033 and VK00037, respectively (Bestgene).

Antibodies. The following primary antibodies were used for this study: rat anti-α-
Tub (Serotec; 1:500; available from Bio-Rad; Cat#MCA77G), mouse anti-α-Tub
(DM1A, Sigma; 1:2500; Cat# T9026), rabbit anti-phospho-Histone 3 (Abcam;
1:1000; Cat# sc-56739), chicken anti-GFP (Abcam; 1:1000; Cat# ab13970), rabbit
anti-Ran (Abcam; 1:100; Cat# ab11693), rat anti-Miranda (1:400; gift from Chris
Doe), mouse anti-aPKCζ (Santa Cruz; 1:50; discontinued) and guinea pig anti-
Sqh1P (1:300)66. Secondary antibodies were from Molecular Probes and the
Jackson Immuno laboratory.

Immunostaining. Ninety-six hours larval brains were dissected in Schneider’s
insect medium (Sigma-Aldrich S0146) and fixed for 20 min in 4% paraformalde-
hyde in PEM (100 mM PIPES pH 6.9, 1 mM EGTA and 1 mM MgSO4). After
fixing, the brains were washed with PBSBT (1× PBS (pH7,4), 0.1% Triton-X-100
and 1% BSA) and then blocked with 1× PBSBT for 1 h. Primary antibody dilution
was prepared in 1X PBSBT and brains were incubated 48 h at 4 °C. Brains were
washed with 1× PBSBT four times for 30 min each and then incubated with sec-
ondary antibodies diluted in 1X PBSBT at 4 °C, overnight. The next day, brains
were washed with 1× PBST (1x PBS, 0.1% Triton-X-100) four times for 20 min
each and kept in Vectashield (Vector laboratories) mounting media at 4 °C.

Live imaging sample preparation. Imaging medium (Schneider’s insect medium
(Sigma-Aldrich S0146) mixed with 10% FBS (Sigma), 2% PenStrepNeo (Sigma),
0.02 mg/mL insulin (Sigma), 20mM L-glutamine (Sigma), 0.04 mg/mL L-
glutathione (Sigma) and 5 µg/mL 20-hydroxyecdysone (Sigma)) was warmed up to
room temperature before use.

Ninety-six hours after egg laying, larval brains were dissected in imaging
medium and transferred onto a gas-permeable membrane (YSI Life Sciences 5793)
fitted on a metallic slide. Brains were oriented with the brain lobes facing the
coverslip. Excess media was removed until the brain lobes were in contact with the
coverslip. The sample was sealed with Vaseline. A detailed protocol can be found
here67.

Primary neuroblast cultures. For photoconversion experiments, 96 h larval brains
were dissected in Chang & Gerhing solution (3.2 g/L NaCl, 3 g/L KCL, 0.69 g/L
CaCl2-2H2O, 3.7 g/L MgSO4-7H2O, 1.79 g/L tricine buffer pH 7, 3.6 g/L glucose,
17.1 g/L sucrose, 1 g/L BSA) at room temperature. Brains were then dissociated in
Chang & Gerhing solution supplemented in collagenase from Clostridium histo-
lyticum (Sigma) and papain from papaya latex (Sigma) at a final concentration of 1
mg/mL each, during 30 minutes at 30 °C. Brains were washed with imaging
medium (see above) and then dissociated in imaging medium by pipetting 20–30
times.

Imaging. Fixed samples were imaged using an inverted Leica TSC SPE confocal
microscope. For representative images, a 60×/1.40NA oil immersion objective was
used. For 4X scans a z-step size of 0.3 μm was used.

Live samples were imaged with an Andor revolution spinning disc confocal
system, consisting of a Yokogawa CSU-X1 spinning disk unit and two Andor
iXon3 DU-897-BV EMCCD cameras. A 60×/1.4NA oil immersion objective
mounted on a Nikon Eclipse Ti microscope was used. Live imaging voxels sizes are
0.22 × 0.22 × 0.5 µm (60x/1.4NA spinning disc).

Laser cutting experiments. For laser cutting experiments, Andor’s Micropoint
system, consisting of a pulsed nitrogen pumped tunable dye laser was used.
Ablation was performed using a power of 72%. Imaging was performed before and
after ablation using a 60× oil immersion lens (NA 1.4) that was also used to focus
the Micropoint laser.

Photoconversion. Ninety-six hours larval brains expressing Zipper::mDendra2
were used after their dissociation (see above). The photoconversion experiments
were performed on an Andor Revolution spinning disc system containing Andor’s
FRAPPA unit. Several regions of interests (ROIs) were manually chosen in the GFP
channel and Zipper::mDendra2 was irradiated with 405 nm on either the apical,

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01391-w ARTICLE

NATURE COMMUNICATIONS |8:  1383 |DOI: 10.1038/s41467-017-01391-w |www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


basal or lateral cortex just after anaphase onset. Before photoconversion, single Z
planes containing ROIs were scanned for ten time points with maximum speed.
Subsequently, ROIs were irradiated with 405 nm (10%; 50 repeats; 50 µs dwell
time). After photoconversion, the entire neuroblast was scanned with a z-step size
of 0.65 µm. Converted and unconverted mDendra2 emission were merged in
AndorIQ2 and converted into Imaris.

Fluorescence recovery after photobleaching (FRAP) experiments. The 488 nm
laser line was targeted to region of interests using Andor’s FRAPPA module.
Images were acquired with high temporal resolution (136ms) after bleaching.
Kymographs were generated from the bleached region in Fiji or ImageJ with the
Multi Kymograph plugin. Line thickness was set to 3 pixels and lines were drawn
on the neuroblast along the cortex (Fig. 2f, Supplementary Fig. 2e) or through the
neuroblast, covering both lateral neuroblast regions (Supplementary Fig. 2d). From
these kymographs, velocity was extracted by measuring the width (= distance) and
height (= time) of the recovery slope. With a pixel size (0.22 μm) and a time
resolution (~ 136 ms), the velocity here was calculated with the following formula:
Flow velocity (μm/s)=(width in pixel× 0.22)/(height×0.136)

Colcemid and Flavopiridol experiments. For colcemid and Flavopiridol experi-
ments, the following strains were used + ; worGal4, UAS-Cherry::Jupiter, Sqh::GFP;
+ + ; worGal4, UAS-Cherry::Jupiter, Sqh::GFP; rodH4.8 + ; His2A::mRFP1; rodH4.8

(this work)
Wild-type or rodH4.8 mutant neuroblasts were incubated with colcemid (Sigma)

in live imaging medium at a final concentration of 5 µg/mL, or with Flavopiridol
hydrochloride (Sigma) at a final concentration of 5 µM. Live imaging was started
without delay. Complete spindle depolymerization was seen ~ 30–60 min after
colcemid addition.

Image processing and calculations. Images were processed using Imaris × 64
7.5.2 and ImageJ. Andor IQ2 files were converted into Imaris files using Imaris File
Converter. Measurements of apical and basal Myosin intensity were obtained by
using the oblique slicer in Imaris oriented along the apico-basal polarity axis, with a
thickness of ~ 3.5 µm. The corresponding image sequences were exported as TIFF
files and opened with ImageJ to measure Myosin intensity along the apical and
basal cortex. Due to the cellular size which differs from one neuroblast to another,
the apical and basal cortical regions used for intensity measurement correspond to
¼ of the diameter of the cell in metaphase. Background corrections were performed
by measuring Myosin intensity in the media. Myosin flow velocity was obtained
using a custom-made Matlab code. Kymographs, made in ImageJ using the pluggin
“MultipleKymograph”, were used to analyze the distribution of Sqh and chro-
mosomes. Myosin intensity profiles were established in ImageJ by measuring Sqh::
GFP intensities along a line from the apical to the basal cortex (after background
correction). Cortical expansion was obtained by measuring the length between the
center of the cell in metaphase (used as spatial reference) and the apical/basal
cortex in metaphase (=A1) and anaphase (=A2). From these values, the ratio was
calculated (A2/A1 and B2/B1, respectively). For laser cutting experiments, Myosin
intensity was measured both at the cortex and in the cytoplasm before and after
cortical cuts were performed using a line on the entire cortex or a circle in the
cytoplasm.

Pictures were cropped in Photoshop and assembled in Illustrator.
Quantifications and graphical representations were generated in Microsoft Excel,
and Graphpad Prism.

To calculate Myosin intensity ratios (apical/basal), kymographs were generated
along the apical-basal polarity axis. On these kymographs, Myosin intensity was
measured during anaphase on the apical and basal cortex, respectively. The
resulting intensity values were averaged and used to calculate the apical/basal
Myosin average intensity ratio.

Curvature and furrow initiation analysis. To determine the curvature along the
cell cortex, a line was manually drawn in ImageJ from the apical to the basal cortex
on the mid-plane. Cortical curvature K can be determined via the following for-

mula: K ¼ f ′′ðxÞ
1þf ′2ðxÞð Þ3=2, where x and f(x) are the horizontal and vertical position of

the drawn cortex, respectively. The first and second derivatives (f ′ðxÞ andf ′′ðxÞ) of
the curve were calculated numerically using second order difference methods.
Custom-written Matlab codes were used to determine curvature values for all
points on the curve. To determine furrow initiation, we first determined the
average curvature value for the furrow site. Since curvature value at the furrow site
will change its sign (from positive to negative or vice versa) when the furrow starts
to ingress, the furrow site can be detected by determining the position of the cortex
with the highest sign change in the curvature value. Average furrow curvature
values were calculated from an average of five nearest points around the peak of the
sign change. Furrow initiation (T = 0) is defined as the first time point that the
average curvature value changes in sign value. For all time points that furrow
ingression was not yet observed, the furrow position at T= 0 was used to determine
average value at the furrow.

Furrow Myosin quantification. Cell mid-planes were first generated using the
Oblique Slicer tool in Imaris (Bitplane) and the entire image volume was then

resliced along the direction of this plane for all time points. Using ImageJ, an
average intensity projection was generated from three selected planes closest to the
mid-plane. This procedure was done for all acquired time points. To determine
cortical intensity signal for both Myosin and polymerized actin markers, a spline
curve was drawn along the cell cortex on the average intensity projection image and
the XY coordinates of this curve were exported to a text file. Custom made Matlab
codes were written to extract the exact XY coordinates of the drawn curve from the
text file. Intensity signal of the drawn curve was calculated from the image using an
average intensity of the three pixels, closest to the curve. Average furrow Myosin
was calculated in the same way as the average curvature described above.

FRET Imaging and quantifications. Live samples of cultured neuroblasts were
placed in a ibidi 8-well glass bottom 1 μ-slide and imaged on a 3 i spinning disk
confocal microscope equipped with a Photometrics Evolve 512 back-illuminated
EMCCD camera, using a × 63 1.4 numerical aperture oil-immersion objective. Both
donor (mTFP1) and acceptor/FRET (Venus) fluorophores were excited by a diode
laser with 440 nm wavelength at 40% power and 200 ms exposure time. Donor and
FRET signals were detected using standard CFP (482/35-25) and YFP (542/27-25)
emission filter set. The FRET index was determined using custom-written Matlab
code. First, a background subtraction was performed for both donor and FRET
detected signals using a background averaged noise obtained from 50 different
images acquired with the same imaging conditions. Then, the FRET index was
calculated by calculating the ratio between the FRET acceptor and FRET donor
intensity after subtracting background noise. A cutoff threshold (range 700–1100 a.
u.) was used for the donor intensity such that only pixels with intensity above the
cutoff are used for FRET index calculations. This cutoff threshold step was required
to eliminate artificially high FRET index pixels in the medium due to fluctuating
noises. The FRET index was determined for all slices in the z-stack at all acquired
time points. To determine average FRET index for the furrow site, a z-focal plane,
which best represents the furrow site was selected for every time point for the
analysis. The average FRET index around the furrow site was calculated by aver-
aging the FRET index along the cortex with 30 pixels long and 5 pixels thick
centered at the furrow site.

Measurements to determine Myosin and F-Actin intensity changes at the
lateral and basal cortex, respectively. For unbiased and accurate identification of
Myosin’s lateral enrichment and activity increase (FRET measurements), raw
curves were smoothened with the ‘loess’ method using a smoothing factor of 0.4 to
reduce local fluctuations. Local minima, closest to the left of the monotonically
rising smoothed curve (i.e., steepest ascending region in the curve) were selected
before the signal increased. Local minima and maxima were identified using
numerically calculated gradients of smoothed curves. To determine the onset of
basal Myosin intensity reduction, we detected the local maxima, closest to the left
of the steepest descending region in the smoothened curves. The same method was
applied to determine the onset of F-Actin enrichment in the prospective furrow
region and for basal F-Actin reduction.

Definition of statistical tests, sample number, sample collection, replicates.
Statistical significance was calculated using the unpaired samples t test. For each
experiment, the data were collected from at least 3 independent experiments. For
each independent experiment, at least 5 larvae were dissected.

Computer codes. Custom made Matlab codes used for data analysis are available
upon request.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its supplementary information files.
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