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Prior preferences beneficially influence social and
non-social learning
Tor Tarantola 1, Dharshan Kumaran2, Peter Dayan 3 & Benedetto De Martino 2

Our personal preferences affect a broad array of social behaviors. This includes the way

we learn the preferences of others, an ability that often relies on limited or ambiguous

information. Here we report an egocentric influence on this type of social learning that is

reflected in both performance and response times. Using computational models that combine

inter-trial learning and intra-trial choice, we find transient effects of participants’ preferences

on the learning process, through the influence of priors, and persistent effects on the choice

process. A second experiment shows that these effects generalize to non-social learning,

though participants in the social learning experiment appeared to additionally benefit by

using their knowledge about the popularity of certain preferences. We further find that the

domain-general egocentric influences we identify can yield performance advantages in

uncertain environments.
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Prior information can be useful when learning to navigate
new environments1–3. The same holds true for social
environments, which require us to learn and predict others’

preferences, often based on limited information4–7. The con-
sequences of poor predictions can be damaging—for example, to
interpersonal relationships, businesses forecasting market trends,
or governments attempting to resolve conflicts—so it is important
to start with as much information as possible. In such cases, a
useful starting point might be our own preferences—absent evi-
dence to the contrary, it is reasonable to assume that other people
prefer the same things that we do. Indeed, research in psychology
has demonstrated that people tend to project their own values,
traits, and preferences onto others4, 5, 8, 9 and use themselves as
priors when learning others’ preferences10, 11.

As we gather more information, we ought to update our
predictions. Nevertheless, previous work has shown that
egocentric influences tend to persist, even in the face of coun-
tervailing evidence10, 12, 13. This is particularly true when
obtaining that evidence requires effort14. Still unclear is whether
these influences can be overcome by enough evidence—that is,
whether they merely act as priors in a learning process, or
whether they persistently bias the intra-trial choice process. Also
unknown is whether these influences are exclusively social or
instead result from domain-general biases, and whether they help
or hurt people’s ability to make accurate predictions.

We investigated these questions by studying how participants
learned which foods another person preferred. We found
that participants’ performance was strongly influenced by their
own preferences (elicited beforehand), especially at the beginning
of learning. However, even after learning had plateaued,
participants continued to make more errors when the other
person’s preferences differed from their own. In a follow-up
version of the experiment, a different group of participants
performed exactly the same task, but were not told that the food
items to be learned were the preferences of another person.
This second, non-social experiment showed the influence of
participants’ preferences to be domain-general and potentially

applicable to reward learning more broadly. However, we also
identified a key distinction between the social and non-social
groups: participants in the social experiment appeared to use
some knowledge about the popularity of the snack items, which
improved their initial performance relative to the non-social
group.

We compared four different computational models in order to
isolate the relative influences of participants’ preferences on the
learning and choice processes. Following recent work15, these
models fed values learned over several trials into a drift diffusion
model (DDM)16–18, which describes the sequential sampling of
noisy evidence within each trial. This allowed us to use both
choice and response time data to evaluate whether preferences
influenced inter-trial learning, the intra-trial choice process, or
both. The most predictive model showed that both priors and
a priori choice biases were influenced by participants’ preferences.

Finally, we conducted a series of simulations to quantify how
these influences affect expected performance. We compared the
average performance of artificial actors who were influenced by
their own preferences to neutral actors who were not. We found
that the influences we observed in our experimental data—on
both priors and choices—resulted in consistently higher
performance on average, suggesting that they may actually be
advantageous.

Results
Behavior. Hungry participants were first asked to express their
own preferences for food snacks using both a bidding procedure
and a two-alternative forced choice task. They then performed a
learning task in which they were instructed to learn the
snack choices made by a randomly assigned pilot participant
(their ‘partner’) between the same pairs of food items. They were
told that, after making a response, a yellow feedback box would
indicate the correct answer with 80% probability or the incorrect
answer with 20% probability (Fig. 1). Participants were paid an
additional £0.01 for every correct response.
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Fig. 1 Learning task. Participants were asked to indicate which choice they believed their partner made. After making a response, a yellow feedback box
indicated the correct answer with 80% probability. Participants saw 20 different pairs, interleaved, 30 times each for a total of 600 trials
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On average, participants performed worse when learning their
partners’ preferences that differed from their own compared with
preferences that they shared (Fig. 2a, top left). A mixed-effects
logistic regression analysis showed that preference congruence—
defined as the difference in the participant’s bid (elicited
beforehand) for the correct versus incorrect item (Δv)—had a

significantly positive effect on performance (n= 18,600 observa-
tions across 31 participants; coefficient (S.E.): 0.56 (0.04),
z= 13.9, P< 10−14 Bonferroni corrected for multiple compar-
isons; Supplementary Table 1). We re-ran this analysis separately
for the first, second, and last 10 trials of each item pair, and Δv
continued to have a positive effect on performance in each case
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(each n= 6,200 observations; coefficients (S.E.): 0.42 (0.08) to
0.56 (0.05), each z> 5.1, each P< 10−4 corrected; Supplementary
Table 1). Notably, in the last 10 trials, there was no longer an
effect of trial number on performance (coefficient (S.E.): 0.02
(0.02), z= 1.0, P= 0.32; Supplementary Table 1), although the
effect of preference congruence persisted.

Participants were also faster making responses that matched
their own preferences compared with responses that did not
(Fig. 2a, bottom left). Response times were negatively predicted by
the difference between the participant’s bid for the item matching
her response and her bid for its alternative (mixed-effects linear
regression model predicting z-scored response times; n= 18,596
observations across 31 participants; coefficient (S.E.): −0.12 (0.01),
t= −12.3; χ2-test of log-likelihood improvement from including
the variable; χ2(1)= 151.0, P< 10−14 corrected; Supplementary
Table 2). This was also true for the first (n= 6,199), middle
(n= 6,198), and last 10 trials (n= 6,199) of each item pair
when analyzed separately with the same response time model
(coefficients (S.E.): −0.09 (0.01) to −0.21 (0.02), each t< −7.2; each
χ2(1)> 51.1, each P< 10−10 corrected; Supplementary Table 2).

We also ran these performance and response time models
using participants’ own choices between the items (rather than
the differences in their bids for each item, Δv) as a measure of
preference congruence. These analyses yielded similar results for
both performance (coefficients (S.E.): 0.36 (0.06) to 0.56 (0.04),
each z> 6.2, each P< 10−7 corrected; Supplementary Table 3)
and response times (coefficients (S.E.): −0.06 (0.01) to −0.15
(0.02), each t< −5.3; each χ2(1)> 28.0, each P< 10−5 corrected;
Supplementary Table 4). Our task pseudorandomized both the
number of trials between subsequent presentations of the same
item pairs and the accuracy of the feedback presented on any
given trial (see Methods). Nevertheless, to rule out potential
confounds, we re-ran each of these regression models, controlling
for these factors, on all but the first trials for each item pair.
Specifically, we added as regressors (1) the accuracy of the
previous feedback presented for the item pair and (2) the number
of trials between the current and previous presentation of the
item pair. These models continued to show significant positive
effects of Δv and participants’ choices on performance (each
z> 5.1, each P< 10−4 corrected; Supplementary Tables 5 and 7)
and significant negative effects on response times (each t< −5.4;
each χ2(1)> 28.8, each P< 10−5 corrected; Supplementary
Tables 6 and 8). We also ran separate regression models to
ensure that neither of these factors was predicted by Δv (logistic
model regressing previous feedback accuracy on Δv; n= 17,980
observations across 31 participants; coefficient (S.E.): 0.01 (0.03),
z= 0.3, P= 0.73; linear model regressing gap between pair
presentations on Δv; n= 17,980; coefficient (S.E.): 0.06 (0.17),
t= 0.4, P= 0.71; Supplementary Table 17).

Social versus non-social framing. To determine whether the
effect we observed was specific to the social nature of the task, we

ran a second, non-social experiment in which participants per-
formed the same task but received different instructions. In this
second experiment, a different group of participants was asked to
learn the correct item in each of the same 20 pairs of snacks.
Unlike in the social experiment, these participants were not
informed that the items they were learning were choices made by
another person (see Supplementary Methods for instructions).
Other than the difference in instructions, the two tasks were the
same. As in the first, social experiment, participants in the second,
non-social experiment were actually learning choices made by a
randomly chosen pilot participant. Unlike in the social experi-
ment, however, they were not told that they were learning
another person’s choices, but merely a set of correct answers.

Participants in the non-social experiment exhibited similar
effects of preference congruence (Fig. 2b). As in the social
experiment, Δv had a significant positive effect on performance
(mixed-effects logistic regression; n= 18,000 observations across
30 participants; coefficient (S.E.): 0.44 (0.03), z= 13.1, P< 10−14

corrected; Supplementary Table 9) and a significant negative
effect on response times (mixed-effects linear regression model
predicting z-scored response times; n= 17,999 observations
across 30 participants; coefficient (S.E.): −0.08 (0.01), t= −8.7;
χ2-test of log-likelihood improvement from including the
variable; χ2(1)= 74.6, P< 10−14 corrected; Supplementary
Table 10). As in the social experiment, these effects were still
significant (each P< 0.02 corrected) when substituting choices for
Δv (Supplementary Tables 11, 12, 15, and 16), when controlling
for previous feedback accuracy and trials since last pair
presentation (Supplementary Tables 13–16), and when analyzing
the first, second, and last 10 trials separately (Supplementary
Tables 9–16).

However, we did note an important difference between
the social and non-social groups: participants in the social
group performed significantly better on the first trial for each
item pair, before any feedback had been presented, compared to
participants in the non-social group (mixed-effects logistic
regression predicting first-trial performance, regressing on Δv
and group (social/non-social); n= 1,220 observations across
61 participants; coefficient (S.E.) of social group variable: 0.38
(0.13), z= 2.9, P= 0.003; Supplementary Table 18). When
controlling for Δv, participants in the non-social group
performed no better than chance (coefficient (S.E.) of intercept:
−0.001 (0.09), z= −0.01, P= 0.99; Supplementary Table 18). This
difference was not due to different effects of Δv on first-trial
performance, since this effect did not differ significantly
between groups when an interaction term was added to the
model (coefficient (S.E.) of Δv × group interaction: 0.17 (0.23),
z= 0.8, P= 0.45; Supplementary Table 18). Rather, we hypothe-
sized that this difference could be due to some knowledge that
participants in the social group used about the idiosyncrasies
of their own preferences relative to the general population,
allowing them to adjust their responses to match the latter rather
than the former.

Fig. 2 Observed and predicted performance and response times. a In the social group (n= 31), participants made more errors on trials in which their
preferences differed from that of their partner (orange, n= 6,660 observations) compared with pairs in which they shared their partner’s preference (green,
n= 10,830 observations). This difference was especially pronounced early in the task but persisted over the course of learning. They were also faster
making responses that matched their own preference (green, n= 10,962 observations) compared with responses that did not (orange, n= 6,524
observations). b In the non-social group (n= 30), participants exhibited similar effects of preference congruence on performance (congruent, green,
n= 9,510 observations; incongruent, orange, n= 7,470 observations) and response times (congruent, green, n= 9,868 observations; incongruent, orange,
n= 7,111 observations), but performed significantly worse on first trials compared to participants in the social group. (See main text for statistical tests.)
Model predictions for both groups are from the dual influence model with item popularity. For performance, preference congruence was indexed by the
difference in the participant’s bid for the correct item minus her bid for the incorrect item (Δv). For response times, Δv was the participant’s bid for the item
matching her response minus her bid for its alternative. Performance is averaged across participants, and response times are averaged across trials and
participants. Distributions are kernel density smoothed
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To test this hypothesis, we regressed first-trial performance on
both Δv and item popularity. We indexed item popularity using the
percentage of other participants in both experiments who bid more
for an item compared to its alternative (Supplementary Table 19).

Note that the level of agreement varied among item pairs: 90% of
participants bid more for the Twix bar than for the Polo Fruits
candies, but participants were about evenly split between the
Bounty bar and sweetcorn; the mean level of agreement was 69.8%.
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Fig. 3 Performance on first trials for each item pair, separated by preference congruence and item popularity. a In the social experiment (n= 31),
participants performed significantly better on first trials when they shared their partner’s preference (green, n= 361 observations) than when they did
not (orange, n= 222 observations). They also performed better when the correct answer was relatively more popular (n= 372 observations) than when
it was relatively less popular (n= 223 observations). b The first-trial performance of participants in the non-social experiment, while better for shared
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observations; less popular, n=211 observations; see main text for statistical tests.) ‘More popular’ items are those preferred by more than 50% of
participants in both experiments; ‘less popular’ items were preferred by fewer than 50%. Error bars represent bootstrapped standard errors (ranging
between 0.03 and 0.08) clustered by participant
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Including item popularity significantly improved a logistic
model of first-trial performance in the social group (mixed-effects
logistic model regressing on Δv and item popularity; n= 620
observations across 31 participants; χ2-test of log-likelihood
improvement from including item popularity; χ2(1)= 38.3,
P< 10−8 corrected; Supplementary Table 18) and, to a lesser
extent, in the non-social group (n= 600 observations across 30
participants; χ2(1)= 8.1, P< 0.01 corrected; Supplementary
Table 18). This effect was significantly greater for the social
group than the non-social group (χ2-test of log-likelihood
improvement from including group × item popularity interaction
in a combined model; n= 1,220 observations across 61
participants; χ2(1)= 5.7, P= 0.017; Supplementary Table 18;
illustrated in Fig. 3 and Supplementary Fig. 1).

We also noted that responses for the first trials were
significantly faster in the non-social group than in the social
group (mixed-effects linear model regressing on Δv and group
(social/non-social); n= 1220 observations across 61 participants;
coefficient (S.E.) of social group: 0.65 (0.15), t= 4.4; χ2-test of
log-likelihood improvement from including group; χ2(1)= 17.6,
P< 10−4 corrected; Supplementary Table 20), but were not
significantly different for other trials (n= 35,375 observations
across 61 participants; coefficient (S.E.): −0.02 (0.01), t= −1.4;
χ2(1)= 2.1, P= 0.15; Supplementary Table 20). This suggests that,
absent other information, participants in the social group may
have been more deliberate in their first responses than

participants in the non-social group, possibly from reasoning
about their partners’ likely preferences as potentially distinct from
their own.

Computational models. To test how the effects we observed arise
algorithmically, we constructed a series of computational models
that combine two levels of information processing: the inter-trial
learning process; and the intra-trial choice process, which
converts learned values into responses during noisy evidence
accumulation (Fig. 4). At the inter-trial level, we characterized
beliefs as being those of an ideal Bayesian observer that infers the
probability of an option being correct given the cumulative
feedback observed, having been told the probability of the
feedback on each trial being correct (see Methods). We also tested
versions of our models using Rescorla-Wagner-type learning
rules, which achieved comparable results (Supplementary Fig. 2).

We modeled the intra-trial choice process using the DDM, which
describes the noisy accumulation of evidence leading up to a single
response. The DDM imagines a single decision particle drifting
toward one of two response thresholds at an average rate
proportional to the relative strength of evidence for each response.
When the particle reaches a threshold, the participant makes the
associated response. The trajectory of this particle is subject to
Gaussian white noise, which leads to errors and variation in
response times. As the strength of evidence increases—for example,
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Fig. 5 Graphical schematic representation of the dual influence model with item popularity. Unshaded circular nodes represent unobserved latent
parameters that were estimated in the model. Diamond nodes represent variables whose values are fully determined by other nodes, and shaded nodes
represent observed data. Except for non-decision time, latent parameters were estimated hierarchically, which assumed that each participant’s latent
parameter value was the product of a group-level distribution with mean μ and standard deviation σ. βρ is the influence of item popularity on the prior; βΔv is
the influence of preference on the prior; ω is the weighting term for translating learned values into a drift rate; ρ is the relative popularity of the item; Δv is
the participant’s relative preference for the item; κ is the influence of preference on choice bias; and s is the non-decision time
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over the course of learning—the effect of this noise relative to the
evidence decreases, leading to fewer errors and faster responses.
A key advantage of the DDM is that it allows us to model both
choices and response times at the level of a single trial.

To locate the source of the behavioral influence of participants’
preferences, we tested four alternative models: (1) an influenced
prior model, in which the drift process has a neutral starting
point, but the prior associated with the Bayesian beliefs (which
influences the drift rate—see Fig. 4) is a softmax function of the
participant’s relative preference for the correct versus incorrect
item, Δv, with inverse temperature βΔv. We define the prior belief
at trial n= 1 for an item pair, before any evidence has been
received, as

P Að Þn¼1 ¼
1

1þ e�βΔvΔv
ð1Þ

where A is the correct item. These probabilities are then updated
with additional feedback and influence the drift rate for each trial.

(2) An influenced choice model in which the priors are neutral
but the DDM’s starting point is biased. We define this bias as the
portion, z, of the distance between the lower and upper
thresholds, modeled as a softmax function of Δv with inverse
temperature κ:

z ¼ 1
1þ e�κΔv ð2Þ

This model assumes that participants are optimal and neutral in
their learning, but are biased in how they convert that learning
into a response during intra-trial evidence accumulation.

(3) A dual influence model, in which both priors and choices
are influenced by the participant’s preferences.

(4) We compared these three models to a fourth, neutral
model, in which neither the prior nor the choice bias is influenced
by the participant’s preferences.

For each of these models, the drift rate, d, at a particular item
pair’s trial, n, is specified as the difference between the
probabilities of each item being correct given the feedback data
accumulated for that item pair up to that point:

dn ¼ ω P A datanjð Þ � P B datanjð Þð Þ ð3Þ

A is the correct item, B is the incorrect item and ω is a weighting
term that translates probabilities into drift rates.

We fitted these models to both choices and response times
using fully Bayesian parameter estimation19, 20, which returns the
most likely parameter estimates as well as the uncertainty around
those estimates. All models were hierarchical (see Methods; Fig. 5).
We then used leave-one-out cross-validation21, 22 to determine
which model had the best estimated predictive accuracy, measured
by its expected log pointwise predictive density (ELPD) for a new
dataset (see Methods). This out-of-sample validation method
naturally accounts for overfitting and includes a measure of
uncertainty, as indicated by the S.E. of the ELPD. For both social
and non-social groups, we found that the dual influence model
had the best predictive accuracy of the four models (social/non-
social: ELPD=−8,077.8/−11,141.8, S.E.=240.0/195.9; Fig. 6a),
significantly outperforming the second-best, influenced choice
model (ELPD difference= 82.1/117.2, S.E.= 19.4/20.4).

To model the effect of item popularity that we identified in the
behavioral analysis, we incorporated an index of the relative
popularity of the items (ρ) into the prior of the dual influence
model, weighted by inverse temperature βρ, to test whether this
further improved the model’s predictive accuracy for either
the social or non-social contexts. We defined ρ as the ratio
of other participants who bid more for the correct item minus
0.5. (A ρ of 0.25, for example, means that 75% of other
participants preferred the correct item, while a ρ of −0.25 means

that 25% of other participants preferred it; see Supplementary
Table 19 for item pairs and their popularity.)

P Að Þn¼1 ¼
1

1þ e� βΔvΔvþβρρð Þ ð4Þ

For the social group, this factor allows participants to incorporate
their knowledge about the popularity of the different items into
their priors. This should have no effect on the prior for a
participant in the non-social group, who was unaware that the
items being learned reflected the preferences of another person,
and therefore would have no reason to consider their relative
popularity.

Consistent with this hypothesis, the inclusion of item
popularity significantly improved the predictive accuracy of the
dual influence model for the social group (ELPD difference=
59.6, S.E.= 15.4), but not for the non-social group (ELPD
difference= 17.5, S.E.= 10.8; Fig. 6a). For both groups, this
model showed positive effects of preference (Δv) on both the
DDM starting point and the priors for each item, as well as a
positive effect of item popularity (ρ) on the priors for the social
group (Fig. 6b; see Supplementary Figs 3 and 4 for additional
parameter estimates).

The dual influence model with item popularity provided good
descriptions of response time distributions, including the
differences we observed between responses that matched and
did not match participants’ own preferences, for both social and
non-social groups (Fig. 2, right panels). The model’s predicted
response time quartiles were all within 0.07 s of the actual data
(Supplementary Table 21). The model also provided good
descriptions of performance differences over the course of
learning. We compared the mean model prediction to the actual
ratio of correct responses for each item pair trial number.
The mean difference between the prediction and the data was
0.01 (S.E.M.= 0.004), or one percentage point, for the social
group, and 0.015 (S.E.M.= 0.004) for the non-social group.
However, the model provides somewhat weaker fits for the first
trials in each item pair (Supplementary Table 22), as the data
seem to show an even greater effect of preference congruence at
the beginning of learning than our model predicts. It is possible
that the amount of noise in the choice process increases over
time, perhaps due to fatigue or memory decay, leading our model
to overestimate the amount of noise in earlier trials.

Effects on performance. We next asked whether this influence of
preference might confer a performance advantage over a hypo-
thetical actor who is uninfluenced by her own preferences. To test
this, we performed a series of simulations across a range of
different values for the influence of preference on choices (κ) and
priors (βΔv). These parameter values ranged from 0 to 8 times the
actual group means recovered from the dual influence model
fitted to the non-social group. We centered our simulations on
the non-social group’s parameter values in order to evaluate the
efficiency of behavior in a more domain-general context, though
the values themselves were very similar to those of the social
group (Supplementary Figs 3 and 4). Using the preference data
collected during both social and non-social experiments (n= 61),
we simulated each participant learning each other participant’s
preferences 1000 times (to take account of the probabilistic
feedback), totaling 3,660,000 simulated experimental sessions
for each combination of parameter values. We then compared
the mean expected performance of each simulation against that
of a Bayesian learner with a neutral prior and unbiased choice
process.

Importantly, each simulation reflects the stochastic dynamics
of the drift process by including an equal degree of noise in how
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evidence is converted into responses, resulting in a predictable
number of errors. While an optimal strategy would determinis-
tically choose the option with greater evidence, no matter how
scant, our simulations took the more realistic approach of
assuming that noise from internal and external sources will tend
to pollute this process.

On average, even without the benefit of knowledge about the
items’ relative popularity, the combination of an influenced prior
and an influenced choice process performed the best overall. The
best-performing dual influence strategy outperformed the neutral
learner by a mean of 0.71 percentage points (Fig. 7a). By
comparison, the best-performing influenced prior strategy
achieved a mean advantage of 0.46 percentage points, and the
best influenced choice strategy yielded a mean advantage of 0.38

percentage points. The dual influence strategy using the
parameters recovered from our data outperformed the neutral
learner by a mean of 0.69 percentage points. The best influenced
prior strategy conferred an advantage chiefly at the beginning of
learning, outperforming the neutral learner by 7.2 percentage
points on the first trial. However, this advantage virtually
disappeared once learning plateaued. On the other hand, the
influenced choice strategy conferred a comparatively smaller
advantage at the beginning of learning—1.2 percentage points on
the first trial—but its advantage over the neutral actor persisted
throughout the task, leveling off at 0.2 percentage points. This
persistent advantage can be explained by the fact that the lapses
(the cause of errors due to simulated noise in the choice process)
were random in the neutral actor but biased toward the preferred
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item in the influenced choice strategy. The dual influence strategy
combined the advantages of both the influenced prior and
influenced choice strategies and resulted in the greatest overall
performance. We also found that this performance advantage was
greater in simulations where we decreased the reliability of the
feedback, hence delaying the influence of the evidence relative to
other factors (Supplementary Fig. 5). When the probability of
correct feedback was 0.7, the dual influence strategy using
parameters recovered from our data yielded a mean advantage of
1.1 percentage points. This advantage increased to 1.8 percentage
points when feedback reliability was 0.6. Because the balance of

these influences depends on the amount of evidence presented,
the relative performance of different strategies would change
depending on the number of trials.

The advantage we observed in our simulations resulted chiefly
from the fact that participants’ own preferences were, on average,
predictive of their partners’ preferences. Put another way, Δv
correlates strongly with the ratio of other participants who prefer
the correct item (Pearson’s r= 0.48, P< 10−69). It is possible,
therefore, that being influenced by one’s own preferences—or,
more generally, by experience of a stimulus’s value in a previous
context—might be maladaptive where those values do not
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transfer across contexts. To test this, we ran a second series of
simulations (Fig. 7b) in which preference data were randomly
generated, causing participants’ preferences not to be predictive
of those of their partners. In this case, being influenced by one’s
own preferences conferred a performance disadvantage compared
to a neutral actor, although, for the parameter values we observed
in our data, this disadvantage happened to be smaller than the
advantage gained when the actual preference data were used.

In the natural world, there is some uncertainty about whether
previously learned stimulus values are applicable in novel
contexts. An efficient strategy would seek to maximize expected
rewards by accounting for this uncertainty. We calculated these
expected rewards for a range of uncertainty levels:

E ¼ p randomð Þ�Vrandom þ 1� p randomð Þð Þ�Vpredictive ð5Þ

where E is the expected value of a strategy, p(random) is the
probability that rewards are random—that is, unpredicted by a
stimulus’s prior value—and V is the expected value of the strategy
in each context. We found that the effect of preference on
participants’ actual behavior was remarkably efficient for most
values of p(random) below 0.5 (Fig. 8). In fact, of the parameter
combinations we simulated, participants’ behavior yielded the
highest expected percentage point advantage (between 0.30 and
0.64) for values of p(random) between 0.05 and 0.37.

Discussion
In this study, we offer a computational account of how people’s
prior preferences influence both social and non-social learning:
by affecting priors in the learning process, and by persistently
biasing the choice process, which converts learned values into
responses. Recent neurocomputational accounts have similarly
begun to illuminate the interactions between our own preferences

and those of others23–28, showing that, in some cases, they may be
represented by the same neural populations25–27. This previous
work has generally explored these dynamics during social
conformity, in which participants’ subjective valuations are influ-
enced by others’ opinions25, 26, 28–37 in a process that resembles
Bayesian inference28, 37. Our study examines the
converse relationship, in which our prior preferences shape our
expectations of what others prefer—an effect often referred to in
the psychological literature as social projection4. Previous research
on social projection has found that people exhibit an egocentric
bias, believing that others share their opinions, traits and pre-
ferences more than they actually do4, 6, 8, 9, 14, 38. People have also
been shown to use themselves as priors when learning about others
—an effect that can dissipate with additional evidence10, 11. Our
dual influence model describes this effect as the product of two
influences—on both priors and choices—each with qualitatively
different implications.

In Bayesian terms, a biased prior describes an informed
expectation in the absence of evidence1–3. Our participants
expressed priors about each correct answer that were strongly
influenced by their own preferences. As they received probabil-
istic feedback indicating the correct answer, participants updated
their priors to improve their accuracy. In addition to their own
preferences, participants in the social group—who knew they
were learning the preferences of another person—appeared also
to incorporate some knowledge about the items’ popularity into
their priors. This is consistent with previous work suggesting that
people may exhibit less social projection when they recognize
that their own preferences are atypical4, 6, 7. Compared to the
non-social group, participants in the social experiment also
performed significantly better, and more slowly, on first trials.
This suggests that they may have responded more deliberately
before any feedback had been presented, perhaps reasoning about

0.21 × 22

0.21 × 23

0.21 × 2

0.21

0.21 × 2−2

0.21 × 2−1

0

0.21 × 22

0.21 × 23

0.21 × 2

0.21

0.21 × 2−2

0.21 × 2−1

0

p(random) = 0.1 p(random) = 0.3

0 0.98 × 2 −2 

0.98 × 2 2

0.98 × 2 3

0.98 × 2 −1

0.98
0.98 × 2

0 0.98 × 2 −2 

0.98 × 2 2

0.98 × 2 3

0.98 × 2 −1

0.98
0.98 × 2

p(random) = 0.5 p(random) = 0.9

–0.8

–0.4

0.0

0.4

0.8

%
 point advantage (expected)

Prior (�Δ�)

C
ho

ic
e 

(�
)

Fig. 8 Expected performance advantages for different probabilities of random preference data. When there is a less than certain probability that the data
are random—and a non-zero probability that the data are correlated to the actual degree observed in the data—the expected performance advantage is
nevertheless maximized by a dual influence strategy (parameter combinations yielding the highest performance are highlighted in black, the observed
parameter combination in red). Of the parameter combinations we simulated, participants exhibited behavior in the highest expected performance range
for values of p(random) between 0.05 and 0.37

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00826-8

10 NATURE COMMUNICATIONS |8:  817 |DOI: 10.1038/s41467-017-00826-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


the relative popularity of different items—a consideration that
would not have been useful in the non-social experiment.
Nevertheless, participants in both social and non-social groups
had priors that were similarly influenced by their own
preferences, suggesting that these biases may result from a
domain-general process by which learning is guided by prior
experience of a stimulus’s value in other contexts.

The influence we identified on the prior somewhat resembles a
Pavlovian bias, which can develop when a stimulus previously
associated with a reward elicits an automatic response during
instrumental learning. Importantly, this bias can emerge despite
the response itself having never been reinforced39. While they can
be maladaptive in certain circumstances, Pavlovian biases can
also prove advantageous in environments where the value of a
stimulus is relatively stable across contexts (cf. ref. 40, 41). For
example, a foraging animal may learn to associate a certain
stimulus—such as a unique birdsong—with the presence of
berries. If the animal heard this birdsong every time it encoun-
tered a berry patch, it may be a reliable cue for the presence of
food. Therefore, it would behoove the animal to approach areas
from which the birdsong emanates, even though approaching the
birdsong itself was never directly reinforced. Similarly, in our
learning task, selecting a snack stimulus—an approach behavior
—was partly elicited by that snack’s a priori value to the
participant.

We also observed a degree of behavioral variability in partici-
pants’ responding, meaning that they continued to make some
errors even after learning had plateaued. This type of variability is
often attributed to internal noise in neural processes42, which is
accounted for in the DDM by assuming stochasticity in how
external evidence translates into the decision particle’s trajectory
toward a threshold. Critically, in identifying a bias in the DDM’s
starting point, we found that the effect of this noise was biased in
favor of the participant’s preferred item. (See Methods for a more
detailed discussion of the DDM’s parameters and their effects on
behavior.)

Both learning and choice influences proved to be advantageous.
But why might relying on prior preferences confer an advantage?
Psychological theories have proposed that social projection might
be a key part of a rational induction process, by which one’s own
preferences act as a reliable indicator of what others are likely to
prefer. Because the average person is more likely to hold a
majority than a minority opinion, an egocentric bias can result in
better average performance4, 6. Our simulations examined the
extent to which different types and levels of preference influence
would lead to performance advantages and how these advantages
might change as additional evidence accumulates. We found that
simulated participants whose priors and choice biases were both
influenced by their own preferences would, on average, perform
better in our task than an actor with a neutral prior and an
unbiased choice process. While the relative advantages in our task
were small, such a strategy could be adaptive when applied to the
many choices faced by an animal over its lifetime. The advantages
of both influences derived from the fact that participants’ own
preferences were, on average, predictive of the correct answer. In
the case of the prior, the participants’ preferences take the place of
evidence until enough feedback has accumulated. In the case of
the choice bias, however, this influence persists even in the face of
substantial evidence to the contrary. This bias might still confer
an advantage because of the noise inherent in the choice process,
which causes behavioral variability. For the neutral actor, this
variability favors neither the correct nor the incorrect answer.
For the actor with a biased DDM starting point, however,
this variability effectively favors the participant’s preferred
item. Because the participant’s preferred item is, on average,
more likely to be correct than incorrect, this bias improves

overall performance by reducing the number of errors due to
internal noise.

Of course, there are some cases in which stimulus values may
not transfer across contexts. While a birdsong may predict the
presence of berries in the forest, approaching the birdsong on the
prairie may have no instrumental value. In such a case,
approaching a non-predictive stimulus may cost an animal a
better foraging opportunity. When taking these potential costs
into account, the values of our participants’ prior and choice
influence parameters were remarkably efficient compared to other
possible value combinations.

These results point to several avenues for further research.
While our paradigm was designed to be somewhat naturalistic—
learning others’ preferences often requires remembering discrete
choices—learning about others can also involve added layers of
complexity. For example, certain types of preference information
might be useful for inferring more general features of others’
personalities43, which can in turn help us predict how they might
behave in other contexts. More complex and hierarchical versions
of our model might help to illuminate how one’s own preferences
—or, more broadly, one’s self-image—influence these types of
social inference. Another open question is whether the biases we
observe in both social and non-social groups are sensitive to the
level of noise in the environment. Our task used a stable level of
stochasticity—correct answers being indicated with a probability
of 0.8—while many natural reward environments contain
volatility, meaning that the underlying value of a stimulus
changes over time44–46. In these cases, the extent to which a priori
stimulus values influence responding—and the advantage this
strategy confers—might be different. Lastly, future work might
also investigate whether the order and speed at which different
stimulus associations are processed affect behavior. In a recent
study, Sullivan et al.47 found that the relative speed at which
participants processed the taste versus health properties of food
stimuli affected how they chose between junk food and healthful
snacks. In a similar vein, participants in our experiments may
have differed in how quickly they accessed a priori stimulus
values (how much they liked the pictured food) relative to their
learned values (how likely it is to be the correct answer based on
the feedback). Further behavioral and neuroimaging research
could help specify in greater detail the temporal dynamics of the
decision process.

In conclusion, our study offers a detailed computational
account of how we infer and learn others’ preferences in the face
of uncertainty, showing how our own preferences influence this
process at the levels of both learning and choice. We build on
prior work showing that humans use their own preferences as
priors when learning those of others10, 11, offering three new
contributions: (1) we show how these egocentric influences
affect both learning and choice processes, with the latter
resulting in a bias that persists in the face of countervailing
evidence; (2) we show that these influences are domain-general
features of learning, but that priors in social preference learning
are specifically sensitive to knowledge about preference
prevalence; and (3) we demonstrate that these domain-general,
egocentric influences tend to improve average performance on
our task. As such, rather than being maladaptive, these influences
on learning and choice may help facilitate both social interactions
and reward learning more generally.

Methods
Participants. Thirty-three participants (21 female, aged 19−51, mean age 26.7,
S.D. = 8.3) took part in the social experiment. Two participants were excluded
because their bids on each item poorly predicted their preferences in the choice
task, yielding a logistic regression coefficient less than one-fifth of the group’s
average48. An additional 35 participants (25 female, aged 18–48, mean age 24.8,
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S.D. = 6.7) took part in the non-social experiment, five of whom were excluded
under the same pre-established criterion. Note that we aimed to recruit about
35 participants in each experiment after a pilot study comprising 11 participants
yielded reliable model-agnostic results (Supplementary Table 23). All participants
were paid £25 plus £0.01 per correct answer, minus the cost of a successfully bid
snack item.

Participants were asked to fast and drink only water for 3 h before attending the
session. This requirement was intended to ensure that participants were hungry
and therefore motivated to spend money to obtain a snack, thereby providing
an accurate bid for each item48. All participants were screened for current or
past use of psychotropic medication, current psychiatric or neurological disorders,
diabetes, hypoglycemia, hyperglycemia, and conditions for which fasting up to
5 ½ h would pose a risk. Participants were also screened for proficiency in English
and a minimum of about 5 years residency in the UK, to increase the chance of
familiarity with the snack stimuli. All participants provided written informed
consent. The protocol was approved by the Cambridge Psychology Research
Ethics Committee.

Preference measurement. Participants were first asked to complete a
questionnaire about their familiarity with the snack stimuli and how often they
consumed each snack. They then received instructions for the bidding and choice
tasks (see Supplementary Methods). Participants were then administered a
computerized Becker–Degroot–Marschak bidding procedure49, in which they were
asked to indicate the maximum they were willing to pay, between £0 and £3.00, for
each of 40 snack items. These 40 items were then presented in 20 unique pairs, and
participants were asked which item in each pair they would prefer to eat. The
pairings had previously been determined randomly by computer and were the
same for all participants (see Supplementary Table 19 for item pairs; assignment
code and output are available on GitHub; see Data availability). Each pair was
presented twice, left-right counterbalanced. The order of the pair presentations was
random, with the constraint that no pair was presented twice in a row. Participants
were told that, at the end of the session, one of their choices would be picked at
random by the computer, and a price would be assigned at random between £0.01
and £3.00. If their bid for that item was equal to or above the randomly assigned
price, they would receive the item for that price at the end of the session, and the
price would be deducted from their payment. If their bid was below the price, they
would not receive the item. Participants were told that they would be asked to wait
for 1 h at the conclusion of the experiment, during which time they could eat only a
purchased item. In reality, we asked participants to stay the balance of their 2 ½ h
session (social mean 31.3 min, ranging from 0 to 55 min; non-social: mean 48.3
min, ranging from 29 to 60 min).

Learning task. After the bid and choice tasks, participants received instructions
for the learning task (see Supplementary Methods). Participants in the social
experiment were told that they were learning a set of choices made by a participant
in an earlier phase in the study. They were told that this other participant had
indicated their preferences between the same pairs of items that they had just seen
in the choice task, and that they had to learn which item in each pair the other
person had chosen. By contrast, participants in the non-social experiment were told
that they were learning a random set of snack items, and that this set of items
included one item from each pair they had seen in the choice task. In reality, the
sets of items learned by participants in the non-social experiment were also choices
made by other people, although this was not told to them.

To generate partner preference data for the learning task, 12 participants
(nine female, aged 19–37, mean age 25.8, S.D. = 5.1) took part in a pilot version
of the study, which included the choice task described above. Pilot participants’
choices were then used to determine the correct and incorrect answers in
the learning task for both social and non-social experiments. When a pilot
participant’s choices were inconsistent (that is, when a participant chose one
item during the pair’s first presentation and the other item during the second),
the choice during the first presentation was used. One pilot participant made
perfectly inconsistent choices and was therefore excluded from the partner
data, leaving a set of 11 participants’ choices. One of these choice sets was then
selected at random for each participant in both the social and non-social
experiments to learn. Some items in the pilot phase were substituted with similar
items in the principal phase due to changes in item availability, so that not all
choices made by the pilot participants were exactly the same as the ones learned
by the participants. (A full list of item substitutions is available on GitHub;
see Data availability.) However, all pairs presented in the learning task were the
same pairs presented in the choice task.

Participants were instructed that they would see a yellow feedback box after
each response and that it would indicate the correct answer with an 80%
probability and the wrong answer with a 20% probability. First, participants
completed 14 practice trials using a different set of snack stimuli. This was followed
by the main experiment, in which each of the 20 item pairs was presented 30 times
for a total of 600 trials. These were divided into three blocks of 200 trials with rest
breaks in between blocks. The order of the pairs was pseudorandom, but no pair
was presented twice in a row and each pair was presented 10 times within each
block. Pairs were left-right counterbalanced so that each item was presented on

each side of the screen five times during each block. Participants were not informed
of the experiment’s purpose until the debriefing at the conclusion of the session.

Bayesian learning models. Bayesian models assumed optimal integration of
feedback given specified priors. Over the course of several trials, participants
observe ever more feedback indicating the correct item, and the probability of the
correct item being inferable as correct will increase relative to the probability of the
incorrect item being correct. We modeled this process using Bayes’s rule

P A datanþ1jð Þ ¼ P datan Ajð ÞP A datan¼1jð Þ
P datan Ajð ÞP A datanjð Þ þ P datan Bjð Þ 1� P A datanjð Þð Þ ð6Þ

where A is the correct item, B is the incorrect item and n is the trial number for
that particular item pair. P A datajð Þ is the probability that item A is correct given
the feedback presented for that item pair. For trial n= 1, this value is the
participant’s prior for that item pair. P A datajð Þ is the probability of having seen the
observed set of feedback if item A were the correct answer. We model P data Ajð Þ
and P data Bjð Þ as binomial functions

P datan Ajð Þ ¼ n!
x! n� xð Þ! 0:8

x0:2n�x ; x ¼
Xn

i¼1

feedbackn¼i ð7Þ

P datan Bjð Þ ¼ n!
x! n� xð Þ! 0:2

x0:8n�x ; x ¼
Xn

i¼1

feedbackn¼i ð8Þ

in which A is the correct item, B is the incorrect item, x is the number of times the
feedback box has indicated that item on previous trials, and the probabilities
correspond to the probabilities of the feedback box in the task indicating the
correct answer (80%) versus the wrong answer (20%). Participants were told these
probabilities before beginning the task (see Supplementary Methods for full task
instructions).

Drift diffusion models. Our DDM models were fitted to maximize the likelihood
of the observed choices and response times using the method described in50, which
was implemented in Stan20, 51. The probability density distributions of response
times were calculated as each of four parameters—the threshold distance, drift
starting point bias, drift rate and non-decision time—were sampled. Each
parameter combination generated two probability density functions: one for an
upper threshold response and one for a lower threshold response. The cumulative
density of each function is equal to the likelihood of an upper or lower threshold
response. In this way, the fitting procedure took account of both response times
and choice data. Adjustments to threshold, bias and drift-rate parameters cause
different changes to error rates relative to response time distributions16, 20, 50–52

(Supplementary Fig. 6). For example, a DDM with a high response threshold and a
low drift rate has wider distributions with higher means compared to an equally
accurate DDM with a low threshold and a high drift rate. In our specification, only
DDMs with biased starting points have different distributions for errors than for
correct responses. On average, a starting point biased toward the correct threshold
results in slower errors than correct responses and vice versa16. For this reason,
asymmetry in correct versus incorrect response time distributions indicates a
biased DDM starting point.

Parameter estimation. Mixed-effects regression analyses were performed using
version 1.1-8 of the lme4 package53 for R version 3.2.154. The permutation test
was performed using version 1.0.0.0 of the perm package55 for R. We estimated
computational model parameters using the No U-turn Sampling algorithm
implemented in Stan20. These parameters were estimated hierarchically, which
assumed that each participant’s parameters were distributed according to group-
level means and standard deviations, and with priors similar to those typically used
in the literature56, 57 (see Fig. 5 and Supplementary Table 24 for additional
model specification detail). This estimates a group tendency while constraining
outliers and allowing for natural variation between participants. The exception
was non-decision times, which were not estimated hierarchically in the model.
Doing so allowed us to reduce the number of free hyperparameters since
participant-level estimates of non-decision time are naturally well constrained by
minimum response times. Predictive accuracy was estimated using leave-one-out
cross-validation, implemented by the loo package21 for R, which generated esti-
mates of each model’s expected log pointwise predictive density for a new dataset.
This method naturally protects against overfitting by indicating which model
would likely provide the best predictions for data collected outside of the sample.
This method is preferred over other hierarchical model fit indices such as the
Deviance Information Criterion because it offers a fully Bayesian estimate of the
predictive accuracy of the model, providing us with a measure of uncertainty
around this estimate22. ELPDs were compared using two-tailed t-tests to determine
the best model. Full model code is available on GitHub (see Data availability).

Data availability. Data, stimuli and full task and analysis code are available on
GitHub (www.github.com/bdmlab/ or www.github.com/tortarantola/prior-
preferences/) and on Figshare (DOI: 10.6084/m9.figshare.5198572).
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