
ARTICLE

Genome-wide association study reveals that the IBSP locus
affects ear size in cattle
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Ear size is a classical model for hot climate adaptation following the evolution, but the genetic basis of the traits associated with ear
size remains to be elucidated. Here, we performed a genome-wide association study on 158 cattle to explain the genetic
mechanism of ear size. One region on BTA6 between 36.79 and 38.80 Mb included 50 suggestive SNPs and 4 significant SNPs that
were significantly associated with ear size. The most significant locus (P= 1.30 × 10−8) was a missense mutation (T250I) on the
seventh exon of integrin-binding sialoprotein (IBSP), which had an allele substitution effect of 23.46 cm2 for ear size. Furthermore,
this mutation will cause changes in the three-dimensional structure of the protein. To further identify genes underlying this typical
feature, we performed a genome scan among nine cattle breeds with different ear sizes by using SweeD. Results suggested that
IBSP was under positive selection among four breeds with relatively large ear sizes. The expression levels of IBSP in ear tissues of
large- and small-ear cattle were significantly different. A haplotype diversity survey of this missense mutation in worldwide cattle
breeds strongly implied that the origin of this missense mutation event was Bos taurus. These findings have important theoretical
importance for the exploration of major genes associated with ear size and provide important molecular markers for the
identification of cattle germplasm resources.
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INTRODUCTION
The ear is primarily responsible for converting sound waves into
nerve impulses that are translated in the brain into auditory
perception in animals (Van 2003). The central nervous system in
the brain then translates these impulses into a spoken language,
birds chirping, or the cow’s moo. The ear serves other vital
functions, like heat radiation (Law et al. 1979), sense of balance
(Ekdale 2016; Horwitz et al. 2011; Torres and Giráldez 1998), and
external signals in the mood besides auditory perception
(Reefmann et al. 2009). The ear consists of three sections, i.e.,
external, middle, and inner ears (Webster 1966). The external ear
includes an external auditory canal (Alvord and Farmer 1997), an
eardrum, and a visible pinna that reside outside of the head and
can collect sound and direct it down the ear canal. Over time,
mammals adapt to their respective environmental conditions
and evolve with an extraordinary variety of ear shapes and sizes.
For example, animals adapt to high-temperature and hot
environments and evolve with large ears to combat heat waves,
such as African elephants. African elephants adjust their body
temperature through their large ears, providing shade to reduce
the loss of water in the body (Phillips and Heath 1992).
Furthermore, a general observation includes large ear sizes in
indicine cattle, such as Brahman and Burmese cattle, which

harbor in harsh hot environments. By contrast, most animals
inhabiting temperate or cold regions, such as the Arctic fox, tend
to have small ears. The small size of the ear can help mammals
to reduce heat dissipation and maintain their body temperature.
Likewise, cattle adapting to cold environments, such as Yanbian,
Yakut, and Tibetan cattle, share small ears.
Size and orthotropism are important conformational char-

acteristics of ears with huge diversity in different species. With
the development of the whole-genome resequencing technol-
ogy, the genome-wide association study (GWAS) has been
applied to reveal SNPs associated with complex ear traits in
livestock. Previous studies showed that significant quantitative
trait loci (QTLs) for pig ear size are located on Sus scrofa
chromosomes (SSCs) 5 and 7 (Ma et al. 2009; Wei et al. 2007). A
missense mutation (G32E) in the PPARD gene on SSC7 is
considered to be responsible for the differences in porcine ear
size (Ren et al. 2011; Wilkinson et al. 2013). The QTL fine
mapping on SSC5 revealed that LEMD3 is one of the most
important candidates for porcine ear size (Zhang et al. 2014).
Moreover, GWAS revealed that DCC, SOX5, and PTPRD are
potential candidate genes for ear size in sheep (Gao et al. 2018).
Furthermore, genome fragments containing WIF1 and HMGA2
appear to control ear size in pigs and dogs (Vaysse et al. 2011).
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However, no current report exists on the ear size of cattle, but
the available resources of cattle are rich worldwide.
Cattle are not only important for their meat and milk

production but also represent an important large-animal model
for the study of some important economic traits (Herath et al.
2006). Ear sizes among cattle breeds are diverse. Bos indicus
breeds, such as Brahman cattle, have large and lop ears,
whereas Bos taurus breeds have small and erect ears. Overall,
ear size is an important distinguishing characteristic among
subspecies. China has a wide geographical latitude span, with
taurine and indicine cattle breeds distributed from north to
south, and is a natural cattle breed resource bank for studying
ear size. Yunling cattle is a typical hybrid cow with variable ear
size, and therefore, it is an ideal model for studying the genetic
basis of ear size traits. In the current study, GWAS is performed
to screen potential candidate genes, which are further system-
atically analyzed to identify the associated loci and the
candidate mutation in a particular gene or region. Our findings
provide new insights into the genetic basis of the ear size of
cattle and provide important molecular markers for the
identification of cattle germplasm resources.

MATERIALS AND METHODS
Ethics statement
In accordance with the recommendation of the Regulations for the
Administration of Affairs Concerning Experimental Animals of China, the
Institutional Animal Care and Use Committee of Northwest A&F University
approved all animal experiments.

Sample collection and genome sequencing
Individuals used for ear size trait comprised 158 adult female cattle aged
around 2 years old (39 Brahman and 119 Yunling cattle). The Yunling cattle,
a typical hybrid cattle breed, was bred by the Yunnan Academy of
Grassland and Animal Science. Ear tissue samples were collected from
adult females. The standard phenol–chloroform protocol was used to
extract the genomic DNA from the ear tissue (Green et al. 2012). A total of
158 paired-end libraries with an insert size of 350 bp were constructed and
sequenced using the Illumina NovaSeq. The length of the reads was
150 bp. The sequence data used in this paper were obtained from
published papers where detailed information about sampling and
sequencing was available (Chen et al. 2020).

Measurement and calculation of ear size
In this study, we used the “living pixel method” to collect the ear shape
photo with a standard scale of 475 cattle (39 Brahman, 119 Yunling, 65
Simmental, 52 Burmese, 100 Wenshan, and 100 Dabieshan cattle). All
individuals were female, aged 2 years, and had similar body sizes in one
breed. The head of the cattle was restrained, and the scale-labeled left ear
was flattened for the picture. Digital images were taken using a high-pixel
camera in a horizontal position. The ear size of each animal was measured
using Photoshop CS6 (Adobe, USA). First, the graphs of the ear range and
1 cm2 in the scale were obtained through the “magnetic lasso” tool,
and pixel numbers corresponding to the above parameters were obtained
through the “histogram” tool. The ear size could be obtained through the
“measuring record” tool and the pixel ratio column.

Read mapping and SNP calling
Default parameters were used to map clean reads to the cattle
reference assembly ARS-UCD1.2 (Rosen et al. 2020) by using BWA-MEM
(Li and Durbin 2009). Duplicate reads were filtered using the
“REMOVE_DUPLICATES= true” option of Picard tools. The “Haplotype-
Caller”, “GenotypeGVCFs”, and “SelectVariants” arguments of the
Genome analysis toolkit 3.8 (Nekrutenko and Taylor 2012) were used
for calling raw SNPs. The average alignment rate and coverage were
99.54% and 5.61×, respectively. The argument “VariantFiltration” of the
same software was applied to all raw SNPs with the following options:
DP < 303 (1/3-fold total sequence depth for all individuals), DP > 2727
(threefold of total sequence depth for all individuals), QD < 2, FS > 60,
MQ < 40.0, MQRankSum <−12.5, ReadPosRankSum <−8.0, and 1/
3× < mean sequence depth (for all individuals) < 3×. In addition, the

haplotype-phase inference and missing allele imputation were pro-
duced using Beagle v.4.1 (Browning and Browning 2007) to carry out
the GWAS further. Based on about 41M autosomal SNPs, we estimated
the eigenvectors by using the smartPCA of the EIGENSOFT v5.0 package
(Patterson et al. 2006) to adjust the population structure in GWAS. The
principal component 1 based on the genotype matrix separated the
Brahman cattle from Yunling cattle, and this finding was in accordance
with those in a previous study (Chen et al. 2020).

GWAS analysis
Based on 158 sequenced genomes, 13,057,965 SNPs (MAF > 0.10, missing
rate > 0.1) were used in GWAS for the ear size trait. The primary association
analysis was carried out using the genome-wide efficient mixed-model
association (GEMMA) software package (Zhou and Stephens 2012). The
mixed linear model assumed the following model:

y ¼ Xαþ Sβþ Kμþ ε

where y is a vector of phenotypes, α is a vector of fixed effects representing
marker effects, β is a vector of fixed effects representing nonmarker effects,
and μ is a vector of unknown random effect. X, S, and K represent the
incidence matrices relating α, β, and μ, respectively, and ε represents a
vector of random residual effects. The top three PCs and feeding regimes
were defined as the Smatrix. The kinship matrix calculated from nucleotide
polymorphism was defined as the K matrix.
The secondary association analysis used a multiple linear regression

model using PLINK v. 1.90b6.21 (Purcell et al. 2007), combining body
height, cross high, head length, head width, and top three PCs as
covariates to perform GWAS on the ear size phenotype. The number of
linkage disequilibrium (LD)-pruned SNPs (750,367) was defined as the
effective number of independent SNPs and calculated using PLINK
(–indep-pairwise 50 5 0.2) to estimate the correction required for multiple
testing. Therefore, the significance and suggestive threshold were defined
as approximately 5 × 10−8 (0.05/750,367) and 1 × 10−6 (1/750,367),
respectively. Thresholds were widely used by numerous studies.

Identification of candidate genes in the GWAS-associated loci
We used the following strategy to narrow down our findings. First, PLINK
(Purcell et al. 2007) was used to estimate candidate regions by using the
pairwise LD correlation (r2 > 0.6) between SNPs related to ear size
characteristics, and the count of suggestive SNPs < 3 was used as false
positives and removed. Second, SNPs (leading SNPs) with Pwald values
< 1 × 10−6 were characterized as candidate SNPs, and the functional
annotation of suggestive associated SNPs was carried out in accordance
with the Bos taurus reference genome in the package ANNOVAR version
(Wang et al. 2010).

Selective sweep analysis
The genomes of groups with big and small ears were compared on the basis
of the phenotype relationship of ear size to identify the signatures of positive
selection. First, the genome-wide distribution of FST values was estimated
using the VCFtools (Danecek et al. 2011) with 100 kb window size and 50 kb
increment to investigate pairwise genetic differentiation among groups with
big and small ears. To further identify the selection signals within each cattle
breed, we used SweeD, an open-source tool for the rapid detection of
selective sweeps in whole genomes (Pavlidis et al. 2013). We also calculated
the SweeD for 14 cattle breeds (i.e., Angus, Brahman, Burmese, Hanwoo,
Hereford, Holstein, Kazakh, Ji’an, Longlin, Mishima, Mongolian, Muturu,
Simmental, and Yanbian cattle) by using the SweepFinder2 (DeGiorgio et al.
2016) with a sliding window approach (100 kb windows with 50 kb
increments). Only the strong regions overlapping both methods (SweeD:
top 1%, FST: top 1%) were defined as candidate regions under positive
selection. A custom perl script was used to annotate the regions under
selection on the basis of the Bos taurus reference genome (ARS-UCD1.2).

RNA extraction and quantitative PCR
Ear tissue samples from ten Simmental cattle with small ear sizes and ten
Brahman cattle with large ear sizes were used for qRT-PCR analysis. Total
RNA was extracted using the PrimeScriptTM RT reagent Kit with gDNA
Eraser (Takara, Beijing, China). The first-strand cDNA was synthesized from
1 μg of total RNA using the Omniscript reverse transcriptase kit (Qiagen,
Germany). qPCR was performed in a 20 μL reaction volume containing 2 μL
of 3-fold diluted cDNA, 10 μL of 2× Power SYBR Green Master mix (Applied
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Biosystems, USA), and 150 nM of each primer, with the following
thermocycling conditions: 10 min at 95 °C followed by 40 cycles at 95 °C
for 15 s, 60 °C for 1 min and 72 °C for 30 s. Then, a dissociation curve
analysis was performed.β-actin was used as an internal control (Livak and
Schmittgen 2002). Gene-specific primers and probes were designed using
the primer premier 5.0 software (forward primer CAGCAGCAACAGCACA-
GAGG and reverse primer CATTGGTGCCTGTTTGTTCAT). qPCR was per-
formed using the 7500 Fast real-time PCR System (Applied Biosystems,
USA). The experiment was repeated three times for each group.

RESULTS
Ear size variation trait analyses
Ear sizes among different cattle individuals and breeds are
evidently different. As a general observation, the ear size of Bos
indicus in the Indo-Pak region was larger than that of Bos taurus in
the world, whereas hybrid cattle breeds depicted diversified ear
size (Fig. 1A). According to this observational phenomenon, ear
size data were collected and calculated from 475 adult female
cattle (Supplementary Table S1), including six representative
breeds (i.e., Burmese, Brahman, Simmental, Yunling, Wenshan,
and Dabieshan cattle) by using the pixel method (Yang et al.
2013). The overall ear size data ranged from 87.81 to 330.85 cm2.
Bos indicus breeds (i.e., Brahman and Burmese cattle) had the

largest mean values, which were 226.75 and 254.06 cm2,
respectively. By contrast, Bos taurus (i.e., Simmental cattle) had
the smallest mean value, which was 134.62 cm2. The sizes of
hybrid breed (i.e., Yunling cattle) and Chinese indicine (i.e.,
Wenshan and Dabieshan cattle) cattle were relatively scattered.
The Yunling, Wenshan, and Dabieshan cattle had average values
of 164.21, 186.31, and 184.37 cm2, respectively (Table 1). The ear
size distribution of all individuals showed a unimodal distribution
according to the histogram and density plot (Fig. 1B) and could be
well distinguished in three distinct intervals, i.e., big (>230 cm2),
middle (<230 and >148 cm2), and small (<148 cm2) ears with 25
and 75% quantiles of all individuals’ boxplot analysis. The boxplot
and F statistic were used to analyze the variance in the ear size
among six cattle breeds. Results showed that the ear size of
breeds followed the order: Bos indicus > hybrid (Yunling) and
Chinese indicine (Wenshan and Dabieshan cattle) cattle > Bos
taurus (Fig. 1C). Moreover, the F statistic results suggested that ear
sizes among cattle breeds were significantly different, supporting
the above statement.

Genome-wide association studies for ear size trait
Based on 13,057,965 autosomal SNPs derived from 158 published
resequencing cattle data (Supplementary Table S2) (Chen et al. 2020),

Fig. 1 Statistical analysis of ear size. A Ear diversity of different cattle breeds, the first column was smaller ear size cattle (Simmental and
Dabieshan cattle), and the second column represents hybrid cattle, while the third column shows the large ear size Bos indicus cattle (Brahman
and Burmese cattle). B Histogram plot for 475 ear size data, the vertical axis on the left represents number of individuals in different sections.
C Boxplot analysis for ear size among all individuals and six cattle breeds.
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a GEMMA (Zhou and Stephens 2012) was used in the primary GWAS
to identify the significant loci. Figure 2A shows the Manhattan plot for
the GWAS. Red and blue horizontal lines represent the Bonferroni-
adjusted genome-wide significant and suggestive threshold. A total
of 4 significant SNPs and 50 suggestive SNPs showed genome-wide
associations with ear size (Supplementary Table S3). However, most of
the significant potential SNPs were located on BTA6 (36.79–38.80Mb)
(Fig. 2B). The significant locus (P= 1.30 × 10−8) was located in the
integrin-binding sialoprotein (IBSP) (Fig. 2C). The Quantile–Quantile
plot (QQ-plot) in Fig. 2D showed the observed and expected P values
of GWAS for ear size. The red line represents the distribution of SNPs
under the null hypothesis of no association of SNPs with the trait of
interest. The strong deviation of the observed from the expected P
values for QQ-plots indicated more SNPs significantly associated with
all ear size traits than would be expected by chance.
Considering that body size traits and ear size data could share

an underlying genetic basis, the correlation was measured and
analyzed for each trait in Supplementary Fig. S1. The Pearson

correlation coefficient was used to assess the linear relationships
between ear size and body size traits. Results showed that the
body height, cross high, head length, and head width had weakly-
to-moderately positive correlations with the ear size trait. The
multiple linear regression model was analyzed using these related
traits as covariates for the secondary GWAS by using PLINK
(Purcell et al. 2007). The autosomal SNP scan for ear size revealed
associated markers (Supplementary Fig. S2). A total of 293 SNPs
were observed on the potential region, most of which were found
on BTA6. The most significant SNP (P= 5.74 × 10−11) was located
on IBSP. Two GWAS results strongly suggested that IBSP had a
strong correlation with ear size and might be a key candidate
gene influencing cattle ear size.

Genetic differentiation of the mutation in IBSP among groups
with different ear sizes
In order to further screen candidate genes for ear size
differentiation, genetic differentiation between Yunling cattle

Fig. 2 Genome-wide association study of ear size. A Manhattan plot for ear size GWAS, B, C plot for regional association result for IBSP, the
functional genes in this region were plotted in the box, and D Quantile–Quantile plot observed and expected p value (expressed as –log10(p))
of the GWAS for ear size.

Table 1. Descriptive statistics of ear size in cattle breeds.

Breeds Origin Number Maximum Minimum Mean CV (%)

Simmental Bos taurus 65 166.26 92.67 134.62 10.53

Brahman Bos indicus 39 330.85 140.86 226.75 15.68

Burmese Bos indicus 52 313.53 212.46 254.06 8.50

Yunling Bos indicus×Bos taurus 119 268.71 87.81 164.21 18.88

Wenshan Chinese indicine 100 315.87 95.47 186.31 22.28

Dabie mountain Chinese indicine 100 249.86 120.63 184.37 13.75

CV coefficients of variation.
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populations with ear sizes larger than 230 cm2 and smaller than
148 cm2 was measured using a pairwise fixation index (Fst)
(Weir and Cockerham 1984). The two populations of Yunling
cattle had the same genetic background and were similar, but
the difference in ear size was significant. By annotating
significant regions, the most significant loci (Fst= 0.68)
(Fig. 3A) were located on the seventh exon of IBSP (Fig. 3C).
At the same time, we also conducted similar genetic differ-
entiation index analysis for different cattle breeds with
significant differences in ear size, namely, two Zebu populations
living in India and southern China, both belonging to Zebu with
similar genetic background and significant differences in ear
size. By annotating significant regions (Fst > 0.29, empirical
P < 0.005), IBSP was also found in the most significant region on
BTA6 (position: 36,840,001–36,890,000, Fst = 0.43) (Supplemen-
tary Fig. S3). Nine cattle breeds were used for Sweep Detector
(SweeD) (Pavlidis et al. 2013) analyses to further investigate the
differentiation of these mutation loci across diverse cattle
breeds (Supplementary Fig. S4). Results showed that the SweeD
value on these loci was observed to be near zero in Bos taurus
(i.e., Angus, Kazakh, Hanwoo, Hereford, Holstein, Mishima,
Simental, and Yanbian cattle) and over 200 in South Asian
indicine cattle (i.e., Brahman and Burmese cattle), indicating
that IBSP might be selected in indicine breeds (Fig. 3B). In
accordance with the functional annotation, a missense

mutation was found on the seventh exon of IBSP (Threonine-
250→Isoleucine, T250I) (Fig. 3C). To further evaluate the
functional impact of the variants, we aligned the mutant IBSP
protein with its ortholog proteins in Bovidae (Fig. 3D) and other
diverse vertebrates (Supplementary Fig. S5). The comparison
revealed that T250 was a conserved amino acid mutation and
varied among all the other animals we examined except Bos
taurus (T250I), lesser mouse-deer (T250S), and white-lipped
deer (T250A). We also have counted PhastCons and PhyloP of
this mutation from UCSC. The score of 100 vertebrates
conservation by PhastCons was 1, and the score of 100
vertebrates Basewise Conservation by PhyloP was 5.44393.
These three mutant species had small ears, and this finding was
consistent with our present hypothesis. We calculated the LD
values of the SNPs, which were shared in the region of IBSP. We
observed a strong linkage in this region (Supplementary
Fig. S5). Furthermore, the prediction-based 3D structure of the
protein predicted by the website https://seq2fun.dcmb.med.
umich.edu/I-TASSER/ showed that the mutation site of IBSP
could change its protein structure (Fig. 3E). Next, we compared
the total mRNA levels of IBSP between small and big ear groups
by using quantitative real-time PCR. Results showed that the
mRNA expression of IBSP was significantly different (Fig. 3F).
Taken together, our results suggest that T250I was a plausible
candidate mutation for the IBSP sweep in cattle ear size.

Fig. 3 Selection and conservative analysis for IBSP. A Manhattan plot for Fst analysis of big and small ear among Yunling cattle group. The
red box indicated the location of IBSP. B Line charts of SweeD in 9 cattle breeds on the gene regions of IBSP. C Gene structure of IBSP.
D Conservative prediction of the mutant IBSP protein with its ortholog proteins in Bovidae. E 3D protein structure prediction of IBSP. F The
mRNA expression of IBSP between big- and small-ear groups.
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Allele frequency of IBSP mutation among different cattle
breeds indicating the origin
In this study, a region with strong linkage (BTA6: 36,851,626–36,
929,220) was selected from the surrounding region of IBSP mutation
site for haplotype network analysis, and the results showed that all
samples formed two obvious branches. Cattle breeds with small ear
sizes (Yanbian, Hanwoo, Mishima, Tibetan cattle, etc.) and cattle
breeds (Brahman, Burma, Sahiwal, Nelore, Tharparkar, and Gir cattle)
with larger ear sizes were clearly divided into one branch,
respectively, while the breeds (Wannan, Wenshan, Wenling, Dehong,
Dianzhong, and Minnan cattle) with middle ear size were mixed in
these two branches (Fig. 4A). At the same time, we genotyped the
DNA sequences of IBSP with 394 cattle representing Bos indicus, Bos
taurus, and hybrid cattle to investigate the genotype frequency of the
mutation loci across diverse cattle breeds. Two genotypes (A and G)
of the IBSPmutation loci were found (Supplementary Table S4). The A
allele of IBSP mutation occurred at low frequency in Burmese (0.06),
Brahman (0.30), and Lingnan (0.40) cattle. In Wenshan, Shigatse,
Weining, Hainan, Dianzhong, Jinjiang, Ji’an, Wannan, and Luxi cattle,
the A allele of the two mutations showed a moderate frequency close
to 0.5. By contrast, the A allele was almost equal to 1 in Yanbian,
Kazakh, and Simmental cattle and other Bos taurus. At the same time,

we searched the mutation frequency of IBSP among different cattle
breeds in the world from the Bovine Genome Variation Database and
Selective Signatures (http://animal.nwsuaf.edu.cn/code/index.php/
BosVar) (Chen et al. 2019). The database contained 24 South Asian
indicine, 19 Chinese indicine, 37 East Asian taurine, 38 European
taurine, 19 Eurasian taurine, and 10 Africa taurine cattle. Results
showed that the A allele frequency of IBSP was lowest in South Asian
indicine cattle (0.10), and the frequency was 0.47 in Chinese indicine
cattle. However, the A frequency of IBSP was near or equal to 1 in East
Asian, European, and Eurasian taurine cattle (Fig. 4B). The allele
distribution indicated that the A allele of IBSP might have originated
in Bos taurus. Given the infiltration of South Asian indicine cattle, the
Chinese indicine cattle caused a reduction in the A allele frequency.
We also found the G allele in African taurine cattle at low frequency,
which might be due to the large introduction of South Asian indicine
cattle after the African rinderpest in 1890 (Phoofolo 1993).

DISCUSSION
The external ear of cattle is composed of cartilage and thin layers
of skin. The function of cartilage in the external ear is a stent,
which determines the size and shape of the ear (Bos et al. 2018).

Fig. 4 Haplotype network analysis and geographical distribution of the mutation among different cattle breeds. A Haplotype network
analysis for the surrounding region of IBSP mutation site among different cattle breeds. B The mutation allele frequency distribution of six
ancestral cattle groups. The size of the circle represents the count of the samples. The orange and brown colors represent G and A alleles,
respectively.
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This is different from the candidate genes that have been reported
to affect ear size in pigs, dogs, sheep, and other species, such as
PPARD, LEMD3, DCC, SOX5, PTPRD, WIF1, HMGA2, etc. In this study,
we identified IBSP as the main candidate gene affecting bovine
ear size, and it is acceptable that the same trait is regulated by
different candidate genes in different species. There are great
genetic differences among different species, and ear size, as a
quantitative trait, is regulated by multiple genes. In this study, two
GWAS methods were used to identify the gene, and the
hypothesis that the gene underlies the ear phenotype was
supported by structural analysis. The IBSP has been mentioned
many times in numerous studies of cartilage and chondrocytes
(Fukui et al. 2008; Komori 2010, 2017, 2018; Lui et al. 2019). The
main IBSP-knockout mice show a short body, reduced chondro-
cyte proliferation, and impaired cartilage absorption. At the same
time, the lack of IBSP can alter bone growth and the formation and
mineralization of primary bone (Bouleftour et al. 2014). The
protein encoded by IBSP is the main structural protein in the bone
matrix, and nearly 12% non-collagenous proteins are from IBSP in
human osteoblasts, hypertrophic chondrocytes, and osteoclasts
(Duncan et al. 2011; Kim et al. 1994; Wuttke et al. 2001). IBSP is
related to tissue development and cell growth, which may relate
to its mechanism in promoting or inhibiting the growth and
proliferation of bovine ear chondrocytes.
We have discovered and validated one missense mutation at

IBSP in Bos taurus, of which T250I occurs in a well-defined
domain and quite conserved site (Supplementary Fig. S5). In
nearly 70 vertebrate species except Bos taurus (T250I), lesser
mouse-deer (T250S), and white-lipped deer (T250A), this
mutation is conserved. We have found this missense mutation
in IBSP that alters the 3D structure of the expressed protein,
which may change the function of the protein. The analysis of
the mRNA expression suggests that IBSP is highly expressed in
small-ear cattle breeds and minimally expressed in big-ear cattle
breeds, which may also be caused by this mutation. At the same
time, the statistical analysis of the IBSP missense genotype
among different cattle breeds shows that the GG genotype is
presented in Bos indicus with a large ear size and that the AA
genotype is presented in Bos taurus, which has a small ear size.
Three genotypes are presented in hybrid cattle, which lives in
the south of China and has complex ear sizes. Through the
mutation frequency of the IBSP missense variant among
different cattle breeds, we have found that the lowest frequency
of the A allele is in South Asian indicine cattle and that the
frequency is near or equal to 1 in East Asian, European, and
Eurasian taurine cattle. Moreover, the mutations of the A allele
are found in cattle with small ear sizes living in a cold
environment, whereas the relatively large ear size of cattle
living in tropical or subtropical regions has almost no mutation
frequency. We speculate that the missense mutation of IBSP may
be the main factor that affects the cattle ear size and that the
mutations of the A allele in IBSP may originate from Bos taurus.
The difference in ear size may be due to the variable
environmental conditions in which they are located. The large
ear area can help Bos indicus to dissipate heat temperature, and
a small ear size may be helpful for Bos taurus to keep their
temperature in a cold environment. The temperature in south-
ern China is not high or low. Thus, hybrid cattle have diverse ear-
size phenotypes. Meanwhile, the mutation site had a higher
genetic differentiation index in the populations with significant
ear size, which means that ear size may also be influenced by
species differentiation. In conclusion, the IBSP loci related to
cattle ear size is identified by GWAS, and the missense mutation
in IBSP (T250I) is speculated to be the candidate mutation that
affects ear size among cattle breeds. These findings have
important theoretical significance for the exploration of major
genes of ear size traits and provide important molecular markers
for the identification of cattle germplasm resources.

DATA AVAILABILITY
The raw whole-genome sequencing data were reported in our previous study (Chen
et al. 2020) and are available at the NCBI Short Read Archive under the BioProject
accession number PRJNA555741.
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