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Including dominance effects in the prediction model through
locus-specific weights on heterozygous genotypes can greatly
improve genomic predictive abilities
Tianfei Liu1,2,3, Chenglong Luo1,2✉, Jie Ma1,2, Yan Wang1,2, Dingming Shu1,2, Hao Qu 1,2✉ and Guosheng Su3

© The Author(s) 2022

The dominance effect is considered to be a key factor affecting complex traits. However, previous studies have shown that the
improvement of the model, including the dominance effect, is usually less than 1%. This study proposes a novel genomic prediction
method called CADM, which combines additive and dominance genetic effects through locus-specific weights on heterozygous
genotypes. To the best of our knowledge, this is the first study of weighting dominance effects for genomic prediction. This method
was applied to the analysis of chicken (511 birds) and pig (3534 animals) datasets. A 5-fold cross-validation method was used to
evaluate the genomic predictive ability. The CADM model was compared with typical models considering additive and dominance
genetic effects (ADM) and the model considering only additive genetic effects (AM). Based on the chicken data, using the CADM
model, the genomic predictive abilities were improved for all three traits (body weight at 12th week, eviscerating percentage, and
breast muscle percentage), and the average improvement in prediction accuracy was 27.1% compared with the AM model, while
the ADM model was not better than the AM model. Based on the pig data, the CADM model increased the genomic predictive
ability for all the three pig traits (trait names are masked, here designated as T1, T2, and T3), with an average increase of 26.3%, and
the ADM model did not improve, or even slightly decreased, compared with the AM model. The results indicate that dominant
genetic variation is one of the important sources of phenotypic variation, and the novel prediction model significantly improves the
accuracy of genomic prediction.

Heredity (2022) 128:154–158; https://doi.org/10.1038/s41437-022-00504-6

INTRODUCTION
With the continuous growth of the global population, human
demand for food and security continues to increase. Hybridization
is an important tool for increasing meat and grain production. It
has been successfully applied to the production of animals (such
as chickens and pigs) and plants (such as corn and rice). The
performance of hybrid individuals is affected by genetic factors
such as additive, dominance, and epistatic genetic effects.
Traditional genetic evaluation methods only consider additive
genetic effects but not nonadditive genetic effects (dominance
and epistatic effects). Many studies have shown that nonadditive
genetic effects are an important component of phenotypic values
(Costa-Neto et al. 2021; Mao et al. 2020; Su et al. 2012; Vitezica
et al. 2017; Wang et al. 2020; Xu 2013). Li et al. (2017) reported that
the dominant variance of broiler feed-related traits accounted for
29.5–58.4% of the genetic variance. There are three main reasons
why traditional genetic evaluation methods only consider additive
effects. (1) Additive genetic effects are the additive effects of a
number of genes that can be accumulative and stably inherited,
while nonadditive genetic effects are the effects of gene
interactions that can change by allele recombination and thus

cannot be stably inherited. (2) The traditional pedigree-based
genetic evaluation method has difficulty accurately estimating
nonadditive genetic effects since pedigree-based nonadditive
genetic relationships between individuals are usually weak, and it
is difficult to distinguish nonadditive genetic effects (such as
dominance effects) and common environmental effects on
siblings. (3) There is a high computational demand for computing
the inverses of relationship matrices for non-additive genetic
effects for large data.
Genomic prediction may overcome the limitation of conven-

tional pedigree-based prediction in the estimation of nonadditive
genetic effects. Because genomic prediction is based on genome
information to predict the genetic value of individuals, it can
provide a new approach to detect nonadditive genetic relation-
ships between animals in the population and accurately
distinguish the genotypic differences between sibling individuals
(Meuwissen et al. 2001; Su et al. 2012). There is increasing interest
in studies on genomic prediction considering nonadditive genetic
effects, especially dominance effects (Su et al. 2012; Vitezica et al.
2017; Wang et al. 2020; Xiang et al. 2018). Genomic prediction
models fitting dominance effects have been developed and
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constantly improved. Su et al. (2012) proposed a genomic model
that fits the dominance effect at the unweighted scale of the
dominance effect. Vitezica et al. (2013) presented a model fitting
dominance effect on the scale of the gene substitution effect,
which is consistent with the classical definition of quantitative
genetics and breeding. Furthermore, Vitezica et al. (2017)
proposed an expanded method from the natural and orthogonal
interactions (NOIA) approach, which uses genotypic (not allelic)
frequencies to construct incidence matrix. Xiang et al. (2018)
proposed a model with a covariance matrix to account for the
relationship between additive and dominance effects. However,
using these models, many studies have reported that the
improvement in accuracy of predicting genetic values is very
small, mostly less than 1%, or even no improvement (Aliloo et al.
2016; Su et al. 2012; Vitezica et al. 2013; Xiang et al. 2018).
Although many studies have shown that models considering

dominance effects do not lead to a clear improvement in
predicting breeding values and total genetic values, many studies
have shown that dominance variances are considerable in
complex traits of animals and plants (Su et al. 2012; Vitezica
et al. 2017; Xu et al. 2014). The universal phenomenon of heterosis
in animals and plants also indicates that dominance effects are
substantial. Therefore, there is a need for alternative statistical
methods and models that can efficiently estimate genetic values,
including dominance effects. This study proposed a novel method
to account for genomic dominance effects, which integrated
additive and dominance effects through locus-specific weights on
heterozygous genotypes to construct a genomic relationship
matrix. The model was tested by validation of prediction accuracy
based on chicken and pig data.

MATERIALS AND METHODS
The novel prediction model
The model developed in this study is based on the assumption that the
degree of dominance is different at different loci, and thus, the model
accounts for the difference in degrees of dominance by locus-specific
weights on heterozygous genotypes. The approach includes two main
steps: (1) estimating the dominant degree based on the deviation between
the heterozygous and homozygous marker genotypes; and (2) using the
estimated degree of dominance as weights on heterozygous genotypes to
construct a genomic relationship matrix. The details of the approach are
as follows.
Let the A1 homozygous (A1A1), heterozygous (A1A2), and A2 homo-

zygous (A2A2) genotypes be coded as 0, 1, and 2, respectively. The prior
degree of dominance at a locus is defined as

xmin ¼ min xA1A1 ; xA2A2ð Þ;

xmax ¼ max xA1A1 ; xA2A2ð Þ;

d ¼ 2 � xA1A2 � xminð Þ= xmax � xminð Þ

where xA1A1 , xA1A2 and xA2A2 are the means of corrected phenotypes of the
three genotypes A1A1, A1A2, and A2A2, respectively.
The weighted heterozygous genotype (Cd) is defined as:

Cd ¼
0; if d � 0;

d; if 0< d < 2

2; if d � 2:

;

8
><

>:

At the same time, if xA1A1 > xA2A2 , A1A1 and A2A2 are recoded as 2 and 0,
respectively.
The boundaries of 0 and 2 for Cd are to restrict the degree of dominance

in the range from zero to complete dominance. Relaxation of the
boundaries will allow overdominance.
The above modified genotype coefficients are then applied to construct

a genomic relationship matrix in the best linear unbiased predictor
(GBLUP) model for estimating the genetic values, including additive and
dominance effects. The genomic relationship matrix can be built using the

same method as those for the additive genomic relationship matrix (e.g.,
VanRaden 2008), applying a genotype matrix built with Cd values. A simple
simulation in R language was shown to illustrate the calculation of
genotype matrix (Supplementary File 1).

Data
The novel model was tested using two published datasets from
chickens (Liu et al. 2014) and pigs (Cleveland et al. 2012). The chicken
dataset contained 511 F2 birds from two outbred lines. All birds had
phenotypic records. The phenotypes were body weight at the 12th
week (W12), eviscerating percentage (EP), which is percentage of
eviscerated weight to body weight before slaughter, and breast muscle
percentage (BMP), which is percentage of breast muscle weight to
eviscerated weight. The phenotypes in the chicken data (from one herd)
were corrected for fixed effects (sex and batch), and the fixed effects
were estimated using linear least squares approach by linear fixed
effects model. The birds were genotyped using the Illumina Chicken
60K SNP BeadChip. SNP markers with a minor allele frequency (MAF)
lower than 0.01 were deleted. After editing, 46,672 SNPs were used to
build the relationship matrix.
The pig dataset consisted of 3534 animals from a single PIC nucleus pig

line. The data concealed the actual trait names but used the symbols T1,
T2, T3, T4, and T5 instead. Three traits (T1, T2, and T3) were analyzed in this
study, and the traits had 2804, 2715, and 3141 phenotypic records,
respectively. The three traits were either corrected for environmental
factors (e.g., year of birth or farm) and rescaled by correcting for the overall
mean (T3) or was a rescaled, weighted mean of corrected progeny
phenotypes (T1 and T2), for which many pigs have no individual
phenotype (Cleveland et al. 2012). All 3534 animals were genotyped with
the Illumina PorcineSNP60 BeadChip. SNP markers with a MAF lower than
0.01 were also deleted. After editing, 52,842 SNPs were used for calculating
the relationship matrix.

Statistical analysis
The data were analyzed using three statistical models, i.e., the novel model
proposed in this study, a typical GBLUP model considering additive genetic
effects only (VanRaden 2008), and a typical additive and dominance GBLUP
model (Su et al. 2012).

Genomic BLUP model combining additive and dominance
genetic effects
The novel model proposed in this study (CADM) integrates additive and
dominance genetic effects and can be written as:

y ¼ 1μþ Zggþ e;

where y is the vector of phenotypic trait records, μ is the overall mean, 1 is
a vector of 1s, Zg is incidence matrix of g, g is the vector of the genotype
value combining additive and dominance effects, and e is the vector of
random residuals. It is assumed that g ~ N(0, Gadσ

2
g) and e ~ N(0, Iσ2e ),

where Gad is the additive-dominance genomic relationship matrix, I is an
identity matrix, σ2g is the additive-dominance genetic variance, and σ2e is
the residual variance.
The combined additive and dominance genomic relationship matrix Gad

was constructed using the modified marker genotype coefficients (Cd),
where locus-specific weights were exerted on heterozygous genotypes,
and a method similar to the additive genomic relationship matrix was

applied (VanRaden 2008). Briefly, Gad ¼ MadM0
adP

2pi 1�pið Þ, where Mad is a (n ×m)

matrix (n= number of individuals, m= number of marker loci) that
specifies SNP genotype coefficients at each locus. The coefficients of the ith

column in matrix Mad are (0–2pi) for A1A1, (Cd–2pi) for A1A2 where Cd was
as defined earlier, and (2–2pi) for A2A2, where pi is the frequency of allele 1
(A1) at locus i.
CADM can be considered as a (co)variance matrix, but the definition is

not exactly the same as the one in conventional breeding model. In CADM,
we considered dominance effect as 0 for homozygous and non-zero for
heterozygous, i.e., a genomic model (Su et al. 2012; Vitezica et al. 2013).

Genomic BLUP model for additive genetic effects
The linear mixed model with additive genetic effects (AM) is:

y ¼ 1μþ Zaaþ e;
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where the definitions of y and e are the same as those in the CADM model,
where a is the vector of additive genetic effects, Za is the corresponding
incidence matrix. It was assumed that a ~ N (0, Gσ2a), where G is the
additive relationship matrix and σ2a is the additive genetic variance.
The additive genomic relationship matrix G was constructed using

the original SNP marker information (VanRaden 2008), in which
elements of M are coded as (0–2pi) for A1A1, (1–2pi) for A1A2, and
(2–2pi) for A2A2 at locus i.

Genomic BLUP model including additive and dominance
genetic effects as two components
The linear mixed model including additive and dominance genetic effects
(ADM) is:

y ¼ 1μþ Zaaþ Zddþ e;

where d is the vector of dominance effects, Zd is the corresponding
incidence matrix. It is assumed that d ~ N (0, Dσ2d), where D is the
dominance relationship matrix, and σ2d is the dominance genetic variance.
The method for constructing the additive genomic relationship matrix G

is the same as in the AM model. The dominance genomic relationship
matrix D is constructed by D ¼ HH0P

2piqið Þ2 (Vitezica et al. 2013) where H is a

(n ×m) matrix of heterozygosity coefficients. The coefficients of the ith

column in matrix H are (−2pi
2) for A1A1, (2piqi) for A1A2, and (−2qi

2) for
A2A2, where qi and pi are the frequencies of allele 1 (A1) and allele 2 (A2) at
locus i, respectively.
The variance-covariance components were estimated using the average

information restricted maximum likelihood (AIREML) (Gilmour et al. 1995).
The estimation of variance components and the prediction of genetic
effects were carried out using the DMU package (Madsen et al. 2010).

Cross-validation
The accuracy of genomic prediction was verified by five-fold cross-validation.
The entire dataset was randomly split into five subsets of similar size. In each
fold of cross-validation, one of the five subsets was used as the validation
data in which the phenotypic values were masked during genomic
prediction; the remaining four subsets were used as the training data. For
each validation, the data used to obtain weights on heterozygous genotypes
in the CADM method were in line with the training population (i.e., the
records in the validation population were excluded from the data to calculate
the degree of dominance). The cross-validation was repeated 10 times.
Prediction accuracy was defined as the correlation between the

predictions and corrected phenotypic values. Differences between the
correlations from different models were tested by bootstrapping (Efron
1979) and Bonferroni’s method (Bland and Altman 1995). Bootstrap and
Bonferroni’s methods were performed with the sample() function and
“agricolae” package in R (R Core Team 2020).

RESULTS
Genetic variances
Table 1 shows the variances in proportion to the phenotypic
variance for the three quantitative traits (BMP, EP, and W12) from
the chicken dataset. For W12, the composite genetic variance
(composites of additive and dominance genetic variances)

estimated from the CADM model was lowest, and the total
genetic variance estimated from the ADM model was highest
among the three models. The additive genetic variance estimated
from the ADM model was lower than that from the AM model. For
EP, the composite genetic variance estimated from the CADM
model was similar to the total genetic variance estimated from the
ADM model, and the additive genetic variance estimated from
the ADM model was lower than that from the AM model. For BMP,
the composite genetic variance estimated from the CADM model
was highest, the ADM model did not capture dominance genetic
variance, and the additive genetic variance was consistent with
that from the AM model.
Similar to the situations with chicken traits, the variance

component values estimated from the three genomic models
were different in pig traits (Table 2). For T1 and T3, the composite
genetic variances estimated from the CADM model were highest
among the three models. For T1, the ADM model did not capture
the dominance genetic variance, and the variances estimated
from the ADM and AM models were consistent. For T3, the ADM
model captured the dominance genetic variance, but the
cumulative genetic variance of additive and dominance effects
was lower than the composite genetic variance from the CADM
model. For T2, the composite genetic variance estimated from the
CADM model was similar to the total genetic variance estimated
by the ADM model, the ADM model captured the dominance
genetic variance, and the additive variance estimated from the
ADM model was similar to that from the AM model.

Genomic predictive ability
As shown in Table 3, in chickens, fivefold cross-validation revealed
that the CADM model had the highest genomic predictive ability
among the three models (more results of each of the replicates are
shown in Supplementary File 2, Tables S1 and S2). Compared with
the AM model, the genomic prediction accuracy was substantially
improved for all three traits, with an average increase of 27.1%,
and BMP (with the lowest heritability) had the largest increase,
46.1%. Compared with the AM model that considered additive
effects only, the ADM model did not increase the genomic
predictive ability. As shown in Table 4, the fivefold cross-validation
for the pig dataset revealed that among the three genomic
models, the CADM model had the highest genomic predictive
ability for all three traits, similar to the results for the chicken data.
Compared with the AM model, the accuracy of genomic
prediction for the three traits increased by 57.9%, 5.4%, and
15.6%, respectively. T1 with the lowest heritability has the highest
increase. The predictive ability of the ADM model did not improve
or even slightly decreased compared with that of the AM model.
In chicken dataset, the regression coefficients for the CADM and
AM models were similar, ADM model had the largest bias for all
the three traits (Table S3 in Supplementary File 2). In pig dataset,
the regression coefficients for the CADM and AM models were
similar for T2 and T3, CADM model had the less bias for T1 (Table
S4 in Supplementary File 2).

Table 1. Proportions of genetic variance components to phenotypic
variance based on the three genomic modelsa for the chicken
datasetb.

Trait CADM ADM AM

VG*/VP VA/VP VD/VP VG/VP VA/VP

W12 0.503 0.536 0.049 0.585 0.554

EP 0.395 0.364 0.031 0.396 0.376

BMP 0.437 0.328 0.000 0.328 0.328
aCADM combining additive and dominance effects, ADM additive and
dominance effects, AM additive effects only.
bW12 body weight at the 12th week, EP eviscerating percentage, BMP
breast muscle percentage.

Table 2. Proportion of genetic variance based on the three genomic
modelsa for the pig genomic datasetb.

Trait CADM ADM AM

VG*/VP VA/VP VD/VP VG/VP VA/VP

T1 0.200 0.033 0.000 0.033 0.033

T2 0.276 0.263 0.015 0.278 0.264

T3 0.306 0.213 0.066 0.280 0.224
aCADM combining additive and dominance effects, ADM additive and
dominance effects, AM additive effects only.
bThe data concealed the actual trait names but used the symbols T1, T2,
and T3.
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DISCUSSION
The novel CADM model
The phenotypic performance of a trait is affected not only by
additive genetic effects but also by dominance and epistatic
effects (Radoev et al. 2008). Dominance effects include incomplete
dominance, complete dominance and overdominance, and these
effects vary for different traits. Typical genomic prediction models
with dominance genetic effects assume that dominance genetic
effects of all loci have the same variance and directly use genomic
markers to construct a dominance genetic relationship matrix
between individuals using the same matrix for all traits (Alves et al.
2020; Liu and Chen 2018; Su et al. 2012). In the present study, the
SNP loci are weighted according to the degree of deviation
between heterozygous and homozygous loci, which differentiates
the degrees of dominance effects on the trait between loci. The
assumption of the CADM model is closer to the true distribution of
dominance effects where dominance effects could be large for
some QTLs, and small or no effect for the others. This could be one
of the reasons that the CADM improves the accuracy of
predictions. To the best of our knowledge, this is the first study
of weighting dominance genetic effects for genomic prediction. In
addition, the method included the dominance effects by
integrating dominance and additive genetic effects into one
component without increasing the number of unknowns to be
estimated. Therefore, it is hypothesized that the model can
improve the accuracy of predictions. As expected, based on the
chicken and pig data examined here, our method greatly
improved the genomic predictive ability.
In this study, overdominance was not considered in the CADM

model. This may not completely match the actual situation. In fact,
the CADM model is available for overdominance by relaxing the
limitation (0 ≤ Cd ≤ 2) of heterozygous genotype coefficients.
However, according to our experience, relaxation sometimes
leads to problems with convergence or abnormal solutions caused
by the uncertainty of the estimated degree of dominance. Lower
MAF together with linkage disequilibrium will strongly affect the
estimates. In this study, we used MAF ≥ 0.01 because it is popularly
used threshold for editing marker genotype data in genomic
prediction. For calculating difference between three genotypes of
a locus, how to handle the low MAF loci is a challenge.

Genomic predictive ability
Since the dominance effect is an important factor influencing
phenotype, previous studies (Aliloo et al. 2016; Garcia-Baccino
et al. 2019; Heidaritabar et al. 2016; Su et al. 2012; Vitezica et al.
2018) have used models containing the dominance effect to
improve genomic predictive ability, but the improvements were
very small. Su et al. (2012) studied the dominance effect of pig

average daily gain and found that the genomic predictive ability
increased from 0.319 to 0.330 after the dominance effect was
included in the model. Garcia-Baccino et al. (2019) analyzed three
growth traits in American Angus males and found that the model
contained a dominance effect that did not affect genomic
predictive ability. Aliloo et al. (2016) studied genomic predictions
using models with dominance effects for four traits in Holstein and
Jersey cattle and found that only fat yield in Holstein showed a
slight increase in genomic predictive ability (from 0.270 to 0.273).
Heidaritabar et al. (2016) studied eight traits in a population of
laying hens and found that genomic predictive ability did not
improve after including dominance effects in the model. In
contrast to these studies, the present study proposed a novel
approach that employs a modification of heterozygous genotype
coefficients to integrate additive and dominance effects. The
method was validated using chicken and pig datasets, and the
average genomic predictive ability was improved by more
than 20%.
For different traits, the dominance effects on phenotypic

variation are different, so the combined additive and dom-
inance relationship matrix (Gad). Some traits may be mainly
affected by additive genetic effects, and some traits may be
mainly affected by nonadditive genetic effects (Xu 2013). The
CADM model could benefit for the traits in which dominance
effects are largely different between different QTLs. Currently,
breeding programs usually consider only additive genetic
effects, i.e., breeding values. However, for many economically
important traits, especially those related to fitness, which
usually have low heritability, dominance effects may play a
substantial role. For these traits, an improvement in the total
genetic values of a population is important. For this purpose,
the model proposed in this study would be a good alternative
for genomic prediction of total genetic values. The genetic
effect estimated from the CADM may be not suitable for
breeding based on additive genetic effect, but can be used for
optimizing the mating scheme. In commercial populations,
such as chicken, pig, and cattle, it is important to make use of
both additive genetic effect and heterosis. A matting design
based on results from the CADM would be a good alternative to
improve performance of a commercial population. Every
method has its limitations, the CADM model has to calculate
genotype matrix for each trait. In contrast, the AM and ADM
models only need to calculate the genotype matrix once and
can be used for all traits. The comparison with corrected
phenotype is unfavorable for AM model for which the
predictions do not include dominance effect. We include AM
model in this study, because AM is a classic genomic
prediction model.

Table 4. Genomic predictive abilitya for three modelsb from a fivefold
cross-validation analysis for the pig datasetc.

Trait CADM ADM AM

T1 0.562A ± 0.006 0.356B ± 0.007 0.356B ± 0.007

T2 0.719A ± 0.003 0.682B ± 0.003 0.682B ± 0.003

T3 0.688A ± 0.004 0.588C ± 0.004 0.595B ± 0.004
aPredictive ability was measured as the correlations between estimated
genetic values (additive genetic values or additive + dominance genetic
values) and adjusted phenotypes.
bCADM combining additive and dominance effects, ADM additive and
dominance effects, AM additive effects only.
cThe data concealed the actual trait names but used the symbols T1, T2,
and T3.
A–CWithin a row, estimates without a common superscript differ
significantly (P < 0.01), according to bootstrap and Bonferroni’s
methods test.

Table 3. Genomic predictive abilitya for three modelsb from a fivefold
cross-validation analysis for the chicken datasetc.

Trait CADM ADM AM

W12 0.585A ± 0.012 0.504B ± 0.014 0.502B ± 0.014

EP 0.472A ± 0.010 0.395C ± 0.012 0.398B ± 0.012

BMP 0.463A ± 0.011 0.318B ± 0.012 0.317B ± 0.012
aPredictive ability was measured as the correlations between estimated
genetic values (additive genetic values or additive + dominance genetic
values) and adjusted phenotypes.
bCADM combining additive and dominance effects, ADM additive and
dominance effects, AM additive effects only.
cW12 body weight at the 12th week, EP eviscerating percentage, BMP breast
muscle percentage.
A–CWithin a row, estimates without a common superscript differ
significantly (P < 0.01), according to bootstrap and Bonferroni’s
methods test.
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CONCLUSION
With our CADM model that combines additive and dominance
genetic effects through defining heterozygous genotype coeffi-
cients, the abilities of genomic prediction are greatly improved.
The results from this study indicate that dominant genetic variation
is one of the important sources causing phenotypic variation, and
the novel prediction model integrating dominance effects can
significantly improve the accuracy of genomic prediction.
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