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Linkage disequilibrium (LD) estimates are often calculated genome-wide for use in many tasks, such as SNP pruning and LD decay
estimation. However, in the presence of genotype uncertainty, naive approaches to calculating LD have extreme attenuation biases,
incorrectly suggesting that SNPs are less dependent than in reality. These biases are particularly strong in polyploid organisms, which
often exhibit greater levels of genotype uncertainty than diploids. A principled approach using maximum likelihood estimation with
genotype likelihoods can reduce this bias, but is prohibitively slow for genome-wide applications. Here, we present scalable moment-
based adjustments to LD estimates based on the marginal posterior distributions of the genotypes. We demonstrate, on both simulated
and real data, that these moment-based estimators are as accurate as maximum likelihood estimators, but are almost as fast as naive
approaches based only on posterior mean genotypes. This opens up bias-corrected LD estimation to genome-wide applications. In
addition, we provide standard errors for these moment-based estimators. All methods discussed in this manuscript are implemented in
the ldsep package, available on the Comprehensive R Archive Network (https://cran.r-project.org/package=ldsep).
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INTRODUCTION
Pairwise linkage disequilibrium (LD), the statistical association
between alleles at two different loci, has applications in genotype
imputation (Wen and Stephens 2010), genome-wide association
studies (Zhu and Stephens 2018), genomic prediction (Wientjes
et al. 2013), population genetics (Slatkin 2008), and many other
tasks (Sved and Hill 2018). LD is often estimated from next-
generation sequencing technologies, where the genotypes and
haplotypes are not known with certainty (Gerard et al. 2018). Thus,
researchers typically use estimated genotypes, such as posterior
mean genotypes (Fox et al. 2019), to estimate LD. However, this
can cause biased LD estimates, attenuated toward zero, implying
that loci are less dependent than in reality (Gerard 2021).
This bias is particularly strong in polyploids, organisms with

more than two complete sets of chromosomes. Unlike diploids,
polyploids exhibit multiple levels of heterozygosity. For example,
at a biallelic locus with alleles A and a, a heterozygous diploid
would have genotype Aa, whereas a heterozygous tetraploid
might have genotypes Aaaa, AAaa, or AAAa. These multiple levels
of heterozygosity make polyploid dosage more difficult to
estimate, and exacerbate the impact on estimation of data-
specific quirks, such as allelic bias and overdispersion (Gerard et al.
2018). This all increases genotype uncertainty in polyploid
organisms, increasing the effect of LD attenuation. Therefore, in
Gerard (2021) we derived maximum likelihood estimates (MLEs)
that have lower bias and are consistent estimates of LD. This
approach was particularly helpful for polyploids.
Unfortunately, the MLE approach is prohibitively slow. Research-

ers typically calculate pairwise LD at genome-wide scales, and the
MLE approach takes on the order of a tenth of a second. Thus, for

many genome-wide applications, containing millions of SNPs, LD
estimation using the MLE approach would take years of
computation time. This is not conducive to large-scale
applications.
Here, we derive scalable approaches to estimate LD that

account for genotype uncertainty (“Materials and methods”). Our
methods use only the first two moments of the marginal posterior
genotype distribution for each individual at each locus, which are
often provided or easily obtainable from many genotyping
programs. We calculate sample moments from these posterior
moments, and use these to multiplicatively inflate naive LD
estimates. We show, through simulations (“Simulations”) and real
data (“LD estimates for Solanum tuberosum”), that our estimates
can reduce attenuation bias and improve LD estimates when
genotypes are uncertain. All calculations have computational
complexities that are linear in the sample size, and so these
estimates are scalable to genome-wide applications.

MATERIALS AND METHODS
In this section, we will define moment-based estimators of the LD
coefficient Δ (Lewontin and Kojima 1960), the standardized LD coefficient
Δ0 (Lewontin 1964), and the Pearson correlation ρ (Hill and Robertson
1968). There are two types of LD measures considered in the literature,
“haplotypic” (called “gametic” in the diploid literature) and “composite.”
Haplotypic LD measures are more familiar, representing the association
between loci that reside on the same haplotype (Hedrick et al. 1978),
whereas composite LD measures aggregate the associations between
alleles on all haplotypes between two loci (Cockerham and Weir 1977; Weir
1979). As obtaining estimates of haplotypic LD from unphased genotypes
typically requires additional assumptions (such as Hardy–Weinberg
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equilibrium), we will only consider estimating composite measures of LD.
Advantageously, these composite measures are appropriate LD measures
for generic autopolyploid, allopolyploid, and segmental allopolyploid
populations, even in the absence of Hardy–Weinberg equilibrium (Gerard
2021). We will also only consider biallelic loci, where the genotype for each
individual is the dosage (from 0 to the ploidy) of one of the two alleles.
We will now review these composite measures of LD at biallelic loci. Let

G= (GA, GB) be the random variable of genotypes of a K-ploid individual at
loci A and B, where each Gj is the dosage (from 0 to K) of an allele at locus j.
A sample of individuals, G1, G2, …, Gn is assumed to be independent and
identically distributed to G. The composite measure of correlation between
loci A and B is just the Pearson correlation,

ρ ¼ corðGA;GBÞ: (1)

The composite LD coefficient is the covariance divided by the ploidy K,

Δ ¼ 1
K
covðGA;GBÞ: (2)

We divide by the ploidy in Eq. (2) so that, for a population in
Hardy–Weinberg equilibrium, the composite LD coefficient equals the
well-known haplotypic LD coefficient. The possible values of Δ are
bounded, with the size of this bound depending on the allele frequencies
at each locus, making it difficult to compare LD across loci. To create a
measure of LD that is less dependent on allele frequencies, we have the
composite standardized LD coefficient,

Δ0 ¼ Δ=Δm; where (3)

Δm ¼ minfE½G�AE½G�B; ðK � E½G�AÞðK � E½G�BÞg=K2 if Δ< 0; and

minfE½G�AðK � E½G�BÞ; ðK � E½G�AÞE½G�Bg=K2 if Δ> 0:

(
(4)

One can show that Δ0 is free to vary between −K and K, but is constrained
between −1 and 1 for populations in Hardy–Weinberg equilibrium. For
further details of these measures see Gerard (2021).
We wanted to create LD estimators of Eqs. (1)–(3) that account for

genotype uncertainty while also being agnostic to the genotyping
technology, e.g., microarrays (Fan et al. 2003), next-generation sequencing
(Baird et al. 2008; Elshire et al. 2011), or mass spectrometry (Oeth et al.
2009). One way to do this is to use only the genotype posterior
distributions for each individual, which are often provided by different
genotyping software that analyze data from different genotyping
technologies (e.g. Clark et al. 2019; Gerard and Ferrão 2019; Gerard et al.
2018; Serang et al. 2012; Voorrips et al. 2011; Zych et al. 2019). We will thus
assume that the user provides the posterior means and variances for the
genotypes for each individual at two loci, which can be easily obtained
from the full posterior distributions for each individual. An advantage of
this approach is its modularity. That is, as genotyping platforms improve
and become better calibrated, the approach below will still be usable
without having to create a tailor-made method to estimate LD directly
from these new genotyping platforms.
To define our estimators of LD, let XiA and XiB be the posterior mean

genotypes at loci A and B for individual i∈ {1, …, n}. Let YiA and YiB be the
posterior variances of genotypes at loci A and B for individual i. Our
estimators are based entirely on the following sample moments of these
posterior moments, which may be calculated in linear time in the sample
size, n.

uxA :¼ 1
n

Xn
i¼1

XiA; uxB :¼ 1
n

Xn
i¼1

XiB; (5)

vxA :¼ 1
n� 1

Xn
i¼1

ðXiA � uxAÞ2; vxB :¼ 1
n� 1

Xn
i¼1

ðXiA � uxBÞ2; (6)

cx :¼ 1
n� 1

Xn
i¼1

ðXiA � uxAÞðXiB � uxBÞ; (7)

uyA :¼ 1
n

Xn
i¼1

YiA; and uyB :¼ 1
n

Xn
i¼1

YiB: (8)

For a K-ploid species, our LD estimators, which we derive in Section S1 of
the Supplementary Material, are as follows. The estimated LD coefficient is

as follows:

Δ̂ :¼ uyA þ vxA
vxA

� �
uyB þ vxB

vxB

� �
cx
K

� �
: (9)

The estimated Pearson correlation is as follows:

ρ̂ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uyA þ vxA

vxA

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uyB þ vxB

vxB

r
cxffiffiffiffiffiffiffiffiffiffiffiffi
vxAvxB

p : (10)

Note that cx=
ffiffiffiffiffiffiffiffiffiffiffiffi
vxAvxB

p
is the sample Pearson correlation between posterior

mean genotypes. The estimated standardized LD coefficient is as follows:

Δ̂0 :¼ Δ̂=Δ̂m; where (11)

Δ̂m :¼ min
�
uxAuxB; ðK � uxAÞðK � uxBÞ

�
=K2 if cx < 0; and

min
�
uxAðK � uxBÞ; ðK � uxAÞuxB

�
=K2 if cx > 0:

(
(12)

We can compare our new estimators to those researchers typically use in
practice. Since the population LD parameters (1)–(3) are population
moments of the individual genotypes, researchers typically set XiA and XiB
as estimates of GiA and GiB, and then use the sample moments of the XiA’s
and XiB’s to estimate these population moments. That is

ρ̂ðnaiveÞ :¼ cxffiffiffiffiffiffiffiffiffiffiffiffi
vxAvxB

p ; (13)

Δ̂
ðnaiveÞ

:¼ 1
K
cx ; and (14)

Δ̂0ðnaiveÞ :¼ Δ̂
ðnaiveÞ

Δ̂m
: (15)

Comparing Eqs. (13)–(15) to Eqs. (9)–(11), we see that our new estimators
take the naive estimators most researchers use in practice and inflate these
by a multiplicative effect. Such multiplicative effects are sometimes called
“reliability ratios” in the measurement error models literature (Fuller 2009).
Standard errors are important for hypothesis testing (Brown 1975), read-

depth suggestions (Maruki and Lynch 2014), and shrinkage (Dey and
Stephens 2018). Because estimators (9)–(11) are functions of sample
moments, deriving their standard errors can be accomplished by
appealing to the central limit theorem, followed by an application of the
delta method (Section S2 of the Supplementary Material).
Section S3 of the Supplementary Material contains practical considera-

tions for improving our estimates of LD. We apply hierarchical shrinkage
(Stephens 2016) on the log of the reliability ratios to improve estimation
performance (Section S3.1). As we have observed unstable behavior when
SNPs are mostly monoallelic, we apply a thresholding strategy to mitigate
the effects of unusually large reliability ratios (Section S3.2). We also
truncate LD estimates when sampling variability causes estimates (9)–(11)
to lie outside their theoretical boundaries (Section S3.3). Section S4 of the
Supplementary Material contains some theoretical discussions on why our
methods perform as well as the MLE in the simulations of Section 3.1.
All methods are implemented in the ldsep package on the Comprehen-

sive R Archive Network https://cran.r-project.org/package=ldsep.

RESULTS
Simulations
Comparison to the MLE and the standard approach. We compared
our moment-based estimators (9)–(11) to those of the MLE of
Gerard (2021) as well as the naive estimators that calculate the
sample covariance and sample correlation between posterior
mean genotypes at two loci (13)–(15). Each replication, we
generated genotypes for n∈ {10, 100, 1000} individuals with
ploidy K∈ {2, 4, 6, 8} under Hardy–Weinberg equilibrium at two
loci with major allele frequencies (pA, pB)∈ {(0.5, 0.5), (0.5, 0.75),
(0.9, 0.9)} and Pearson correlation ρ∈ {0, 0.5, 0.9}. We then used
updog’s rflexdog() function (Gerard and Ferrão 2019; Gerard
et al. 2018) to generate read-counts at read-depths of either 10 or
100, a sequencing error rate of 0.01, an overdispersion value of
0.01, and no allele bias. Updog was then used to generate
genotype likelihoods and genotype posterior distributions for
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each individual at each SNP. These were then fed into ldsep to
obtain the MLE, our new moment-based estimator, and the naive
estimator. Simulations were replicated 200 times for each unique
combination of simulation parameters.
The accuracy of estimating ρ2 when pA= pB= 0.5 at a read-

depth of 10 is presented in Fig. 1. The results for other scenarios
are similar and may be found in Figs. S5–S21 of the Supplemen-
tary Material. We see that the moment-based estimator and the
MLE perform comparably, even for small read-depth and sample
size. The naive estimator has a strong attenuation bias toward
zero. This bias is particularly prominent for higher ploidy levels. For
example, for an octoploid species where the true ρ2 is 0.81, the
naive estimator appears to converge to a ρ2 estimate of around
0.25. This bias does not disappear with increasing sample size.
Estimated standard errors are reasonably well-behaved when the
sample size is moderate to large (n= 100 or 1000) but can be
unstable for very small sample sizes (n= 10) (Figs. S1 and S2 of the
Supplementary Material). This is not unexpected as the standard
errors rely on asymptotic approximations (Section S2).
Additional simulation results, exploring our estimators when

applied to rare variants, are presented in Section S5 of the
Supplementary Material. The conclusions of that section are the
same as here: the naive approach performs better at complete
linkage equilibrium due to its attenuation bias, but performs
worse at larger ploidies and larger levels of LD. However, we note
that LD between rare variants is, in general, difficult to estimate.

The effect of using different genotyping strategies. Our new
methods rely on accurate genotyping priors, which can be
obtained adaptively using empirical Bayes approaches using
sufficiently many samples. We therefore wished to study the

effects of using either a fixed prior or a different genotyping
platform. To do this, we generated posterior genotype probabil-
ities under four scenarios: (i) the empirical Bayes approach of
estimating the prior implemented by updog (Gerard and Ferrão
2019; Gerard et al. 2018), (ii) the empirical Bayes approach of
estimating the prior implemented by polyRAD (Clark et al. 2019),
(iii) a Bayesian approach assuming an unrealistic uniform prior on
the genotypes, as implemented by updog, and (iv) a Bayesian
approach assuming an unrealistic “horseshoe-like” prior on the
genotypes that puts most mass on genotypes 0 and K, as
implemented by updog. Specifically, for the “horseshoe-like”
prior, the prior probability of a dosage of 0 or K was set to 0.45
each and the prior probability of dosages 1, …, (K− 1) was set to
0.1/(K− 1) each.
We ran simulations under the same parameter settings of

“Comparison to the MLE and the standard approach”, where
genotyping uncertainty had the greatest effect on LD estimation:
higher ploidy species (K= 8) with pA= pB= 0.5 and a Pearson
correlation ρ= 0.9. We simulated n∈ {10, 100, 1000, 10000}
individuals, with a sequencing depth of 5, 10, or 100. As in
“Comparison to the MLE and the standard approach”, we
generated genotypes and read-counts using the updog software
at a sequencing error rate of 0.01, an overdispersion parameter of
0.01, and no allele bias. We then used the above four procedures
to generate genotype posterior probabilities. These were fed into
ldsep to obtain estimates of ρ. We replicated each simulation
setting 200 times.
The results are presented in Fig. 2. There, we find that for larger

sequencing depths (e.g., ≈100×), one can essentially use a uniform
prior and normalize the genotype likelihoods to be posterior
probabilities. The genotype posteriors using this simple approach
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Fig. 1 Estimate of ρ2 (y-axis) for the maximum likelihood estimator (Gerard 2021) (MLE), our new moment-based estimator (Eq. (10))
(MoM), and the naive squared sample correlation coefficient between posterior mean genotypes (Eq. (13)) (Naive). The x-axis indexes the
sample size, the row-facets index the ploidy, and the column-facets index the true ρ2, which is also presented by the horizontal dashed red
line. These simulations were performed using a read-depth of 10, and major allele frequencies of 0.5 at each locus. The naive estimator
presents a strong attenuation bias toward 0, particularly for higher ploidy regimes.
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are close enough to those using adaptive approaches to provide
decent LD estimates. However, for smaller read-depths, using a
fixed prior has a deleterious effect. In such cases, one should use
an adaptive genotyping approach that can consistently estimate
the prior for larger sample sizes, even at lower read-depths. Many
approaches that accomplish this exist, but for our analyses we
found that two designed specifically for sequencing data work
well in practice: updog (Gerard and Ferrão 2019; Gerard et al.
2018) and polyRAD (Clark et al. 2019). For non-sequencing data,
there exist adaptive methods as well (Serang et al. 2012; Voorrips
et al. 2011; Zych et al. 2019).

LD estimates for Solanum tuberosum
We evaluated our methods on the autotetraploid potato (Solanum
tuberosum, 2n= 4x= 48) genotyping-by-sequencing data from
Uitdewilligen et al. (2013). We used updog (Gerard and Ferrão
2019; Gerard et al. 2018) to obtain the posterior moments for each
individual’s genotype at each SNP on a single super scaffold
(PGSC0003DMB000000192). To remove monoallelic SNPs, we
filtered out SNPs with allele frequencies either >0.95 or <0.05,
and filtered out SNPs with a variance of posterior means <0.05.
This resulted in 2108 SNPs. We then estimated the squared
correlation between each SNP using either the naive approach of
calculating the sample Pearson correlation between posterior
means, or using our new moment-based approach (Eq. (10)).
Our estimators are scalable. On a 1.9 GHz quad-core PC running

Linux with 32 GB of memory, it took a total of 1.9 seconds to
estimate all pairwise correlations using our new moment-based
approach, which is a small increase over the 0.7 s it took to
estimate all pairwise correlations using the naive approach. In

Gerard (2021), we found that the MLE approach took about 0.1 s
for each pair of SNPs for a tetraploid individual. Extrapolating this
to 2108 SNPs would indicate that the MLE approach would take
about 2.5 days of computation time to calculate all pairwise LD
estimates on this dataset.
The histogram of estimated reliability ratios is presented in Fig. 3.

We see there that the reliability ratios of most SNPs only increase
their correlation estimates by <10%. But a not insignificant portion
have reliability ratios that increase the correlation estimates by
more than 10%. To evaluate the LD estimates of high reliability ratio
SNPs, we calculated the MLEs for ρ2 between the twenty SNPs with
the largest reliability ratios. A pairs plot for ρ2 estimates between
the three approaches is presented in Fig. 4. We see there that the
MLE and new moment-based approach result in very similar ρ2

estimates, while the naive approach using posterior means results
in much smaller ρ2 estimates.

DISCUSSION
It has been known since at least the time of Spearman that the
sample correlation coefficient (or, similarly, the ordinary least
squares estimator in simple linear regression) is attenuated in the
presence of uncertain variables (Spearman 1904). Methods to
adjust for this bias include assuming prior knowledge on the
measurement variances or the ratio of measurement variances
(resulting from, for example, repeated measurements on the same
individuals) (Degracie and Fuller 1972; Koopmans 1937), using
instrumental variables (Carter and Fuller 1980), and using
distributional assumptions (Pal 1980). See Fuller (2009) for a
detailed introduction to this vast field. In order to accommodate
different data types (Baird et al. 2008; Elshire et al. 2011; Fan et al.
2003; Oeth et al. 2009) and different genotyping programs (Clark
et al. 2019; Gerard and Ferrão 2019; Gerard et al. 2018; Serang
et al. 2012; Voorrips et al. 2011; Zych et al. 2019), and therefore
increase the generality of our methods, we limited ourselves to
using just posterior genotype probabilities to calculate LD. This
excluded using these previous approaches. Our solution, then, was
to use sample moments of marginal posterior moments which, to
our knowledge, has never been proposed before.
It is natural to ask if our methods could be used to account for

uncertain genotypes in genome-wide association studies. However,
the moment-based techniques we used in this manuscript, when
applied to simple linear regression with an additive effects model
(where the SNP effect is proportional to the dosage), result in the
standard ordinary least squares estimates when using the posterior
mean as a covariate (Section S6 of the Supplementary Material). This
supports using the posterior mean as a covariate in simple linear
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Fig. 2 Estimates of ρ using Eq. (10) (y-axis) when the true ρ is 0.9 (red dashed line) for different sample sizes (x-axis), different read-
depths (facets) and different methods for obtaining the genotype posterior probabilities. The updog software (Gerard and Ferrão 2019;
Gerard et al. 2018) was used either with an empirical Bayes approach to estimate the prior (“updog”), a fixed uniform prior (“uniform”) or a
fixed unrealistic “horseshoe-like” prior (“horseshoe”). The polyRAD software (Clark et al. 2019) was also used to obtain posterior genotype
probabilities (“polyRAD”).
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Fig. 3 Reliability ratio estimates. Histogram of estimated reliability
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regression with an additive effects model. This is not to say, however,
that using the posterior mean is also appropriate for more
complicated models of gene action (Rosyara et al. 2016), or for
nonlinear models (Carroll et al. 2006). Developing methods to
account for genotype uncertainty in these more complicated settings
is a research interest of the author, and a topic for future work.
We would not recommend using our methods to analyze

diploid genomes. As seen in the simulations of “Comparison to the
MLE and the standard approach,” diploid approaches that do not
account for genotype uncertainty perform fine, even at low
depths, because genotype uncertainty is much less of an issue for
diploids. Furthermore, phasing approaches are well-established
and highly effective in the diploid literature (Browning and
Browning 2007; Li et al. 2010; Scheet and Stephens 2006; Swarts
et al. 2014), and our approach would likely not perform
comparatively well against haplotype-aware LD estimation meth-
ods that use such phased information. However, in polyploids,
haplotype estimation is much harder to achieve (Cheng et al.
2021; Mollinari and Garcia 2019; Shen et al. 2016; Zheng et al.
2016), and so accurate approaches that leverage only read-based
information between two SNPs are important.
In this article, we demonstrated that naive LD estimates are

typically attenuated toward zero in higher ploidy organisms due
to the effects of genotype uncertainty. To correct for this bias, we
presented moment-based approaches that perform as well as
principled likelihood-based approaches, but only take a fraction of
the computation time. Possible future directions include (i)
extending our methods to multiallelic loci and (ii) evaluating the
downstream consequences of using our improved LD estimates,
such as for effective population size estimation (Ragsdale and
Gravel 2019; Waples 2006) or admixture estimation (Loh et al.
2013). Our moment-based estimators will allow researchers to use
de-biased LD estimators for such tasks at scale.

DATA AVAILABILITY
All methods discussed in this manuscript are implemented in the ldsep package,
available on the Comprehensive R Archive Network (https://cran.r-project.org/
package=ldsep) under a GPL-3 license. Scripts to reproduce the results of this research
are available on Zenodo (https://doi.org/10.5281/zenodo.4543473). All datasets used in
this manuscript are publicly available (Uitdewilligen et al. 2013) and may be
downloaded from: https://doi.org/10.1371/journal.pone.0062355.s004, https://doi.org/
10.1371/journal.pone.0062355.s007, https://doi.org/10.1371/journal.pone.0062355.s009,
and https://doi.org/10.1371/journal.pone.0062355.s010.

REFERENCES
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008) Rapid SNP

discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):1–7
Brown A (1975) Sample sizes required to detect linkage disequilibrium between two

or three loci. Theor Popul Biol 8(2):184–201
Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and

missing-data inference for whole-genome association studies by use of loca-
lized haplotype clustering. Am J Hum Genet 81(5):1084–1097

Carroll R, Ruppert D, Stefanski L, Crainiceanu C (2006) Measurement error in nonlinear
models: a modern perspective, second edition. Chapman & Hall/CRC Mono-
graphs on Statistics & Applied Probability. CRC Press, Boca Raton, FL

Carter RL, Fuller WA (1980) Instrumental variable estimation of the simple errors-in-
variables model. J Am Stat Assoc 75(371):687–692

Cheng H, Concepcion GT, Feng X, Zhang H, Li H (2021) Haplotype-resolved de novo
assembly using phased assembly graphs with hifiasm. Nat Methods 18(2):170–175

Clark LV, Lipka AE, Sacks EJ (2019) polyRAD: genotype calling with uncertainty from
sequencing data in polyploids and diploids. G3: Genes, Genomes, Genet 9
(3):663–673

Cockerham CC, Weir BS (1977) Digenic descent measures for finite populations.
Genet Res 30(2):121–147

Degracie JS, Fuller WA (1972) Estimation of the slope and analysis of covariance when
the concomitant variable is measured with error. J Am Stat Assoc 67
(340):930–937

Dey KK, Stephens M (2018) CorShrink: empirical Bayes shrinkage estimation of cor-
relations, with applications. bioRxiv

MLE MoM Naive

M
LE

M
oM

N
aive

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4 0.6 0.8

0

20

40

60

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Fig. 4 Pairs plot for ρ2 estimates between the twenty SNPs from Uitdewilligen et al. (2013) with the largest estimated reliability ratios
when using either maximum likelihood estimation (MLE) (Gerard 2021), our new moment-based approach (Eq. (10)) (MoM), or the naive
approach using just posterior means (Naive). The dashed line is the y= x line. The MLE and the moment-based approach result in much
more similar LD estimates.

D. Gerard

361

Heredity (2021) 127:357 – 362

https://cran.r-project.org/package=ldsep
https://cran.r-project.org/package=ldsep
https://doi.org/10.5281/zenodo.4543473
https://doi.org/10.1371/journal.pone.0062355.s004
https://doi.org/10.1371/journal.pone.0062355.s007
https://doi.org/10.1371/journal.pone.0062355.s007
https://doi.org/10.1371/journal.pone.0062355.s009
https://doi.org/10.1371/journal.pone.0062355.s010


Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A
robust, simple genotyping-by-sequencing (GBS) approach for high diversity
species. PLoS ONE 6(5):1–10

Fan J, Oliphant A, Shen R, Kermani BG, García F, Gunderson KL et al. (2003) Highly
parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

Fox EA, Wright AE, Fumagalli M, Vieira FG (2019) ngsLD: evaluating linkage dis-
equilibrium using genotype likelihoods. Bioinformatics 35(19):3855–3856

Fuller WA (2009) Measurement error models. John Wiley & Sons, New York, NY
Gerard D (2021) Pairwise linkage disequilibrium estimation for polyploids. Mol Ecol

Resour 21(4):1230–1242
Gerard D, Ferrão LFV (2019) Priors for genotyping polyploids. Bioinformatics 36

(6):1795–1800
Gerard D, Ferrão LFV, Garcia AAF, Stephens M (2018) Genotyping polyploids from

messy sequencing data. Genetics 210(3):789–807
Hedrick P, Jain S, Holden L (1978) Multilocus systems in evolution. In: Hecht MK, Steere

WC, Wallace B (eds), Evolutionary biology, vol 11. Springer, New York, NY, p 101–184
Hill W, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl

Genet 38(6):226–231
Koopmans TC (1937) Linear regression analysis of economic time series, vol 20. De

erven F. Bohn nv, Haarlem, Netherlands
Lewontin R (1964) The interaction of selection and linkage. I. general considerations;

heterotic models. Genetics 49(1):49
Lewontin RC, Kojima K (1960) The evolutionary dynamics of complex polymorphisms.

Evolution 14(4):458–472
Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype

data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34
(8):816–834

Loh P, Lipson M, Patterson N, Moorjani P, Pickrell JK, Reich D et al. (2013) Inferring
admixture histories of human populations using linkage disequilibrium.
Genetics 193(4):1233–1254

Maruki T, Lynch M (2014) Genome-wide estimation of linkage disequilibrium from
population-level high-throughput sequencing data. Genetics 197(4):1303–1313

Mollinari M, Garcia AAF (2019) Linkage analysis and haplotype phasing in experi-
mental autopolyploid populations with high ploidy level using hidden markov
models. G3: Genes, Genomes, Genet 9(10):3297–3314

Oeth P, del Mistro G, Marnellos G, Shi T, van den Boom D (2009) Qualitative and
quantitative genotyping using single base primer extension coupled with
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MassARRAY®). In: Komar A (ed) Single nucleotide polymorphisms. Humana
Press, Totowa, NJ, p 307–343

Pal M (1980) Consistent moment estimators of regression coefficients in the presence
of errors in variables. J Econom 14(3):349–364

R Core Team (2021). R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria

Ragsdale AP, Gravel S (2019) Unbiased estimation of linkage disequilibrium from
unphased data. Mol Biol Evol 37(3):923–932

Rosyara UR, De Jong WS, Douches DS, Endelman JB (2016) Software for genome-wide
association studies in autopolyploids and its application to potato. Plant Genome 9
(2):1–10

Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale
population genotype data: applications to inferring missing genotypes and
haplotypic phase. Am J Hum Genet 78(4):629–644

Serang O, Mollinari M, Garcia AAF (2012) Efficient exact maximum a posteriori com-
putation for Bayesian SNP genotyping in polyploids. PLoS ONE 7(2):1–13

Shen J, Li Z, Chen J, Song Z, Zhou Z, Shi Y (2016) SHEsisPlus, a toolset for genetic
studies on polyploid species. Sci Rep 6:24095

Slatkin M (2008) Linkage disequilibrium-understanding the evolutionary past and
mapping the medical future. Nat Rev Genet 9(6):477

Spearman C (1904) The proof and measurement of association between two things.
Am J Psychol 15(1):72–101

Stephens M (2016) False discovery rates: a new deal. Biostatistics 18(2):275–294
Sved JA, Hill WG (2018) One hundred years of linkage disequilibrium. Genetics 209

(3):629–636
Swarts K, Li H, Navarro JAR, An D, Romay MC, Hearne S et al. (2014) Novel methods to

optimize genotypic imputation for low-coverage, next-generation sequence
data in crop plants. Plant Genome 7(3):1–12

Uitdewilligen JGAML, Wolters AA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013)
A next-generation sequencing method for genotyping-by-sequencing of highly
heterozygous autotetraploid potato. PLoS ONE 8(5):1–14

Voorrips RE, Gort G, Vosman B (2011) Genotype calling in tetraploid species
from bi-allelic marker data using mixture models. BMC Bioinform
12(1):172

Waples RS (2006) A bias correction for estimates of effective population size based on
linkage disequilibrium at unlinked gene loci. Conserv Genet 7(2):167

Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35(1):235–254
Wen X, Stephens M (2010) Using linear predictors to impute allele frequencies from

summary or pooled genotype data. Ann Appl Stat 4(3):1158–1182
Wientjes YCJ, Veerkamp RF, Calus MPL (2013) The effect of linkage disequilibrium and

family relationships on the reliability of genomic prediction. Genetics 193
(2):621–631

Zheng C, Voorrips RE, Jansen J, Hackett CA, Ho J, Bink MC (2016) Probabilistic mul-
tilocus haplotype reconstruction in outcrossing tetraploids. Genetics 203
(1):119–131

Zhu X, Stephens M (2018) Large-scale genome-wide enrichment analyses identify
new trait-associated genes and pathways across 31 human phenotypes. Nat
Commun 9(1):1–14

Zych K, Gort G, Maliepaard CA, Jansen RC, Voorrips RE (2019) FitTetra 2.0—improved
genotype calling for tetraploids with multiple population and parental data
support. BMC Bioinform 20(1):148

ACKNOWLEDGEMENTS
Most analyses were performed using the R statistical language (R Core Team 2021).

AUTHOR CONTRIBUTIONS
David Gerard developed the methodology, wrote the software, implemented the
study, and wrote the manuscript.

COMPETING INTERESTS
The author declares no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41437-021-00462-5.

Correspondence and requests for materials should be addressed to D.G.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

D. Gerard

362

Heredity (2021) 127:357 – 362

https://doi.org/10.1038/s41437-021-00462-5
http://www.nature.com/reprints
http://www.nature.com/reprints

	Scalable bias-corrected linkage disequilibrium estimation under genotype uncertainty
	Introduction
	Materials and methods
	Results
	Simulations
	Comparison to the MLE and the standard approach
	The effect of using different genotyping strategies

	LD estimates for Solanum tuberosum

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




