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Abstract
An understanding of genetic structure is essential for answering many questions in population genetics. However, complex
population dynamics and scale-dependent processes can make it difficult to detect if there are distinct genetic clusters present
in natural populations. Inferring discrete population structure is particularly challenging in the presence of continuous
genetic variation such as isolation by distance. Here, we use the plant species Mimulus guttatus as a case study for
understanding genetic structure at three spatial scales. We use reduced-representation sequencing and marker-based
genotyping to understand dispersal dynamics and to characterise genetic structure. Our results provide insight into the spatial
scale of genetic structure in a widespread plant species, and demonstrate how dispersal affects spatial genetic variation at the
local, regional, and range-wide scale. At a fine-spatial scale, we show dispersal is rampant with little evidence of spatial
genetic structure within populations. At a regional-scale, we show continuous differentiation driven by isolation by distance
over hundreds of kilometres, with broad geographic genetic clusters that span major barriers to dispersal. Across Western
North America, we observe geographic genetic structure and the genetic signature of multiple postglacial recolonisation
events, with historical gene flow linking isolated populations. Our genetic analyses showM. guttatus is highly dispersive and
maintains large metapopulations with high intrapopulation variation. This high diversity and dispersal confounds the
inference of genetic structure, with multi-level sampling and spatially-explicit analyses required to understand population
history.

Introduction

Describing the pattern of genetic structure is the foundation
for many population genetic studies. The cornerstone for
understanding population genetic structure is the expecta-
tion that individuals become more genetically distinct, or
less genetically related, with increasing geographic dis-
tance. Indeed, a pattern of ‘isolation by distance’ is often
used as a null model of genetic differentiation (Malecot
1948; Slatkin 1993; Wright 1943). This pattern arises
because at increased distances, genetic drift and natural
selection occur faster than dispersal can homogenise
population differentiation. However, several challenges
occur when studying population structure across species-
wide distributions. In particular, the degree to which pat-
terns represent individual dispersal and genetic drift versus
large-scale population movements like recolonisation from
glacial refugia can generate patterns that are hard to inter-
pret (Slatkin 1987).

The development of new sequencing approaches make
the study of natural populations more accessible (Ekblom
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and Galindo 2011), and various methods allow genetic
clusters to be detected and visualised across geographic
space (Falush et al. 2003; Hubisz et al. 2009; Pritchard et al.
2000). However, the ease with which genetic structure can
be detected is somewhat at odds with the known complexity
of genetic variation in natural populations. Detecting clearly
defined geographic genetic units is expected to be challen-
ging against the background of continuous genetic variation
often present in nature. As such, group assignment algo-
rithms may detect artificial genetic clusters in populations
characterised by isolation by distance, especially if the
sampling of populations is aggregated (Pritchard et al.
2000). Nevertheless, a recent meta-analysis has shown that
isolation by distance is present in 60% of population genetic
datasets, with more than half these studies continuing to use
the programme STRUCTURE without accounting for
geographic distances between sampling locations (Perez
et al. 2018). The long-running issue of identifying ‘clusters
versus clines’ motivated the development of new methods
that account for spatial information of samples when esti-
mating genetic structure (Bradburd et al. 2016, 2018; Pet-
kova et al. 2016; House and Hahn 2018), and these methods
may be more accurate in detecting distinct genetic clusters
in the presence of continuous patterns of genetic differ-
entiation. However, only a few studies to date have applied
these methods (e.g., Murray et al. 2019; Whelan et al.
2019).

A further issue with studying genetic structure is going
from pattern to process, when a range of scale-dependent
and temporally variable processes together shape the spatial
arrangement of genetic variation (Schregel et al. 2018). At a
local scale, the amount of dispersal and the strength and
pattern of microgeographic selection, are expected to jointly
affect spatial dynamics and patterns of relatedness (Veke-
mans and Hardy 2004). At the population level, barriers to
dispersal and regional selection will determine

metapopulation structure and consequently evolutionary
dynamics (Husband and Spencer 1996). At the landscape-
level, long-distance dispersal is expected to be uncommon,
but even rare long-distance dispersal can introduce impor-
tant allelic variation and affect broad-scale patterns of
relatedness (Nathan 2006). Thus, studies that focus on a
single spatial scale may bias their inferences toward a par-
ticular biological process. Therefore, to obtain a full
understanding of the evolutionary and ecological processes
that shape genetic variation and structure, studies should
integrate over multiple scales (Schregel et al. 2018). How-
ever, such studies are rare.

Here, we investigate the spatial scale of genetic structure
and address how dispersal interacts with other scale-
dependent processes to determine genetic structure in the
plant species Mimulus guttatus (syn. Erythranthe guttata;
see Lowry et al. 2019 for nomenclature). While M. guttatus
is a widely used study system for investigating diverse
biological processes, from the evolution of flower colour
pigmentation and patterns (e.g., Yuan et al. 2016; Twyford
et al. 2018), to adaptation to harsh environments (e.g.,
Lowry et al. 2009; Hendrick et al. 2016), there are still
major gaps in our knowledge of the structure of genetic
variation in natural populations. Previous studies have
shown populations of M. guttatus are strongly differentiated
for adaptive traits and morphological characters (Friedman
et al. 2015; Nesom 2014), and population genetic diver-
gence in this species is high (FST ~ 0.5; Lowry et al. 2008;
Puzey et al. 2017), therefore we may expect highly struc-
tured populations, with localised genetic clusters and lim-
ited gene flow. In contrast, owing to its high dispersal
potential through seeds and vegetative fragments (Lindsay
1964; Truscott et al. 2006; Vickery et al. 1986; Waser et al.
1982), M. guttatus has spread to the farthest reaches of the
Aleutian Islands in Alaska and rapidly invaded large areas
of north-western Europe and New Zealand over the past c.
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Fig. 1 Geographic locations and spatial scale of study of Mimulus
guttatus populations. (a) Fine-scale geographic sampling at two
locations in California. Five transects were sampled at different spa-
cings in population FOR (top panel) and ELD (bottom panel). Yellow
dots indicate transects of 20 individual samples at 30 cm spacing; inset
in top panel highlights three closely spaced transects, inset in bottom

figure shows an example of the detailed sampling of individuals per-
formed for each transect, (b) population sampling through the Sierra
Nevada, (c) range-wide sampling, with the known species limits
marked with blue line. Note that a total of 81 populations were ana-
lysed in this study, with unique population samples for each
spatial scale.
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200 years (Truscott et al. 2006). Based on these observa-
tions, one would predict broad-scale genetic structure but
limited structure at a fine spatial scale.

We address these different expectations by investigating
genetic variation and population structure at a range of
spatial scales (Fig. 1). First, we genotype individuals at a
fine-spatial scale to look for spatial genetic structure (SGS)
and limits to localised dispersal within two M. guttatus
populations. Second, we use reduced-representation
sequencing of populations across a 700 km transect from
the Sierra Nevada to infer the nature of genetic structure,
using conStruct (Bradburd et al. 2018), a recently developed
method to infer discrete genetic clusters from continuous
population samples. Third, we analyse sequence variation
from range-wide populations to infer the extent of diver-
gence and the distribution of genetic variation, and to
understand the phylogeographic history of the species in
North America. Finally, we integrate across distance classes
to understand dispersal dynamics over different scales. Our
results provide critical insight into the genetic structure and
phylogeographic history of a widespread and ecologically
diverse plant species, while also allowing us to evaluate the
benefits of studying dispersal at multiple spatial scales
simultaneously.

Materials and methods

Study species

The plant species Mimulus guttatus is an emerging model
system in evolutionary and ecological research because of
its rich adaptive variation, the presence of closely related
interfile taxa, and its amenability to genetic analysis
(Twyford et al. 2015; Wu et al. 2007). The species is a self-
compatible hermaphrodite with small-flowered populations
that are selfers or mixed-maters and large-flowered popu-
lations that are predominantly outcrossers. Pollination is by
bees, and the small seeds are likely dispersed by wind and
water. M. guttatus has two ecotypes, an annual ecotype
found in seasonally dry conditions, and a perennial ecotype
found in permanently wet sites (Lowry et al. 2008). These
ecotypes show substantial morphological differentiation
(Friedman et al. 2015), and are maintained by multiple
regions of divergence, including a large chromosomal
inversion that protects multiple loci involved in adaptive
divergence (Lowry and Willis 2010; Twyford and Friedman
2015). Perennial populations reproduce vegetatively by
producing horizontal spreading stems (stolons), which may
facilitate local clonal spread and may also break-off and
disperse along watercourses.

The extensive distribution range of M. guttatus, with a
native range extending over 5000 km from northern Mexico

to Alaska, makes it a useful study system for investigating
geographic genetic structure and responses to biogeographic
barriers. M. guttatus is widespread and abundant in areas
with a rich biota and complex biogeography, encircling the
Central Valley, spanning the Cascade/Sierran transition,
bridging the Cascades/Coast ranges and the Rocky Moun-
tains, and found in formerly glaciated regions of western
Canada and Alaska. Previous studies of M. guttatus popu-
lations have identified geographic genetic structure corre-
sponding to coastal and inland populations (Lowry et al.
2008) or northern, coastal, and southern populations
(Twyford and Friedman 2015). However, the confounding
issue of isolation by distance observed in some population
studies of M. guttatus (e.g., Kooyers et al. 2015), and the
lack of support for some nodes in phylogeographic analyses
(Twyford and Friedman 2015), has precluded detailed
interpretation of geographic genetic structure and the phy-
logeographic history of the species.

Fine-scale spatial genetic structure

We used two populations from California to estimate spatial
genetic structure. We sampled one population of the per-
ennial ecotype (population ELD), and one of the annual
ecotype (FOR; see Table S1 for population details). Our
classification of population life history was based on mor-
phological traits such as number of stolons and flower size,
observed in the field and in common garden experiments
(Twyford and Friedman, Unpublished data). The two study
populations were chosen for their large census population
sizes of many thousands of individuals, and the continuous
distribution of individuals with no obvious barriers to dis-
persal. For each population, we sampled at least twenty
plants at approximately 30 cm intervals along a transect,
with four additional transects at different spacings
(3–500 m). Our sampling scheme represents a shallow
survey of individuals, sampling less than 10% of plants in
the populations, with the aim to capture the range of pair-
wise distance classes represented by samples within each
site. Maximum sampling distances between transects were
680 m for population ELD and 410 m for population FOR.
We calculated interplant distances from individual GPS
coordinates. We collected plant tissue in silica gel, for DNA
extraction with the Qiagen Plant DNeasy kit (Qiagen,
Germantown, MD). We used a total of ten PCR-based
markers for genetic analysis, four intron-based length
polymorphism markers and six microsatellites (marker
details reported in Lowry et al. 2008). We performed
multiplexed PCR reactions with M13-tailed primers, prior
to genotyping on the ABI 3730 DNA Analyser at Edin-
burgh Genomics. We scored the size of the amplified
fragments automatically, with manual edits, using gene-
Mapper (Applied Biosystems). We checked genotype data
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for null alleles and other errors with MICRO-CHECKER
(Van Oosterhout et al. 2004). We excluded locus
MgSTS278 in population ELD due to uneven amplification
success, prior to statistical analyses. The final dataset
included 91 individuals for population ELD and 79
for FOR.

We inferred individuals likely to be the product of clonal
reproduction using a permutation and re-sampling approach
that accounts for scoring error and somatic mutations, as
implemented in GENCLONE (Arnaud‐Haond and Belkhir
2007). We related clonality to the inter-plant sampling
distance to understand the extent of clonal spread, then
selected a single individual at random from each clone for
downstream analyses of diversity and relatedness. We cal-
culated the extent of SGS for each population using spatial
autocorrelation analysis described in Vekemans and Hardy
(2004), using the pairwise kinship coefficients (Fij) of
Loiselle et al. (1995). We performed analyses with SPA-
GeDi (Vekemans and Hardy 2004) using the following
distance classes: 0–2 m, 2–4 m, 4–6 m, 6–8 m, 8–10 m,
10–20 m, 20–50 m, 50–100 m, 100–200 m, 200–400 m and
400–700 m. We calculated mean Fij per distance class, 95%
confidence intervals by permutation, standard errors by
jack-knifing, and plotted autocorrelograms for each analy-
sis. We calculated overall spatial genetic structure per
population with the Sp statistic. As we found little evidence
of genetic substructure within populations (see results), we
then calculated pooled diversity statistics across transects
within a site. We used FSTAT v.2.9.3 (Goudet 2001) to
calculate the inbreeding coefficient (FIS) and allelic richness
(AR) per population.

Population-level differentiation

We calculated the extent of population-level genetic diver-
sity and differentiation for a transect of nine populations of
M. guttatus spaced at approximately 95 km intervals (range
52–143 km) through the Sierra Nevada (Table S1). We
collected leaf tissue from between eighteen and twenty
well-spaced (>1 m) individuals per population into silica for
DNA extraction. We used the genotyping by sequencing
(GBS) method to generate genome-wide polymorphism
data (Elshire et al. 2011). We created sequencing libraries
by digesting individual samples with the frequent cutting
enzyme ApeKI, before ligating barcoded adaptors, per-
forming PCR, and pooling in 96-plex reactions. We
sequenced multiplexed libraries with 100 bp single-end
sequencing with the Illumina HiSeq 2500 at Rochester
Medical Center. We used TASSEL-GBS v2 (Glaubitz et al.
2014) to de-multiplex samples, remove barcodes, perform
quality filtering, and call SNPs. We aligned the GBS tags to
the M. guttatus genome version 2.0_256 (phytozome.net)
using the default settings of BWA (Li and Durbin 2009).

We called sites with a minimum quality score of 20, and
with no minimum allele frequency to recover all variant and
invariant sites. Ten of 193 sequence libraries failed, yielding
less than 1% of the mean number of sequencing reads
across samples, while other samples yielded between
766,539–6,704,555 reads. The average sequencing cover-
age per site was 38-fold, for 5,611,458 sites. Downstream
population genetic analyses used a subset of data filtered to
include individuals with less than 50% missing data, sites
scored in over 75% individuals, a minor allele frequency of
0.05, and with SNPs in tight linkage removed by filtering
variants within 20 bp (Brandvain et al. 2014), to give a final
dataset of 22,697 SNPs.

We inferred discrete population structure using conStruct
(Bradburd et al. 2018), which models admixture across a
specified number of discrete layers as defined by the K-
value. Non-spatial conStruct analyses do not use location
information, while spatial conStruct analyses assume allele
frequencies have a positive covariance based on geographic
locations to account for isolation by distance. To determine
an appropriate level of parameterisation for the models, we
used cross-validation with a training set (Bradburd et al.
2018), and compared predictive accuracies between spatial
and non-spatial models, and between successive K-values,
to determine which model has the best goodness-of-fit
without overfitting. We analysed K-values of 1–9. To test
whether spatial models were better fitting than non-spatial
models we used paired t-tests comparing cross-validation
scores across values of K. The best fitting models were
repeated with 100,000 MCMC iterations with the first 50%
removed as burn-in to produce the final analyses. Admix-
ture plots were visualised per population using the default
options in conStruct.

We compared our conStruct results with patterns of
genetic structure inferred from additional non-spatial ana-
lyses. fastSTRUCTURE analyses used the simple prior and
values of K between 1 and 9, with the optimal K considered
as the run that maximises the log-marginal likelihood of the
data. We then re-ran fastSTRUCTURE with the logistic
prior, to help infer fine-scale admixture. Admixture plots
were visualised per individual using the default options in
fastSTRUCTURE. We performed PCA analysis in Tassel
(Bradbury et al. 2007) and calculated pairwise FST using the
R package diveRsity (Keenan et al. 2013) and nucleotide
diversity (π) per site (including invariant sites) using
VCFTools (Danecek et al. 2011).

Range-wide dispersal and broad-scale genetic
structure

We reanalysed GBS data from 174 individuals from 70
populations from across the native range of M. guttatus
which were used to compare SNP differences within and

230 A. D. Twyford et al.



outside a chromosomal inversion by Twyford and Friedman
(2015). This data includes annual and perennial populations
sampled from Alaska, Arizona, California, Idaho, Nevada,
Oregon and Washington (America), as well as British
Columbia (Canada) and Sonora (Mexico) (Fig. S1). We re-
called SNPs from the raw reads using the Tassel 5 GBS v2
pipeline, with the minor allele frequency set to 0 to call
invariant sites to improve branch length estimates in phy-
logenetic analyses. Variant calls were made using a mini-
mum sequencing quality score of 20. Our variant calling
produced 72,941 SNPs and invariant sites that were used in
phylogenetic analyses, of which 6523 sites were variable.
Two further filtered datasets were generated for population
genomic analyses. For analyses of genetic structure, we fil-
tered invariant, low frequency sites and SNPs in tight link-
age (as above), and removed samples with more that 25%
missing data, producing a dataset of 3414 SNPs. For Tree-
Mix analysis, we filtered populations with fewer than three
sampled individuals, leaving 30 populations, and then fil-
tered invariant, low frequency sites and SNPs in tight link-
age as above, to give a final dataset of 3066 filtered SNPs.

We used conStruct, as described above (but with K-
values between 1 and 10), to characterise genetic structure
using spatial and non-spatial models. We then used
polymorphism-aware phylogenetic models (PoMo) imple-
mented in IQ-TREE (Nguyen et al. 2015) to investigate

population-level relationships. PoMo uses site frequency
data to account for incomplete lineage sorting thus pro-
viding a more accurate estimate of the species tree when
there is gene discordance (De Maio et al. 2015). We cal-
culated allele frequencies per population using the counts
file library (cflib) python scripts supplied with IQ-TREE.
We tested the best-fitting model (-m TEST) and subse-
quently performed analyses with TVM+ F+G4+ P. We
adjusted the virtual population size setting (N) to equal the
number of chromosome sets per population (i.e., +N5)
based on the mean of 2.5 diploid individuals sampled per
population. Tree searches used settings recommended for
short-sequence block data (-pers 0.2, -nstop 500). We used
1000 ultrafast bootstrap estimates to test the support for the
topology (Minh et al. 2013).

We used TreeMix to further investigate population
relationships and to model historical migration events.
TreeMix constructs a maximum likelihood phylogeny from
genome-wide polymorphism data, and incorporates direc-
tional migration edges between populations where historical
admixture is likely (Pickrell and Pritchard 2012). We
assessed the fit of models with between 0 and 10 migration
events by calculating the percentage of variation explained
by the maximum likelihood trees using the treemixVar-
ianceExplained scripts as part of the RADpipe package (doi:
10.5281/zenodo.17809). We also investigated patterns of
range-wide genetic diversity by calculating π per site for
each population with two or more sampled individuals,
using VCFTools. We used general linear models in R to test
whether variation in π is explained by life history (annual
vs. perennial) and geographic region (coastal, northern,
southern).

Integrated analyses across spatial scales

We evaluated the pattern of genetic structure across spatial
scales. First, we evaluated the strength of isolation by dis-
tance by regressing pairwise population genetic structure
(FST/(1−FST)) against pairwise linearised geographic dis-
tance (log transformed). We did this separately for the
Sierra dataset and the range-wide data. We tested for a
correlation between the matrix of geographic distances and
the matrix of genetic distances using a Mantel test with 99
permutations in the R package Ade4 (Dray, Dufour 2007).
Next, we used the geostatistical method of using semivar-
iance to fit variograms to our genetic divergence and geo-
graphic distance data to understand broad-scale patterns of
genetic relatedness. We performed analyses separately for
the Sierra and range-wide data. We fitted variograms using
the R package Phylin (Pedro et al. 2015) with the ‘gen.
variogram’ function, and models with the ‘gv.model’
function. We permuted the nugget and sill to identify the
best-fit model measured by R2

fit to the data.
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derived by jack-knifing.
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Results

Our genotyping of spatially mapped individuals in a
population of the annual ecotype (FOR) revealed high mean
allelic richness (AR= 10.4), with low overall SGS (Sp=
−5.90 × 10−5). Over all distance classes, values of Fij
consistently fell within the permuted upper and lower
confidence intervals, reflecting no spatial structure (Fig. 2a).
A population of the perennial ecotype (ELD) also showed
high genetic diversity as measured by mean allelic richness
(AR= 8.1), though there was evidence for local clonal
spread, with two to six samples present in nine clonal
genotypes, with a maximal clonal spread of 4.8 m. There
was no SGS in most distance classes, except a high and

significant Fij value in the 0–2 m distance class (Fig. 2b).
Both populations also had evidence of non-random mating,
with a high FIS value for the annual population (FIS= 0.388)
and a moderate FIS value in the perennial population (FIS=
0.218). Overall, the general absence of SGS suggests no
limits to dispersal over a spatial scale of hundreds of metres
in large continuous M. guttatus populations, though clonal
spread and self-fertilisation influence fine-scale population
dynamics.

Genome-wide SNP analysis of nine M. guttatus popu-
lations spaced at ~100 km intervals through the Sierra
Nevada showed high genetic diversity with a mean per site
π of 1.6%, and high population structure with a mean
pairwise FST of 0.327. Analyses of genetic clustering using
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PCA and fastSTRUCTURE revealed geographic genetic
clusters corresponding to northern and southern Sierra
populations (Fig. 3). Similarly, the non-spatial model in
conStruct showed a north-south genetic division at K= 2
(Fig. 4a), with genetic clusters corresponding to geographic
groupings at K= 3 or 4 (Fig. 5a–c; with K= 4 the value at
which the likelihood plateaus, Fig. S2). However, model-
based clustering incorporating spatial information proved a
significantly better fit than non-spatial models, particularly
for K-values between one and three (Fig. S2). The spatial
conStruct models did not show a clear north-south genetic
discontinuity at K= 2 (Fig. 4c), and at higher K-values (Fig.
5d–f), and instead genetic differentiation of the Sierra
Nevada populations largely reflects continuous variation in
allele frequencies rather than discrete genetic clusters.

Analyses of broad-scale population samples across the
native range, using non-spatial conStruct models, revealed
clinal genetic variation at K= 2 that correlates with latitude (R2

= 0.545; Figs. 4b, 5g). This result confirms a pattern of south-
north genetic divergence previously identified with STRUC-
TURE (Twyford and Friedman 2015). In contrast, spatial
conStruct models showed a substantially better fit to the data
across K-values (P < 0.0001, Fig. S2), revealed no such cor-
relation with latitude at K= 2 (R2= 0.0001), and instead dis-
criminated coastal from inland populations (Fig. 5j). At K= 3,
spatial models distinguished coastal, northern and southern
genetic clusters but with major admixture (Fig. 5k).

Complex patterns of genetic structure were also evident
in polymorphism aware phylogenetic analyses, which
resolved a well-supported tree topology with genetic
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clusters of southern, coastal and northern populations, while
also revealing previously uncharacterised geographic sub-
structure within clades (Fig. 6). For example, well-
supported at the base of the coastal clade are two Cali-
fornian populations from Monterey Bay, BCB and LOR,
with other more northerly coastal populations in a derived
position, supporting south to north range expansion along
the Pacific coast. Evidence for historical dispersal in M.
guttatus is provided by the TreeMix analysis, with models
incorporating at least two migration events (m) showing
much better model fit than those without migration (Fig.
S3). At m= 10, dispersal is observed across the admixture
graph, including multiple dispersal events from populations
in California (Fig. 6c). These results indicate a history of
repeated dispersal across the range of M. guttatus, facil-
itating recolonisation after glaciation.

Genetic diversity as estimated by population-level π

values showed no significant difference between annual and
perennial populations (F1,55= 0.22, P= 0.6), and instead
the three previously identified geographic clusters explain a
significant amount of variation in the data (F2,55= 5.75, P <
0.01). The greatest genetic diversity was found in the
southern cluster, then northern, and the lowest in the coastal
cluster (Fig. 6a). While genetic diversity was uniformly low
across populations along the 580 km of coastline in Oregon,
and uniformly high across the north of the Sierra Nevada,
genetic diversity was more heterogeneous in other areas,

with notable patches of high diversity both in the north
(e.g., HOC, Olympic National Forest, Washington) and in
the more sparsely sampled inland southern populations of
Sonora (ALI) and Arizona (CRZ).

For the Sierra dataset, the linear regression between (FST /
1−FST) and log pairwise geographic distance was significant
(P< 0.001) and geographic distance explained 66% of genetic
variation (Fig. 7a). However, for the range-wide dataset,
although the linear regression is significant (P< 0.001), the data
showed a poor fit, with distance explaining only 6% of genetic
variation (Fig. 7b). This matches predictions that isolation by
distance should break down with increasing geographic
distance as dispersal processes change and as different
geographic genetic clusters mix. Similarly, Mantel tests for
the correlation between the geographic and genetic distance
matrices showed a significant correlation for the Sierra
dataset (r: 0.69, P < 0.01), but no significant correlation for
the range-wide dataset (r: 0.13, P= 0.13). To provide a
separate estimate of the geographic scale of genetic dif-
ferentiation independent of mutation rate we related genetic
divergence to geographic distance in variogram models.
Our results showed that the range, defined as the scale of
spatial autocorrelation after which little change in the semi-
variance is encountered with increasing distances, extended
to 500 km for both Sierra and range-wide GBS data (Fig.
7c, d). These analyses showed that the spatial independence
of populations is only achieved at 500 km.
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Discussion

Identifying the spatial scale of genetic structure is key for
understanding population dynamics and for inferring evo-
lutionary and ecological processes, however most popula-
tion genetic studies focus on a single spatial scale or ignore
spatial information in their analyses. Our analyses of the
widespread plant M. guttatus revealed different patterns of
genetic structure over a range of spatial scales. Within
populations, we observed a lack of spatial genetic structure,
suggesting extensive local dispersal. Between populations,
we identified continuous genetic variation and isolation by
distance, which had a major impact on the inference of
genetic clusters. After accounting for isolation by distance,
we were able to distinguish broad geographic genetic
clusters that spanned many well-characterised barriers to
dispersal. Across the species’ native range, we observed
geographic genetic clusters corresponding to repeated
colonisation from the south, with evidence for widespread
historical dispersal. This pattern of recurrent colonisation
suggests the species is an excellent coloniser that rapidly
expands its range in response to new ecological opportu-
nities and habitat availability. Our results showing high
diversity and broad-scale genetic structure support the
finding thatM. guttatus has large metapopulations with high

intrapopulation variation (Puzey et al. 2017). Local genetic
variation and genetic structure is shaped by diverse factors
including self-fertilisation and clonal spread of the perennial
ecotype, in conjunction with diverse forms of selection
known to operate in this species (Peterson et al. 2016; Troth
et al. 2018). We discuss our results below in terms of the
spatial scale of gene flow and the species’ historical
demography, and make recommendations for how best to
use genetic information to infer genetic structure at different
spatial scales.

Spatial dynamics of dispersal and migration

Our findings show that high dispersal potential has shaped
genetic structure of M. guttatus populations. The lack of
spatial genetic structure over hundreds of metres likely
reflects extensive local dispersal. Similarly, the emergence
of broad geographic genetic clusters that extend over
potential barriers to dispersal, and variogram analyses that
reveal the non-independence of populations over hundreds
of kilometres, suggests large metapopulations. Although
pollen movement by bees, and downstream dispersal of
vegetative fragments will contribute to dispersal in this
species, seed-mediated dispersal is likely to dominate.
While >40% of M. guttatus seeds fall within 25 cm of the
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maternal plant (Ritland and Ritland 1996; Sweigart et al.
1999; Vickery et al. 1986), giving rise to some localised
fine-scale genetic structure (Ritland and Ritland 1996) as
observed in the perennial population, many of the light-
weight seeds (0.002 mg) are likely dispersed much further.
Occasional long-distance seed dispersal by wind, animals or
water (Martin 2004) may be crucial for the widespread
colonisation of Mimulus in its native range, and also in its
introduced range where it has become a dominant species of
disturbed watercourses over the last 200 years. Taken
together, our analyses and previous work show the impor-
tant role of dispersal at all spatial scales.

Research on genetic population structure in natural
populations is often focussed on assessing genetic diver-
gence (e.g., FST ~ 1/(4Nem+ 1)) and understating demo-
graphic connectivity by predicting migration rate (m).
However, linking FST and m relies on a number of
assumptions that may be unrealistic in most natural popu-
lations. For example, the challenge for understanding
migration is illustrated by the contrast between high FST
values in M. guttatus which imply low migration (this
study, and others reviewed in Puzey et al. 2017), and a
migration rate sufficient to homogenise population differ-
ences in models fit to whole genome data (Aeschbacher
et al. 2017). Crucial to estimating migration is under-
standing diversity and the effective population size (Ne),
with previous estimates of Ne for M. guttatus in the hun-
dreds of thousands (between 4.805 × 105 and 6.730 × 105:
Aeschbacher et al. 2017; Brandvain et al. 2014), while the
synonymous π value of 3.3% estimated by Puzey et al.
(2017) makes M. guttatus one of the most genetically
diverse plant species studied to date. Our study supports the
finding of high genetic variation maintained in M. guttatus
populations—we found up to thirty alleles at polymorphic
markers within a population, numerous unique genotypes in
a clonal perennial population, and a high value for sequence
diversity at 1.6%. High genetic diversity was present even
in populations with moderate to high selfing rates. None-
theless, the demography of M. guttatus populations are
characterised by ‘boom and bust’ dynamics, with rapid
colonisation and population expansion in response to eco-
logical opportunities, but with frequent local extinctions due
to drought and habitat change (Vickery 1999). Overall, it is
possible that while seed dispersal allows substantial mixing
within populations and facilitates occasional long-distance
dispersal, migration between populations is not always
sufficient to homogenise population differences.

Spatial scale of genetic structure

Our work highlights the confounding influence of con-
tinuous genetic variation on the inference of genetic clus-
ters. At regional spatial scales, for example across Sierra

Nevada populations of M. guttatus, we found strong isola-
tion by distance, and spatial analyses accounting for con-
tinuous population structure did not detect clear geographic
genetic structure. This indicates continuous genetic varia-
tion with geographic clines in allele frequencies, rather than
discrete population clusters due to barriers to dispersal.
Nonetheless, there was some evidence of subtle north-south
divergence in the Sierra Nevada, which is notably less
distinct than in other organisms. In spiders, for example,
cryptic intraspecific breaks and species divergence were
found between Sierra populations (Hedin et al. 2013).
Interestingly, we found contrasting patterns between ana-
lyses of genetic structure across the species range. Non-
spatial analyses such as fastSTRUCTURE and PCA
detected the genetic distinctiveness of sampling sites, which
in M. guttatus correspond to south-north genetic structure,
while spatial analyses such as conStruct revealed clusters
corresponding to barriers to dispersal and demographic
history, which are coastal and non-coastal populations in M.
guttatus. This underscores that spatial and non-spatial ana-
lyses complement each other and reveal different aspects of
population structure (Bradburd et al. 2018).

Demographic and phylogeographic history

Combining our analyses of genetic structure and phylo-
geography allow us to suggest a model for the historical
colonisation of M. guttatus across North America. The joint
evidence from the phylogeographic and genetic diversity
analyses support southern populations as a reservoir of
diversity and a major source for range expansion. Diver-
gence of populations in the south of the species range is
likely to have occurred in the Pleistocene around 265,000
years ago (Brandvain et al. 2014). This postdates the period
of major geological uplift during the Pliocene (3–5Ma), or
pre-Pliocene activity, and instead supports glacial activity
and consequent climatic changes in the Sierra Nevada
structuring genetic diversity in M. guttatus. The location of
inland refugia is hard to specify due to the uniformly high
genetic diversity of these populations, however this seems
most likely to be in the south of the Sierra Nevada. Whether
there was a separate coastal refugium is hard to say with
certainty. A coastal refugium is recognised for many North
American plant species (Brunsfeld et al. 2001), and the
patchy occurrence of high genetic diversity in coastal
populations, and the topology of the phylogeny, are broadly
consistent with a separate coastal refugium at the southern
extent of the Northwest Forested Mountain biogeographic
area, in the region of the Wilson Grove Formation. How-
ever, evidence for shared genetic variants between coastal
populations and a population approximately 200 km inland,
East of the Central Valley (population MED), suggests
coastal populations may be independently derived from an
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inland source, rather than from a separate coastal refugium.
Similar patterns of trans-valley relatedness have been seen
in spiders (Hedin et al. 2013) and salamanders (Reilly et al.
2015). Major rivers are orientated in a perpendicular axis to
the Sierra Nevada mountains (Rovito 2010), and may have
acted as a route for dispersal of the perennial ecotype. Our
results support the model of Western North American
phylogeography proposed by Brunsfeld et al. (2001), where
vicariance, dispersal and refugia shape genomic variation,
and where dispersal has occurred in waves as postglacial
conditions became more hospitable.

Subsequent range expansion from glacial refugia has left
a clear genetic signature, with a latitudinal cline of genetic
variation across the north of the species range that parallels
broad-scale north-south divergence seen in other taxa such
as wild sunflowers (McAssey et al. 2016). Northwards
range expansion and a subsequent increase in population
size is likely to be recent, within the last ~20,000 years
(Brandvain et al. 2014), as a response to increased habitat
availability and more hospitable conditions post-glaciation.

The improved branch support in polymorphism-aware
phylogenetic analyses compared with conventional Baye-
sian analysis of concatenated sequences (Twyford and
Friedman 2015), supports the divergence of northern and
coastal populations, and suggests a scenario of multiple
independent colonisation events from the south, each with
different biogeographic histories. Of particular interest is
the coastal genetic cluster, which is mostly restricted to a
narrow band adjacent to the Pacific. The low genetic
diversity suggests these populations have been through a
genetic bottleneck, while the TreeMix analysis suggests
these populations have subsequently been a major source of
admixture with inland populations. Overall, range-wide
genetic variation in M. guttatus has been shaped by recur-
rent colonisation from the south of the species range, with
dispersal avenues facilitating colonisation.

Our finding of multiple independent recolonisation
events has important consequences for selecting samples for
demographic analyses of M. guttatus. Genomic studies
using sparse population samples need to compare indivi-
duals derived from a similar range expansion event, other-
wise demographic inferences will reflect ancestral variation
rather than recent population changes. While our data
support (at least) two colonisation events from the south of
the species range, recolonisation from a northern refugium,
such as the Berengian refugia proposed for cold-tolerant
taxa such as the serrated wintergreen Orthilia secunda
(Beatty and Provan 2010), generally seems less likely for
M. guttatus given the placement of northern populations as
highly derived in the population phylogeny. However, there
are patches of high genetic diversity in the north, and
TreeMix shows these populations are both a sink and a

source of migration. The question of cryptic northern
refugia would be better resolved with detailed sampling
from the north of the species range.

Conclusion

Our genetic analyses reveal how dispersal affects spatial
genetic variation from the local, to the regional, to the
range-wide scale. At a local scale, high dispersal interacts
with factors such as the spread of clonal genotypes and
inbreeding, while at the broad spatial scale genetic structure
is more likely to be determined by historical demography.
Studying a single spatial scale would have overlooked cri-
tical aspects of metapopulation structure and limited our
ability to infer dispersal dynamics, while not using spatial
analyses would have overestimated the extent of geographic
genetic structure where there is strong isolation by distance.
We recommend other studies of population structure com-
bine genetic data at multiple spatial scales, as well as make
use of spatial analyses of genetic structure to better under-
stand genetic variation in widespread species.

Data availability

The marker genotype data and SNP matrix are available in
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