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Abstract
Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant
genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional
importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression
analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG
contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5′-upstream regions of genes, compared with
other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this
also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences
play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein
interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence
of CNSs indicates that duplication–degeneration–complementation drives the subfunctionalization of a proportion of
duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under
strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a
foundation for future studies exploring these key genomic features in the maintenance of biological networks, local
adaptation, and transcription.

Introduction

Conserved noncoding sequences (CNSs), DNA sequences
conserved across species, are under sequence constraint,
probably due to their functional importance. One of the
major remaining challenges in functional and evolutionary
genomics is to determine the functional importance of many
components of the genome, in particular CNSs located near

protein-coding genes. Some of these CNSs are thought to be
important regulatory sequences that are involved in diverse
regulatory functions such as transcription initiation and
processing of transcripts. (Haudry et al. 2013; Tompa et al.
2005). About 3% of vertebrate CNSs are under purifying
selection, and most of these sequences function as cis-ele-
ments that regulate gene transcription in transgenic assays
(Cooper et al. 2005; Sanges et al. 2006). During evolution,
functional sequences are expected to be under selective
constraints and diverge more slowly than non-functional
sequences (Haudry et al. 2013). Researchers have proposed
that CNSs repress the rearrangement of the surrounding
genome, but do not drive retention of duplicate genes
(Hufton et al. 2009). Therefore, comparative analyses of
CNSs, based on phylogenetic footprinting of conserved
DNA sequences, have been used to detect functional
elements.

Genome-wide comparisons of ten dicot plants yielded
large numbers of CNSs (Velde et al. 2016). These genomic
DNA motifs (median size 15 bp) occur in different genic
regions (5′-upstream, 5′-UTR, intron, 3′-UTR, 3′-down-
stream) and have different potential functions. Although the
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CNSs showed significant patterns of conservation, the
evolutionary and functional roles of these CNSs remain
unclear. DNA cytosine methylation is an epigenetic mod-
ification that has essential roles in cellular processes and
development, and methylation levels are often low in
DNA–protein interaction sites (Lister et al. 2009). There-
fore, investigation of methylation patterns of CNSs should
provide information on CNSs with potential protein–DNA
interactions.

Most highly conserved CNSs are enriched near genes
that regulate transcription and development (Bejerano et al.
2004; Danecek et al. 2011), where the precise and complex
regulation caused selection against mutations in cis-reg-
ulatory regions. The exceptional constraint on these cis-
regulatory sequences may influence the evolution of sur-
rounding genomic regions, raising the possibility that the
interdigitation of CNSs may play a key role in maintaining
conservation of gene order (Hufton et al. 2009). However,
many studies in vertebrates have shown that arrays of
extragenic CNSs are linked to their target genes and thus
evolutionarily resistant to rearrangement (Hufton et al.
2009; Kikuta et al. 2007; Mongin et al. 2009). The role of
intragenic CNSs in genome evolution requires further
examination.

Previous studies of CNSs generally concluded that
“regulatory genes”, also called “Bigfoot genes”, often
including genes with transcription factor activity, are CNS-
rich (Freeling and Subramaniam, 2009). Since CNSs are
typically annotated as DNA-binding motifs, we expected
that genes with more CNSs should be more precisely and
strictly regulated and positively correlated with the number
of potential DNA–protein interactions. For downstream
targets, CNSs were also positively correlated with their
interaction partners, for most CNSs are functional sequen-
ces involved in gene regulation. However, that does not
mean that all CNSs are functional, and artifacts are possible.

Polyploidization, a major evolutionary process that is
common in vascular plants, triggers vast genetic and
genomic imbalances. Numerous studies in diverse plant
taxa have documented that polyploidy may induce rapid
changes in gene expression and functional divergence
between paralogous gene pairs (Buggs, 2013; Xu et al.
2014). The Populus trichocarpa genome underwent a
whole-genome duplication (WGD) that is shared across the
Salicaceae, containing approximately 8000 similarly aged
paralogous gene pairs (Rodgers-Melnick et al. 2012). The
resequencing data of 544 P. trichocarpa individuals
revealed a high degree of natural variation and adaptive
phenotypic variation in natural populations, suggesting that
local adaptation is prevalent (Evans et al. 2014). A major
unexplored question is whether the fundamental differences
of CNSs between retained duplicate pairs from the Salicoid

WGD are connected to patterns of adaptation, phenotypic
evolution, and natural selection. Utilizing publicly available
CNSs, single-base-resolution methylomes, gene expression,
and genome resequencing data, we aimed to accomplish the
following: (1) identify signatures of natural selection and
adaptive evolution of CNSs, (2) delineate the factors asso-
ciated with different processes of genome evolution
including the paralog retention following a WGD event,
synteny and CNSs, and (3) test the hypothesis that genes
encoding proteins with a high number of interactions need
more complex cis-regulation and thus have more CNSs.

Materials and methods

Identification of syntenic genes and retained
paralogs

Retained paralogs of Populus were inferred from a previous
study (Rodgers-Melnick et al. 2012), and transferred to the
gene symbol of version 3.0. Retained paralogs of three other
species (Vitis vinifera, Brassica rapa, and Glycine max) and
the synteny blocks between Populus and Arabidopsis were
downloaded from Plant Genome Duplication Database
(http://chibba.agtec.uga.edu/duplication) (Lee et al. 2013)
and were detected based on the MCscan algorithm (Tang
et al. 2008). Then the syntenic genes were excluded from
the total gene set, and the remaining genes were defined as
non-syntenic genes.

Tissue specificity measurement

The expression profile was examined using a whole-
genome microarray constructed by Roche NimbleGen
(http://www.nimblegen.com/; Rodgers-Melnick et al.
2012). The array was refined based on Nimblegen’s design
guidelines to minimize the noise and increase the positive
signals. A total of 14 tissues were obtained for microarray
hybridizations and for further co-expression clustering
analyses. To measure the tissue specificity, the tissue spe-
cificity score (Liao and Zhang, 2006) was computed thus:
Let aij be the average expression of gene i in tissue j. Then
the tissue specificity of gene i is defined by

Ti¼ 1
n� 1

Xn

j¼1
ð1� aij

maxjðaijÞÞ;

where n is the number of tissues. If a gene expressed in only
one tissue, the score is one; if the expression of a gene is the
same in all tissues, the score is zero.
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Correlation of CNS frequency and position with
gene pair co-expression

The positions of CNSs in ten dicot plants were downloaded
from this investigation (Velde et al. 2016). These CNSs
were identified in the sequences 2 kb upstream and 1 kb
downstream of the gene. First, the expression profile from
14 whole-genome microarray expression datasets (Rodgers-
Melnick et al. 2012) was clustered into 40 co-expression
modules by applying K-means clustering with Euclidean
distance as the distance metric (Saeed et al. 2003). The K-
means algorithm partitions genes into defined set of discrete
clusters, attempting to maximize the expression similarity of
the genes in each cluster. Thus, this method clustered genes
that are possibly co-regulated. Next, we randomly selected
ten genes from each module and calculated the Pearson
correlation coefficient based on the CNS count (across the
full gene or sub-gene region) and their expression value.
The mean value of the Pearson correlation coefficient was
generated by 10,000 bootstrap replicates, and the sig-
nificance was determined by randomly selection an identical
number of gene vectors from the genome background
across 10,000 permutation tests.

Detection of deeply conserved CNSs

Orthologs were determined for each Populus and Arabi-
dopsis gene using the PLAZA Integrative Orthology
method (ORTHO; ftp://ftp.psb.ugent.be/pub/plaza/plaza_-
public_02_5/IntegrativeOrthology/integrative_orthology.
ORTHO.csv.gz). Pairwise comparisons of CNSs were
generated between all Populus or Arabidopsis CNSs and
their orthologous genes for all four sequence types (intronic,
UTR, upstream, downstream). CNSs with a maximum
length of 21 bp were annotated using the fimo software
packaged in the MEME suite (Bailey et al. 2009) with the
parameters --verbosity 1 --thresh 1.0E-5, and the motif
matrices were derived from the PlantRegMap database. The
remaining CNSs were compared with VISTA used the
minimum percent identity threshold of 50% and window
size of 20 bp. Only CNSs with the same annotation in
PlantRegMap or above the threshold of VISTA were con-
sidered as deeply conserved sequences.

Identifying transcription factor binding sites and
enriched motifs

Transcription factor binding sites were predicted by Plan-
tRegMap (Jin et al. 2016). Motif enrichment analyses were
performed using AME integrated in the MEME suite
(Bailey et al. 2009). For enrichment analysis, randomly
selected genomic regions were selected as control

background, and only the motifs with P< 0.05 (Fisher’s
exact test) were considered as significantly enriched.

Bisulfite-sequencing for methylomes and
transcriptome analyses

Bisulfite-seq data of P. trichocarpa under well-watered
(WW) and water-deficit stress (WS) treatments are available
under the SRA accessions SRR1171318, SRR11713189,
SRR1171316, and SRR1171317 (Liang et al. 2014).
Because the data were analyzed based on Populus version
2.0 reference genome, we reanalyzed the bisulfite-seq data
using the Populus version 3.0 genome. Quality-trimmed
reads were aligned to the reference Populus genome (Phy-
tozome version 10) using bowtie2 (v2.2.9) (Langmead and
Salzberg 2012) and analyzed using Bismark (v0.16.3)
(Krueger and Andrews 2011) with default parameters.
Duplicated reads were removed using the Bismark dedu-
plication tool, and cytosine methylation states were
extracted using Bismark methylation extractor. CNS
regions were divided in four equally sized bins and the CNS
flanking regions were divided in six equally sized bins with
100 bp windows from 5′ to 3′, and the mean mC/C level
within each bin for each methylation type was determined.
Mean methylation level in each bin was determined based
on the number of mC/C sites of a given methylation type
(mCpG, mCHG, or mCHH) divided by the total mC/C sites
in each bin.

Clean reads were mapped using TopHat (Trapnell et al.
2012) to generate read alignments for each sample. Geno-
mic annotations were obtained from Phytozome (http://
www.phytozome.net/). The transcript isoform level and
gene level counts were calculated and differential transcript
levels were then computed using Cuffdiff (Trapnell et al.
2012). The transcriptome data are available under the SRA
accessions SRR1171652 and SRR1030352 (Liang et al.
2014).

Functional annotation

Protein sequences (version 3.0) with the longest transcripts
were annotated using (CDD, Coils, CATH-Gene3D,
HAMAP, Pfam, PIRSF, PRINTS, ProDom, SMART,
SuperFamily, TIGRFAMS, PROSITE, PRINTS) in con-
junction with InterProScan (Quevillon et al. 2005). Then the
total number of GO terms was mapped to the InterPro
annotations using the GO terms database (ftp://ftp.ebi.ac.uk/
pub/databases/interpro/interpro2go). As the resulting GO
categories were very specific, we used the same method as
Rodgers-Melnick et al. (2012) by identifying nodes that
were descendants of the following GO categories within the
Gene Ontology hierarchy: protein binding (GO:0005515),
transcription factor activity (GO:0003700), ion channel
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activity (GO:0005216), nucleic acid binding
(GO:0003676), phosphatase activity (GO:0016791), protein
kinase activity (GO:0016301), ligase activity
(GO:0016874), protease activity (GO:0008233), receptor
activity (GO:0004872), transporter activity (GO:0005215),
stress response (GO:0006950), catalytic activity
(GO:0003824), and cation binding (GO:0043169).

Estimating protein connectivity

The STRING database (Mering et al. 2003) was used to
estimate the number of protein interactions for each gene.
The STRING database integrates data from experimentally
derived protein–protein interactions through literature
curation, and stores computationally predicted interactions;
therefore, the data of model organisms are supported by
more evidence.

Statistical analysis of gene set associations and
trends in synteny and paralog retention

Statistical inference of CNS numbers and protein con-
nectivity was conducted with a permutation test on the
mean (permutation test) (Röhmel 1996), and each mean is
shown with a bootstrap-based 95% CI (Studentized CI),
displaying the extent to which outliers may cause the mean
to fluctuate. This method has performed well in skewed
populations without assumption of the true distributions
(Hufton et al. 2009).

The synteny-CNSs and paralog retention-CNSs trends
were tested by permutation. The PPI number on the CNSs
was randomly shuffled and the mean value was calculated
based on bootstrap-based 95% CI. Pearson’s correlation
coefficient and significance were calculated using R
package.

Signatures of adaptive evolution and association
analysis

We used two methods to examine the signatures of adaptive
evolution of CNSs. Differences in allele frequencies among
four naturally occurring populations (Columbia, Tahoe,
WA/BC, and Willamette) of P. trichocarpa were estimated
as Fst throughout the genome. Resequencing data were
derived from a previous study (Evans et al. 2014). We
compared the single-nucleotide polymorphism (SNP) fre-
quency among different genome elements, including con-
served miRNAs, Populus-specific miRNAs, and noncoding
regions. MiRNAs were further separated into seed regions,
mature regions, hairpin regions (pre-miRNA), and the rest
of the miRNA excluding the seed regions (Rest). The
conserved miRNAs and Populus-specific miRNA dataset
were derived from a previous study (Xie et al. 2017). All of

them represent essential genomic noncoding elements. Fst

of each SNP was calculated using VCFtools (Danecek et al.
2011). We took signals in the top 5% of Fst values as
variations representing high allele frequency differences
among populations and thus candidates for experiencing
divergent selection. The climate-driven genomic regions
across the Populus genome that appear to be affected by
divergence/positive selection were previously detected by
five metrics (Evans et al. 2014): differentiation (Fst), allele
frequency cline steepness across mean annual temperature
and precipitation measurements (SPA; Yang et al. 2012),
extended haplotype homozygosity around alleles from rapid
allele frequency increase (iHS; Voight et al. 2006), and
allele frequency clines (bayenv; Günther and Coop 2013)
with each of the first two climate PC axes (PC1 and PC2).
We mapped the CNSs to the selection genomic regions and
examined the overlapping CNSs.

Target prediction of miRNAs

Potential targets of miRNAs were predicted using
PSRNATARGET (Dai and Zhao 2011) with the maximum
expectation score set to 2.0. The Pearson correlation coef-
ficients between miRNAs and their target genes were cal-
culated using R (v.3.2.3, http://mirror.bjtu.edu.cn/cran/)
based on their transcript abundances in six tissues (Xie et al.
2017).

Conservation analyses of CNSs between retained
paralogs and ancestral state

To test the conservation of CNSs between retained paralogs
and the ancestral state, we defined the orthologs in Arabi-
dopsis as the ancestral state. Orthologs were determined for
each species and Arabidopsis gene using the PLAZA
Integrative Orthology method (ORTHO; ftp://ftp.psb.ugent.
be/pub/plaza/plaza_public_02_5/IntegrativeOrthology/inte-
grative_orthology.ORTHO.csv.gz). If the retained paralog
has more than one ortholog in Arabidopsis, the best hit is
selected. We first compared the CNS composition between
the retained paralogs and the ancestral orthologs. Then, the
CNSs of the retained paralogs were compared with the
ancestral CNSs using the minimum percent identity
threshold of 50% and window size of 20 bp for all four
sequence types (intronic, UTR, upstream, downstream).
Only CNSs of all four sequence types above the threshold
of VISTA were considered as similar to the ancestral state.
Retained paralogs were classified into two categories: both
display nucleotide differences from the ancestral state and
one of the retained paralogs is similar to the ancestral state.
Note that genes without CNSs were excluded from this
analysis.
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Statistical analyses of predictors of different
genome evolution categories

A logistic regression and multivariable linear regression
model was used to determine significant predictors of the
three genome evolution patterns, including genes related to
CNS, synteny, and paralog retention.

For genes of synteny and paralog retention, logistic
regression was used. Each gene model with evidence of
significant expression was given an indicator variable of 1/0
for the presence of genes belonging to the three categories,
and the three tests were considered as distinct entities. To
measure expression specificity, the tissue specificity score
was computed (Xie et al. 2017). Gene length was measured
in bases between the start and stop codon, including all
intronic sequence. Each gene of GO functional categories
was given an indicator variable of 0/1 depending on the
presence or absence, respectively. Logistic regression was
then carried out using the generalized linear model, bino-
mial family, logit link integrated in R package. The sig-
nificance of each variable was assessed by F-statistic test.

For genes related to CNS, we used multivariable linear
regression model to test the significant predictors, for the

number of CNS number was significant related to different
functional categories. The significance of each variable was
assessed by chisquare test.

All variables were added to the model as main effects,
and backward selection was used to choose the best of
predictor variables. For each run, a total of 15 variables
were given as input, and adjusted R2 was calculated.

Results

Functional inference of CNSs

Populus CNSs were typically short (median length of 15
bp) and had a broader GC content than the genic portion of
the genome (Table S1; Figure S1). The 157,567 CNSs were
located in upstream regions (49.1%), 5′ UTRs (17.4%),
introns (8.8%), 3′ UTRs (12.5%), and downstream regions
(12.1%) in the P. trichocarpa genome (PHYTOZOME
v.10.0; Figure S2). Examination of their distribution
revealed that these sequences had a high frequency of
motifs located in the 1-kb promoter regions, with some
weak peaks scattered throughout the promoters (Figure S3).

Fig. 1 Correlation between
conserved noncoding sequence
(CNS) frequency and gene pair
co-expression. CNS counts
subdivided into sub-genic
regions, including 5′ upstream,
5′ UTR, intron, 3′ UTR, 3′
downstream, or the sum of all
five regions (full gene). Each
row in one sub-gene position
indicates the whole-genome
microarray dataset of one tissue
(Rodgers-Melnick et al. 2012).
Each column indicates one co-
expression module
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After excluding all the CNSs that are known cis-regulatory
elements in PlantRegMap database with a maximum length
of 21 bp, we identified 31,998 CNSs to be significant
binding sites of 356 transcription factors (TFs) (P<=
0.001; Table S2). We observed that upstream regions were
more enriched for TF binding motifs than other regions,
with 32 motifs specific to upstream regions (Tables S3–S7).
For example, the WRKY60-binding motif involved in
abscisic acid responses and abiotic stress (Han et al. 2010),
and the ABI4 binding motif mediating abscisic acid and
temperature responses (Tamminen et al. 2001), were enri-
ched in these regions. These numbers indicate thousands of
biological network links where a protein recognizes a
conserved binding site and influences expression of its
target genes.

Furthermore, we detected 22 CNSs overlapping with
miRNA hairpins and 6 CNSs overlapping with miRNA
binding sites (Tables S8–S9). Examination of the expres-
sion of miRNA/target pairs (genes with CNSs that contain
miRNA hairpins or miRNA binding sites only in 5′ and 3′
UTR sequences) revealed significantly negative correlations

(Pearson’s correlation <−0.79; P< 0.05; Table S10). These
results suggest that CNSs may play essential regulatory
roles through interaction with miRNAs.

When focusing on gene expression patterns, we noticed
that genes with more CNSs had higher expression than
those with fewer CNSs (Figure S4a). We also examined the
tissue specificity of genes with different number of CNSs,
and found that genes with more CNSs tend to have higher
tissue specificity (Figure S4b). All these suggest that CNSs
are actually associated with gene regulation, and play
essential roles in maintaining the function of genes.

To determine whether there was an association between
gene pair co-expression and CNS signatures, we first
determined co-expression modules across 14 expression
datasets (Rodgers-Melnick et al. 2012). Using the K-means
clustering method, 40 co-expression modules were identi-
fied (Figure S5). Next, we determined the Spearman’s q
rank correlation between CNS frequency and each gene pair
normalized expression in each co-expression modules (all
rho and P values are listed in Table S11). This analysis
revealed significant correlations between gene pair co-

Fig. 2 The global pattern of
Populus DNA methylomes
under well-watered conditions. a
Distribution of CG, CHG, and
CHH methylation levels (mC/
total C×100%) in each sequence
context of gene-related regions,
including upstream, UTR, exon,
intron, and downstream. Error
bars indicate 95% confidence
intervals generated by 1000
bootstrap replicates. b–f The
average methylation level at
CNS sites and their flanking
regions in distinct sequence
contexts. g The average
methylation level of random
selected regions. Average DNA
methylation levels in each CNS
region were split into four bins
and their flanking regions were
divided into 12 equally sized
bins of 100 bp. Purple, green,
and red indicate the distribution
of CpG, CHG, and CHH
methylation levels, respectively.
The methylation data from the
previous study (Liang et al.
2014) were reanalyzed for this
experiment
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expression with sub-gene CNS frequency in all expression
datasets and all sub-gene positions examined (Fig. 1). We
also found inverse correlations of the same gene sets in
different tissues. Significant positive correlations were
identified in full gene, 5′ upstream, 5′ UTR and 3′ UTR sub-
gene positions, in particular upstream and 5′ UTR CNSs,
indicating a broad positive effect of upstream signatures on
gene pair co-expression. In contrast, significant negative
correlations between co-expression and intron/downstream
CNSs, in particular intron CNSs, were examined in most
datasets. These data suggest that CNS frequency is corre-
lated with gene pair co-expression, but that the putative
underlying expression control mechanisms in sub-gene
positions (e.g. 5′ upstream/intron) and tissues may be
mixed.

We further examined whether CNSs were enriched for
TF binding motifs among different co-expression modules.
As a result, we were able to discover many TF binding
motifs enriched in CNS sequences, displaying high variety
among groups (Table S12). We found that numerous TFs
binding the identified motifs are co-expressed with the
genes linked to the enriched motifs (Table S13), suggesting
that the motifs associated with these TFs are likely to be
functional in the CNSs. We also found that the tissue spe-
cificity is positively correlated with the diversity of motifs
(P< 0.01; Figure S4c), suggesting their regulatory roles in
gene expression. DNA methylation can alter the interactions
between DNA-binding proteins and their targets, further
active/repress expression. To further evaluate this relation-
ship, we compared the average level of methylation of
CNSs, throughout various genomic features and in plants

under water-deficit stress and in well-watered conditions
(Liang et al. 2014). For mCG methylation, we observed
lower average methylation levels in 5′ and 3′ UTRs, and the
highest methylation in introns (Fig. 2a; Figure S6). The
mCHG and mCHH methylation levels also decreased
toward the 5′ and 3′ UTRs. Intriguingly, the methylation
level of CNSs across five categories were significantly
lower than their corresponding genomic contexts (Fig. 2a;
permutation test; P < 0.001). For example, the methylation
level of 5′ UTR CNSs was lower than that of 5′ UTR
regions. Scanning the average methylation level at CNS
sites and their flanking regions also revealed a depletion of
methylation at CNS sites (Fig. 2b–g; Figure S6). We
examined the fold change in methylation level of CNSs
surrounding the differentially expressed genes (n= 910; P
< 0.05) between the two conditions. After drought treat-
ment, we found that the CG and non-CG methylation levels
of CNSs in upstream and downstream regions of the down-
regulated genes are increased significantly. A reverse trend
was observed within the corresponding regions of the up-
regulated genes (Figure S6h). Overall, our results suggest
that CNSs were enriched in cis-regulatory elements and the
methylation data agree with the hypothesis that CNSs are
bound by TFs.

Allele frequencies of CNSs reflect local adaptation

Many CNSs are important functional TF binding motifs that
determine transcriptional activity, and are under selective
pressure comparable to that of protein-coding sequences
(Haudry et al. 2013). We traced the evolution of the CNSs

Fig. 3 Unique and shared CNSs among five selection scans. a The
SNP frequency in distinct sequence contexts. The SNP frequency (no.
of SNPs per kb) were compared across different noncoding sequences,
including conserved miRNAs (seed regions, mature regions, the rest of
the miRNA excluding the seed regions (Rest) and hairpins), Populus-
specific miRNAs, and intergenic regions. The miRNA data were
derived from a previous study (Xie et al. 2017). b Venn diagram of the

number of CNSs through the genome in the top 1% for each selection
scan using five different metrics: Fst, SPA, iHS, bayenv C1, and
bayenv C2. The detected genomic regions were derived from the
previous study (Evans et al. 2014). The CNSs show lower SNP fre-
quency than Populus-specific pre-miR sequences and some of them
are located in the genome selection regions, suggesting that a sub-
stantial fraction of CNSs experience selection pressure
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and 360 previously identified microRNA (miRNA)
sequences by intraspecific sequence comparisons with a
collection of 544 P. trichocarpa individuals (Evans et al.
2014). Of the 157,567 CNSs, 19% displayed differences in
their sequences, and changes modifying the CNSs occurred
less frequently than changes in hairpin sequences of
Populus-specific miRNAs, the rest of the miRNA excluding
the seed regions, or genomic noncoding sequences, sug-
gesting that CNSs are selectively constrained (Fig. 3).
Moreover, most CNSs are present in all accessions, with
low levels of minor CNS alleles, indicating a potential fit-
ness benefit of the CNSs (Figure S7).

We first examined variation in the frequencies of CNSs
to explore the possibility that differences in allele fre-
quencies between populations of P. trichocarpa (Columbia;
Tahoe; WA/BC; Willamette) may reflect local adaptation.
We mapped seven million variations onto the CNSs, and
identified 30,076 biallelic SNPs. Of the total 157,567 CNSs,
1672 SNPs located in 1535 CNSs were identified as those
that surpassed the 5% signal (Fst= 0.1179; Table S14).
Next, five metrics were used to detect climate-driven
genomic regions across the Populus genome that appear
to be affected by divergence/positive selection, and each of
these metrics provides a distinct view of selection forces
shaping these genomic regions (Evans et al. 2014). These
metrics were: Fst, SPA, iHS, bayenv C1, bayenv C2. We
then mapped CNSs to the “selection outliers” examined by
five distinct measures of natural selection. Of the total
157,567 CNSs, we found 6020 CNSs in the top 1% from all
measures and 332 detected by at least two of the selection
metrics (Table S15). The targets of the 332 CNSs have a
variety of annotations, including MYB106, RGA, terpene
synthase, and disease resistance genes (Table S16). Most of
the selection outlier regions were uniquely detected among
selection scan metrics, suggesting that each metric provides
a distinct view of selection forces or local adaptation. Other
lines of evidence for local adaptation include the

examination of significant SNPs for phenotypic associations
as determined by the emmax mixed model analysis. We
mapped 2987 genome-wide significant trait-associated
SNPs to the CNS sequences and detected 16 significant
associations (Table S17). These analyses collectively sug-
gest that natural selection drives the rapid evolution of small
fraction of CNSs.

The divergence of CNSs supports the
duplication–degeneration–complementation model

The duplication–degeneration–complementation (DDC)
model predicts that degenerative mutations in regulatory
elements may knock out independent subfunctions of
duplicated genes, and thus could increase rather than
decrease the probability of duplicate gene preservation
(Force et al. 1999). Consistent with this, a recent study
showed that nearly half of retained paralogs have diverged
in expression (Pophaly and Tellier 2015). Under the DDC
model, mutations could act upon both retained paralogs,
thereby increasing long-term opportunities for the evolution
of new gene functions. More than 87% of the retained
paralog pairs in four species displayed CNS composition or
nucleotide differences from the ancestral state following a
pattern consistent with a DDC process, wherein regulatory
sequences randomly degenerate, eventually leading to
complete subfunctionalization (Table 1). The remaining
retained pairs appeared to support the classical model, with
one member usually degenerating within a few million
years by accumulating deleterious mutations, while the
other duplicate retains the original function (Force et al.
1999). Overall, the CNS divergence pattern suggested that
DDC may be a major mechanism in paralog retention.

Deeply CNSs are strongly associated with synteny and
paralog retention. The selection constraint on CNSs may
influence the evolution of their surrounding genomic
regions, raising the possibility that the interdigitating of

Table 1 Comparison of the associated genes of CNSs in five species

Species WGD paralogsa Singletonsb CNS-associated paralogs displaying
differencesc

CNS-associated singletons displaying
differencesd

P-valuee

Populus trichocarpa 15,822 25,513 11,831 12,122 1.59E-168

Arabidopsis thaliana 8502 18,914 6157 8902 1.74E-92

Glycine max 37,048 17,133 20,930 8566 4.91E-15

Medicago truncatula 7338 40,561 4136 16,224 4.59E-56

Vitis vinifera 3684 22,662 949 4532 2.42E-10

aNumber of WGD (whole-genome duplication) paralogs in the gene set
bNumber of singletons in the gene set
cNumber of CNS-associated WGD paralogs displaying differences in their sequences
dNumber of CNS-associated singletons displaying differences in their sequences
eP-value was derived from Fisher’s exact test

444 Jianbo Xie et al.



CNSs may play a key role in conservation of gene order. To
systematically study the association of CNSs with genomic
synteny and paralog retention, we used deeply CNSs, those
conserved in at least six dicot plant species, for downstream
analysis (Table S18). We observed that gene families that
are syntenic and show paralog retention have more CNSs
than the genome average and randomly selected genes (Fig.
4a). In contrast, non-syntenic genes have fewer CNSs than
the genome average. Notably, genes with paralog retention
and synteny show significantly more associated CNSs than
can be explained by gene duplication or synteny alone
(permutation test; P< 0.01). A simple explanation for this
observation is that it is the presence of duplicates increases
the association between synteny and CNSs, suggesting that
conserved cis-regulatory sequences could preserve gene
order and paralog retention. Supporting this, we observed
that CNSs are strongly associated with synteny and paralog
retention (Fig. 4b, c; P< 0.05; Pearson’s correlation test).
Conversely, CNSs are significantly negatively associated
with conservation of non-syntenic genes (Fig. 4d; P< 0.05;

Pearson’s correlation test). Additional CNSs increase the
probability of paralog retention and synteny, such that when
genes have 19 CNSs, more than 78% of Populus and 80%
of Arabidopsis genes have evidence of synteny. Similarly,
when genes have 19 CNSs, more than 58% of Populus and
45% of Arabidopsis paralogs are retained.

Our results indicate that genes with synteny and paralog
retention are positively associated with increased frequency
of CNSs, while non-syntenic genes are negatively asso-
ciated with increased frequency of CNSs. However, the
functions of genes associated with these genomic processes
often overlap (Hufton et al. 2009). Thus, the association
between intragenic CNSs and genome evolution processes
needs rigorous examination. We used a multivariable
logistic regression model to identify significant predictors of
the three genome evolution processes (see Materials and
methods). Candidate variables included 13 gene ontology
(GO) functional categories, expression specificity, and the
genomic length of the gene. The nine variables we tested
were significant predictors of paralog retention (P⩽ 0.05),

Fig. 4 Retained paralogs and syntenic genes have more CNSs. a The
mean number of CNSs linked to different syntenic, non-syntenic, and
whole-genome duplication gene sets. In Populus: all (n= 41,335),
synteny (n= 11,867), non-syntenic (n= 29,468), paralog retention (n
= 18,164), paralog retention and synteny (n= 7804); and in Arabi-
dopsis: all (n= 27,206), synteny (n= 9694), non-syntenic (n=
17,512), paralog retention (n= 8504), paralog retention and synteny
(n= 4067) samples were used for the experiment. b The association
between CNSs and synteny in Populus and Arabidopsis for CNSs.
Each data point is calculated from at least 50 genes. c The association

between CNSs and paralog retention in Populus and Arabidopsis for
CNSs. d The association between CNSs and non-syntenic genes in
Populus and Arabidopsis for CNSs. Each data point is calculated from
at least 50 genes. Error bars, bootstrap-based 95% confidence intervals
on the mean estimates. Both of two trends b, c represent a significant
positive correlation between CNSs number and synteny/paralog
retention, and d represent a significant negative correlation between
CNSs number and non-syntenic genes conservation. where R is the
Pearson correlation coefficient, and P is the upper tail probability that
the true correlation is greater than zero
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seven were significant predictors of CNS-linked genes (P⩽
0.03), and ten were significant predictors of syntenic genes
(Table 2). Notably, 11 common predictors were positively
associated with the odds of the three evolutionary patterns
and two categories showed contrasting effects in either of
three processes (Fig. 5). As expected, nine significant pre-
dictors were negatively associated with the odds of non-
syntenic genes, such as transcription factor and protein
binding functions, suggesting that non-syntenic genes are
less likely to be associated with these gene functions. All
these results suggest that CNSs may play roles in genome
evolution, possibly by influencing the integrity of genes
with transcription and binding functions.

Protein interaction was highly associated with
numbers of CNSs

In this study, we proposed that genes encoding proteins
with a high number of interactions may need more complex
cis-regulation and, therefore, more CNSs, compared with
genes encoding proteins with fewer interactions. To test
this, we first estimated the number of protein–protein
interactions (PPI) for all the genes and compared the
number of interactions for genes in different evolutionary
categories (Fig. 6). Retained paralogs had significantly more

PPI than the genome mean and randomly selected genes.
Indeed, genes whose proteins have many potential interac-
tion partners, such as transcriptional regulators and signal-
ing complexes, are more likely to be retained after a WGD
event (Rodgers-Melnick et al. 2012). Genes with synteny

Table 2 Significant predictors for retention of WGD, syntenic, non-syntenic, and CNS-associated genes

WGD CNS Synteny Non-syntenic

Estimatea SEb Pr−> |z|c Estimate SE Pr−> |z| Estimate SE Pr−> |z| Estimate SE Pr−> |z|

-Intercept −0.75 0.04 0 0.63 0.05 0.63 −0.2 0.04 0 −1.46 0.07 0

ExpSpecific 1.3 0.06 0 1.82 0.08 0 1.47 0.07 0 −0.2 0.01 0

Length 0 0 0 0 0 0 0 0 0 −1.86 0.72 0

Phosphatase activity 0.72 0.31 0.02 N/A N/A N/A 1.83 0.73 0.01 0 N/A N/A

Transporter activity N/A N/A N/A 0.48 0.18 0.01 −0.49 0.14 0 0 N/A N/A

Ion channel activity N/A N/A N/A N/A N/A N/A −1.07 0.37 0 0 N/A N/A

Protein kinase activity N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 N/A N/A

Catalytic activity N/A N/A N/A N/A N/A N/A −0.29 0.08 0 0.24 0.25 0.01

Stress response 0.46 0.24 0.05 0.68 0.32 0.03 N/A N/A N/A 0 N/A N/A

Receptor activity N/A N/A N/A N/A N/A N/A N/A N/A N/A −0.55 0.11 0

Nucleic acid binding 0.17 0.08 0.03 N/A N/A N/A 0.53 0.11 0 0 N/A N/A

Protease activity N/A N/A N/A N/A N/A N/A N/A N/A N/A −10.69 74.51 0.01

Ligase activity 1.01 0.57 0.08 N/A N/A N/A N/A N/A N/A −1.53 0.6 0.01

Cation binding 0.65 0.29 0.02 0.94 0.38 0.01 1.8 0.6 0 −1.7 0.18 0

Transcription factor 1.12 0.09 0 0.49 0.13 0 1.69 0.18 0 −0.11 0.05 0.02

Protein binding 0.17 0.03 0 0.17 0.05 0 0.09 0.05 0.04 −1.46 0.07 0

Logistic regression was used to identify significant predictors of occurrence of different gene categories, including genes related to CNS, synteny,
and paralog retention. Candidate variables included gene ontology (GO) functional categories, gene length, and the tissue specificity score
(ExpSpecific). Gene length was measured in bases between the start and stop codon, including all intron sequence
aEstimate indicates the contribution of individual predictors, representing the change in the logit for each unit change in the predictor
bSE indicates the standard error of regression coefficients estimation
cThe significance of each variable

Fig. 5 The exponentiated logistic regression coefficients for categories
significant for syntenic, non-syntenic, CNS-associated genes, and
WGD. Black triangles indicate categories that were associated with
similar trends of the three genome evolution categories, including
WGD, CNS, and Synteny. ExpSpecific indicate the tissue specificity
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also showed protein connectivity values similar to the
genomic mean, and syntenic genes with CNS had more
connections than the genomic mean (Fig. 6). Genes with
CNSs were significantly over-connected in both species.
The PPI data of Arabidopsis may better represent the true
associations due to the fact that Arabidopsis genome has a
more thorough functional annotation and more evidence for
interactions than Populus, with 30% more interactions
attributed to genes. The high connections of paralog
retention-CNS and synteny-CNS gene sets are due to the
fact that these gene sets have overlap in the gene functions
of transcription and protein binding (Table 2). Consistent
with this, genes encoding proteins with specific functions as
transcription factors, and in macromolecule complexes,
which are known to have more connections than genes with
other functions, are highly overrepresented in the synteny-
CNS genes (Table S19). Next, we examined the correlation
of CNS number and PPI. We observed a significant positive
correlation (P < 0.05; Fig. 6) between the connections and
CNS numbers in both species. Overall, this analysis
revealed that genes that have more protein interactions need
precise and complex regulation, and thus associate with
more CNSs.

Discussion

Examination of plant CNSs suggests their regulatory
function predominantly acts at the DNA level

Alignment-based approaches discovered thousands of
CNSs that are conserved in multiple plants and animals
(Haudry et al. 2013; Kikuta et al. 2007; Van et al. 2014).

One important aspect is to associate CNSs with function. A
specific category of CNSs represents sequences that func-
tion by binding or blocking some molecule (Subramaniam
and Freeling, 2012). Based on their proximity to protein-
coding genes, mammalian lineage-specific CNSs were
suggested to be important for the regulation of their sur-
rounding genes (Babarinde and Saitou, 2013; Takahashi
and Saitou, 2012). Computational and experimental ana-
lyses have shown the involvement of certain CNSs in the
regulation of the surrounding genes (Bhatia et al. 2014;
Sumiyama et al. 2002). To date, numerous studies have
concluded that CNSs are regulatory sequences. As expec-
ted, after excluding all the CNSs that are known cis-reg-
ulatory elements in PlantRegMap with a maximum length
of 21 bp, we identified 31,998 CNSs to be significant
binding sites of 356 TFs. Several motifs with unknown or
known function were strongly enriched in upstream regions,
but not elsewhere, hinting at a role in transcription initia-
tion. We further focused on the potential CNS control of
gene expression profile with a brief examination of 14
expression datasets based on permutation tests. Despite the
relatively large amount of “noise” conferred by the tran-
scriptomes in our examination, we detected significant
positive/negative correlations between CNS frequency and
gene expression in forty modules. These results suggest a
high association between CNSs and the expression of
genes. Moreover, all the CNS sites at different genomic
features displayed a lower methylation level in CG and non-
CG contexts. The depletion of DNA methylation at CNS
sites in each treatment or cell type indicates the maintenance
of these CNSs in a lower methylated level or unmethylated
state, potentially preventing interference in the process of
protein–DNA interaction at these sites. Our analysis reveal

Fig. 6 Genes of different genome evolution patterns have different
PPIs. a The mean number of CNSs linked to different synteny and
duplication related gene sets. The ‘*’ above each column indicates P<
0.001. b The association between CNSs and protein–protein interac-
tions in Populus and Arabidopsis for CNSs. The trend represents a
significant positive correlation between CNS number and interactions,

where R is the Pearson correlation coefficient, and P is the upper tail
probability that the true correlation is greater than zero. Error bars,
bootstrap-based 95% confidence intervals on the mean estimates.
Statistical inference is conducted with a permutation test on the mean
(perm.test in the R package exact RankTests)
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CNS regulatory complexity, in that CNSs may be involved
in multiple mechanisms of transcription control based on
their sub-gene position, methylated state, as well as tissue-
specific control, possibly mixed.

We also detected 22 CNSs overlapping with miRNA
hairpins and 6 CNSs overlapping with miRNA binding
sites. Negative correlations have been detected between
miRNA and genes with CNS that contain miRNA hairpins
or miRNA binding sites. All these results suggest that a
considerable amount of CNS function as binding sites acts
at the DNA level, through which TFs control the spatio-
temporal expression of target genes. Supporting this, many
detected CNSs function as regulatory elements and drive
expression, often in tissue-specific patterns (Hufton et al.
2009). Also, significant correlations between CNS counts
and α-pair co-expression were detected in Arabidopsis
thaliana (Spangler et al. 2011), suggesting that CNSs may
participate in the maintenance of gene regulatory patterns.

Local adaptation and adaptive trait associations of
CNSs

In multicellular organisms, in addition to the integrity of
protein-coding sequences, phenotypic diversity and evolu-
tion are accompanied and perhaps facilitated, by dramatic
increases in or maintenance of the complexity of gene
regulatory elements, which lie at considerable distance from
the protein-coding sequences. Allelic variants interrupt the
function of these CNSs and have functionally significant
consequences for phenotypic diversity, physiology, and
evolutionary divergence within and between species.
Though some fraction of of CNSs were shown to be under
adaptive selection in previous studies (Baxter et al. 2012;
Velde et al. 2016), they have not established a clear func-
tional effect of alleles predicted to be under selection. We
provide comprehensive analyses of the adaptive evolution
and trait-associated sites of CNSs. Our analysis only
detected 19% of CNSs as displaying differences in their
sequences, suggesting that these sites may often experience
strong selective constraints, for genetic variations at these
sites can disrupt their function. In agreement, previous
studies provided evidence for strong purifying selection
acting on CNSs (Drake et al. 2005; Haudry et al. 2013).
Because mutation rate differences do not affect frequency
and deleterious mutations rarely rise to detectable frequency
(Fay et al. 2001), frequency spectra may better reflect
whether CNSs are functionally relevant. In agreement, our
results show that evolutionary pressure has suppressed CNS
minor allele frequencies.

Although the markedly lower mutation rate, reflected in
SNP density, proves that selection forces shaping CNSs
acted on the Populus genome, it does not demonstrate that

CNSs are mutation cold spots. Conservation could be
explained if new mutations arising in CNSs are often
deleterious, while some are more likely to become fixed in
the population, with the notion that new, advantageous
mutations spread rapidly to fixation. Supporting this,
detection of Fst outliers revealed that many allelic variations
present in CNSs showed strong population differentiation
that may interrupt the predicted regulatory functions, which
is suggestive of directional selection. We then found strong
signals of climate-driven, divergent/positive selection on
genome regions among populations of P. trichocarpa
detected by Evans et al. (2014). We found 332 CNSs that
were detected by at least two of the selection scan metrics.
Such CNSs provide excellent noncoding candidates for
functional analyses aimed at elucidating the drivers of local
adaptation in Populus, with the consideration that mutations
of CNSs appear to have plastic effects on gene function
(Mayo et al. 2006). Regulatory mutations must be one of
the primary factors that contribute to phenotypic differ-
ences, compared with the divergence in gene sequence, as a
perfectly good gene product can be useless if synthesized
under the wrong conditions (Wray, 2007). Supporting this,
association analysis identified 16 SNPs in CNSs that have
produced adaptive climate-driven modifications of traits
(bud set, height, bud flush). Also, experimental evidence
showed that point mutations in cis-regulatory regions make
qualitative contributions to interesting and ecologically
significant differences in morphology, physiology, and
behavior (Wray, 2007). These results indicate that naturally
occurring mutations could disrupt or enhance protein–DNA
interactions, and thus have the potential to alter the reg-
ulatory function of CNSs with consequent modulation of
TF–target interactions.

CNSs conserve biological networks

Genetic regulatory networks consist of a set of complex cis-
regulatory-binding sites interacting with a finite number of
TFs, and give a global overview of how transcriptional
control is steered in the cell through TF activity. They are
typically organized in nested, multi-layered, interacting
hierarchical regulatory modules and function-specific
building blocks (Longabaugh et al. 2005). Some biologi-
cal functions require a large number of coordinated genes
that act alone or that have multiple sets of interaction
neighbors, appearing as orphan co-expression modules.
However, TFs do not have a consistent group of interacting
partners, which largely depend on biological conditions or
cell context (Stuart et al. 2003). Therefore, the expression of
TFs or targets with more partners will be more rigorously
regulated compared with factors with fewer interacting
partners, for complex regulation is achieved through
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cooperative binding of different TFs, adding an extra
combinatorial level of regulation. Supporting this, we
observed a significant positive correlation between CNSs
and PPI, suggesting genes encoding proteins with many
interactions have more complex cis-regulation and more
CNSs, allowing them to be regulated and interact with their
neighbors precisely.

Though enrichment analyses have been done of CNSs-
associated genes in previous studies (Baxter et al. 2012;
Spangler et al. 2011), there are no uniform comparisons
among gene sets of distinct genome evolution categories,
such as WGD genes and non-syntenic genes. In our study,
five significant functional categories were identified to be
the common predictors of synteny, CNS targets, and para-
log retention. Observation of common factors of paralog
retention and CNS targets is not surprising considering that
genes with many interaction partners experience paralog
retention. In fact, empirical data in yeast and Arabidopsis
demonstrate that genes involved in signal transduction and
transcription, which are very often “bigfoot” genes, are more
likely to undergo paralog retention (Maere et al. 2005;
Rodgers-Melnick et al. 2012). For syntenic genes, “tran-
scription factors” and “protein binding” categories are highly
enriched, leading to a significant increase of PPI of the
synteny-CNS overlapping gene set. Our results indicated
strong associations between noncoding sequences and
synteny and paralog retention, possibly by influencing the
integrity of genes with transcription and binding functions.

Because of the large ratio of such hub genes in genomes,
the biological pathways could self-organize to construct
biological networks, in which nodes represents TFs or
“protein binding” genes. The participation of these hub
genes becomes one of the driving forces for the emergence
of the network scale-free topology; thus CNSs near such
genes contribute to the stability of the biological networks,
enable the network to adapt quickly to environmental
changes, and mitigate gene expression fluctuations. In a
network, the precise expression of hub genes is important
because their transcript abundances are highly coupled with
the expression of their target genes, implying that CNSs
experience strong selection forces. This study provides new
insight for understanding the underlying evolution and
function of plant species that have natural populations
spanning large geographical regions, such as Populus.
Conserved noncoding elements are also essential targets of
natural selection and genome-wide association studies will
provide further information about such genetic markers that
affect import ecological traits for local adaptation.
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