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Abstract
Overweight, obesity, and their comorbidities remain global health challenges. When established early in life, overweight is
often sustained into adulthood and contributes to the early onset of non-communicable diseases. Parental pre-conception
overweight and obesity is a risk factor for overweight and obesity in childhood and beyond. This increased risk likely is
based on an interplay of genetic alterations and environmental exposures already at the beginning of life, although
mechanisms are still poorly defined. In this narrative review, potential routes of transmission of pre-conceptional overweight/
obesity from mothers and fathers to their offspring as well as prevention strategies are discussed. Observational evidence
suggests that metabolic changes due to parental overweight/obesity affect epigenetic markers in oocytes and sperms alike
and may influence epigenetic programming and reprogramming processes during embryogenesis. While weight reduction in
overweight/obese men and women, who plan to become pregnant, seems advisable to improve undesirable outcomes in
offspring, caution might be warranted. Limited evidence suggests that weight loss in men and women in close proximity to
conception might increase undesirable offspring outcomes at birth due to nutritional deficits and/or metabolic disturbances in
the parent also affecting gamete quality. A change in the dietary pattern might be more advisable. The data reviewed here
suggest that pre-conception intervention strategies should shift from women to couples, and future studies should address
possible interactions between maternal and paternal contribution to longitudinal childhood outcomes. Randomized
controlled trials focusing on effects of pre-conceptional diet quality on long-term offspring health are warranted.

Introduction

The health of a child depends on its environment. Exposure
to suboptimal conditions early in life appears to affect the
health not only momentarily but throughout a life course.
The earliest environment is defined by the mother and,
amongst other factors, both under- and overnutrition during
pregnancy can lead to undesirable health outcomes in off-
spring. The observation that early-life exposure during
pregnancy and infancy impacts life-long health led to the
generation of the Developmental Origins of Health and

Disease hypothesis [1]. This theory is widely accepted
today and resulted in a boost in research focusing on
pregnant women. However, recent evidence points to the
pre-conception and/or peri-conception phase as an impor-
tant time to influence offspring health outcomes. The peri-
conceptional phase encompasses the time that precedes,
includes, and immediately follows conception [2].

With ever-increasing numbers, overweight and obesity in
children and their comorbidities have become a major threat
to personal and societal wellbeing in high-, middle- and
low-income countries alike [3, 4]. Parental peri-conception
overweight is a strong predictor for increased birth weight
as well as for childhood overweight and obesity [5–11].
While the causes for obesity are multifactorial and include
effects of (food) environment, socioeconomic status, psy-
chological health, and cultural aspects [12], results from
adoption studies suggest that overweight and obesity also
have a genetic component [13]. Mechanisms underlying
overweight development and fetal adipogenic programming
through influences of early-life stages are still poorly
understood.

* Regina Ensenauer
regina.ensenauer@mri.bund.de

1 Institute of Physiology and Biochemistry of Nutrition, Max
Rubner-Institut, Federal Research Institute of Nutrition and Food,
Karlsruhe, Germany

2 Institute of Child Nutrition, Max Rubner-Institut, Federal Research
Institute of Nutrition and Food, Karlsruhe, Germany

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41430-021-00920-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41430-021-00920-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41430-021-00920-7&domain=pdf
http://orcid.org/0000-0001-7494-4707
http://orcid.org/0000-0001-7494-4707
http://orcid.org/0000-0001-7494-4707
http://orcid.org/0000-0001-7494-4707
http://orcid.org/0000-0001-7494-4707
http://orcid.org/0000-0002-2420-6850
http://orcid.org/0000-0002-2420-6850
http://orcid.org/0000-0002-2420-6850
http://orcid.org/0000-0002-2420-6850
http://orcid.org/0000-0002-2420-6850
mailto:regina.ensenauer@mri.bund.de


In this review, we focus on parental overweight/obesity
in the peri-conceptional phase and its effects on gamete
quality and epigenetic changes as mediators of increased
risk for overweight or obesity in offspring. We further
reviewed risks associated with pre-conceptional weight loss
in overweight or obese mothers and fathers and discuss
improvement of the diet as a possible alternative to body
mass index (BMI) reduction.

Methods: sources and selection criteria

The articles selected for this review were English-language,
full-text articles and abstracts that were identified by a series
of PubMed and EMBASE searches using keywords either
alone or in combination and published before July 31, 2020.
The keywords used included obesity, overweight, child
outcomes, infant outcomes, large for gestational age, small
for gestational age (SGA), pregnancy, pre-conception,
weight loss, bariatric surgery, micronutrient, oocyte qual-
ity, sperm quality, seminal fluid, assisted reproductive
technologies, epigenetics, epigenetic programming, DNA
methylation, and gestational weight gain. The reference lists
of articles and reviews identified by this search strategy
were also searched, and those articles that deemed to be
relevant were selected. This review is not exhaustive;
therefore, we provide references for more in-depth reviews
when we thought it might be helpful or appropriate. We
used the words ‘mother’ and ‘father’ as an indication of the
biological sex of the respective parent and not as a repre-
sentation of their social gender.

Why is pre-conception health important?

The decision to have a child is life changing. However, about
40% of pregnancies are unintended [14], and these pregnan-
cies seem to be associated with a higher risk for undesirable
pregnancy and birth outcomes [15]. A recent systematic
review reported that during the pre-conception phase and
pregnancy, women may not meet recommendations for
vegetable, cereal grain, vitamin, and mineral intake [16]. Even
amongst those who plan to get pregnant, awareness of pre-
conception health and motivation for behavioral changes
appears limited in both women and men [16–18]. This evi-
dence suggests that many women and men might not have
optimal metabolic conditions prior to pregnancy. Overweight
and obesity have become major global problems [3, 19].
Among women of childbearing age, up to 70% are over-
weight or obese and up to 40% are obese worldwide [19], and
these numbers are predicted to increase [20, 21]. Therefore,
pregnant women with overweight or obesity are not a minor
instance but have become part of a new norm [19].

Obesity is a risk factor for a wide range of complications
related to pregnancy. First, it causes in- and subfertility in
men and women [22, 23]. In addition, pregnant women who
are obese have higher rates of hypertension, preeclampsia,
thromboembolism, cesarean section, and excessive weight
gain during pregnancy and have increased rates of meta-
bolic abnormalities such as gestational diabetes (reviewed
in [24, 25]). Their children are more at-risk to be born large
for gestational age or SGA, to have congenital defects, or to
develop overweight and/or cardiometabolic diseases later in
life (reviewed in [6, 7, 25, 26]). Studies that assessed the
effect of the mothers’ high pre- or early-pregnancy BMI
show a positive association with increases in birth weight,
longitudinal BMI development during preschool age
[27–29], and body weight in offspring up to age 18 years
[7, 10]. In addition, evidence is emerging suggesting that
paternal BMI may affect offspring risk for obesity or type 2
diabetes across the life course [5, 30]. However, high-
quality studies are sparse.

Overweight and obesity developed in childhood and
adolescence are generally sustained in adulthood and, if
established already early in life, often progress to more
severe stages over the course of a lifetime [31]. Overweight
and obesity seem to be transferred from ancestor genera-
tions to their progeny, with data indicating that a suscept-
ibility for overweight can be passed on over three
generations, through environmental exposures modulating
the germline epigenome and leading to a transgenerational
phenotype [32]. Here, we focus on parent-to-child trans-
mission. To overcome the associated personal and societal
costs (psychological and financial), the intergenerational
cycle has to be broken to stop the alarming rate of global
obesity development. Lifestyle intervention studies in
women with overweight and obesity during their pregnancy
failed to prevent undesirable offspring outcomes at birth
[33, 34]. Therefore, weight should be reduced prior to
pregnancy, as very early embryonic development, when
women might not yet know that they are pregnant, seems to
be essential for pregnancy success and life-long health of a
child [34]. The low adherence to pre-pregnancy health
guidelines [16] and the high proportion of unplanned
pregnancies [14] further strengthen the urgency to imple-
ment strategies for improvement of pre-conception health.

Gamete quality

The life of all vertebrates starts with the fusion of ovum and
sperm. The gametes’ quality and potential are inherently
affected by the health status of the individual who generates
them. While women often are in the spotlight when it comes
to the health of a growing life, the male counterparts con-
tribute equally to the genetic material. Overweight and
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obesity affect the quality of oocytes and sperms alike (see
below). Several studies demonstrated epigenetic changes in
DNA and histone methylation, histone acetylation, and
microRNA expression in oocytes and sperms. Epigenetic
modifications change the way genes are expressed without
altering the genetic code itself. In changing environments,
these potentially reversible modifications might be bene-
ficial over genetic alterations [35]. They are believed to be
an adaptation mechanism that provides an evolutionary
advantage for the subsequent generations.

Oocyte

The maturation process from primordial follicles to ovula-
tion takes several months and is regulated by hormonal
signals. The complete process remains to be fully under-
stood. During the months of maturation, the oocyte and its
surrounding cumulus cells are exposed to the nutritional and
hormonal environment within the woman’s body [36].
Overweight and obesity affect sex hormones, oogenesis and
fertility, and, within an oocyte, gene expression, epigenetic
markers, and mitochondria [37–39].

The unique contribution of the oocyte quality to off-
spring health as opposed to the maternal metabolic envir-
onment during early-life development can hardly be
assessed in natural pregnancies. However, egg retrievals are
routinely performed in women undergoing assisted repro-
ductive technology (ART), and several studies assessed
offspring outcomes after ART [40, 41]. Decreased preg-
nancy and live birth rates resulted from increasing auto-
logous [42] as well as a donor [43] oocyte BMI, possibly
pointing to a BMI-related impairment of the oocyte quality
prior to fertilization.

While observational evidence on transmission of maternal
obesity to an offspring is solid, data on mechanisms are
sparse. A recent report focused on STELLA, a protein highly
expressed in primordial germ cells [44]. High-fat diet (HFD)-
induced obesity led to a reduction in STELLA in murine
oocytes and a subsequent change in DNA methylation. Exo-
geneous overexpression of STELLA partly reversed methy-
lation patterns as well as phenotypical obesity-associated
defects during embryogenesis [44]. The insufficient amount of
STELLA in oocytes from obese mice was suggested to be one
route potentially contributing to the intergenerational trans-
mission of maternal obesity to their offspring.

In addition, obesity-related overnutrition and alterations
of metabolites (glucose, free fatty acids) in the circulation
are assumed to be mirrored in the intra-follicular fluid with
increased concentrations of lactate, insulin, leptin, and tri-
glycerides [37, 45]. High intra-follicular insulin concentra-
tions were related to adiposity in women and might
potentially impair oocyte function [37, 46, 47].

Furthermore, within oocytes of obese mice and women,
high intra-follicular lipid concentrations cause lipotoxicity
[48, 49], and lipid accumulation was associated with
impaired mitochondrial function and oxidative stress
resulting in DNA damage [23, 38, 49]. In their recent
review, Bradly and Swann concluded that a balance of fatty
acid and pyruvate oxidation is a prerequisite for optimal
oocyte function and early embryonic development, and a
disruption of the balance—by excess or shortage of either
substrate—will result in compromised oocyte and embryo
quality [50]. However, not only the amount of lipids but
also lipid quality could affect oocytes and pregnancy suc-
cess. Higher palmitic acid and total saturated fatty acid
concentrations were found in the intra-follicular fluid from
degenerate bovine oocytes, whereas competent oocytes
showed higher concentrations of linolenic acid [51]. Non-
esterified fatty acids were higher in oocytes from obese than
overweight and normal weight women, possibly affecting
oocyte quality [52]. These results suggest that an adjustment
of the nutritional quality of the oocyte environment might
be able to dampen negative effects resulting from obesity.

Sperm

Most interventions to improve pregnancy and child health
target mothers, as their behavior from conception to the end
of breastfeeding and onward affects the metabolic outcomes
of their offspring. However, paternal pre-conception life-
style seems to affect child outcomes as well. Children from
pre-conceptionally obese fathers are likely to develop obe-
sity and/or metabolic dysfunction independent of the
mother’s weight [5, 30]. In mice, female offspring from pre-
conceptionally obese fathers showed impaired insulin
secretion and glucose tolerance [53]. Furthermore, paternal
obesity was negatively associated with live birth rates in
couples undergoing ART [54] and positively associated
with changes in sperm, including alterations in small RNA
species [55, 56].

Sperm carry non-coding RNAs, which might also mod-
ulate DNA methylation [57–59]. Obese male mice exhibited
altered microRNA and DNA methylation profiles in sperm
and transmission of adverse metabolic phenotypes, which
were partly transferred to the following two generations
[60]. A pre-conceptional weight loss study in obese male
mice showed that changes in microRNA patterns in sperm
are reversible through lifestyle changes (diet and/or exer-
cise) and that these findings were associated with a decrease
in the predisposition for adiposity and insulin resistance in
female offspring [61]. Interestingly, in the Project Viva
study, paternal BMI at conception was associated with
methylation patterns in cord blood samples and in offspring
blood at ages 3 and 7 years [9].
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DNA methylation patterns and non-coding RNA content
of sperm from obese men differed from those of lean men
[62]. In the same report, sperm from obese men who
underwent gastric bypass surgery showed DNA methylation
changes in 1.509 genes 1 week after surgery (median BMI:
40.1 kg/m2, p < 0.05 compared with pre-surgery) in com-
parison to sperm obtained from the same individual 1 week
before surgery (median BMI: 42.6 kg/m2) [62]. Of those,
differences in 1.004 gene methylations were still evident 1
year after surgery when weight stabilized (median BMI:
33.9 kg/m2, p < 0.05 compared with pre-surgery) [62].
These findings suggest that epigenetic changes occur
rapidly in sperm and that they are affected by body weight.
Recently, it was discovered that seminal fluid has its own
microbiome, which is affected by the diet [63, 64]. The
microbiome composition may potentially also affect epi-
genetic markers in the sperm. However, the role of the
seminal fluid microbiome remains to be elucidated.

Observational studies suggest that children born to two
parents with overweight or obesity have a higher risk to
develop obesity than children with only one overweight or
obese parent [8, 65]. However, offspring’s weight at birth
and at 3 years of age was stronger associated with maternal
obesity than paternal obesity [66]. Future research needs to
clarify whether good metabolic health of one parent could
dampen adverse effects of an overweight/obese partner on
the long-term outcome of the child.

Epigenetic programming

Once sperm and oocyte merged, their DNA undergoes
substantial epigenetic reprogramming. During the first week
after fertilization, parental DNA methylation is widely
removed from all cells, and de novo methylation occurs.
These new epigenetic markers—i.e., epigenetic program-
ming—are partly sustained over the course of a life and can
affect metabolism [67]. Primordial germ cells, the cells that
will become the gametes, undergo a second round of
demethylation during embryogenesis [68].

Environmental exposures affect the process of epige-
netic programming, which is apparent e.g. in children
conceived through ART. Changes in epigenetic program-
ming and undesirable pregnancy and health outcomes,
including low birth weight, preterm birth, or birth defects,
are increased after ART compared with spontaneous con-
ception [69]. Limited evidence suggests long-term effects
in offspring conceived through ART such as increased
risks for cardiovascular diseases or decreased reproductive
function [69]. One study found that children aged 0–4
years conceived via ART were smaller compared with
those conceived naturally [40]. These differences were not
detectable at 5 years of age or older [40], which indirectly

suggests that the children conceived through ART might
possibly develop accelerated growth in their first years of
life. In ART, the environment for the zygote and during
the first cell divisions is very different from the natural
surroundings in a mother’s body. The culture medium
itself affects offspring birth weight and weight trajectory in
the first 2 years of life, as shown in a study where two
different culture media for in vitro fertilization were tested
[70, 71]. These results demonstrate that the intrauterine
environment might be one route of intergenerational
transmission of overweight or obesity through changes in
epigenetic programming.

Risks associated with weight reduction prior
to conception

Considering the outlined risks associated with overweight
and obesity, health guidelines recommend a normalization
of the body weight prior to pregnancy [72, 73]. The rea-
sonable amount of weight loss and safe strategies to achieve
a reduction in BMI differ considerably, as recently reviewed
[73]. Studies focusing on fertility showed improved fertility
rates after modest weight loss of a mean of 6.6 ± 4.6 kg
(mean 6.9% of initial body weight) [74], and higher losses
(>10% of body weight) might benefit fertility further [75].
A study in mice assessed the effects of pre-conceptional
weight loss on epigenetic modulators in placenta and fetal
liver at embryonic day (E) 18.5 [76]. Prior to mating, a
normal weight group was fed with a control diet for
4 months and compared with an overweight group, fed a
HFD for 4 months, and a weight loss group, fed a HFD for
2 months followed by a control diet for 2 months. The mice
were sacrificed at E18.5, and expression levels of epigenetic
modulators in fetal liver, placental labyrinth, and uterine
junctional zone were assessed. Long-term HFD led to a
reduction in fetal weight, which could be partially rescued
by diet-induced weight loss prior to mating. Weight loss
further induced a partial normalization of expression levels
of a subset of genes belonging to the epigenetic machinery
[76]. This study suggests that epigenetic processes could be
modulated by weight change prior to pregnancy, at least in
mice. As this study ended during pregnancy, long-term
effects on the offspring would be of interest.

In a rat model with a similar intervention, male offspring
were followed up until 150 days of age [77]. Pubs from
obese dams who were subjected to a dietary intervention
prior to pregnancy showed metabolic parameters similar to
pubs from dams in the control diet group at postnatal day
21. Later at day 150, their serum leptin levels as well as fat
tissue weight and fat cell size were lowered compared to
offspring of obese dams, although fasting insulin (day 120),
body weight, and food intake (day 150) were not [77].
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The weight of the dams in the dietary intervention group
was not stabilized, which might have affected offspring
outcomes.

Clinical trials assessed the effects of severe weight loss
after bariatric surgery on pregnancy and child outcomes.
These results raise a note of caution for pre-conceptional
weight loss. In addition to higher risks of prematurity and
admission to neonatal intensive care unit, the rate of SGA
was increased in offspring born to overweight/obese
mothers who underwent bariatric surgery, as compared to
offspring of mothers without operations (relative risk 1.93;
95% confidence interval 1.65–2.26) [78]. A shortage of
maternal micronutrients resulting from bariatric surgery
likely adds to the undesirable pregnancy outcomes [79], and
thus, regular monitoring and nutritional recommendations
are required for the pre-conception and gestational phases.

Furthermore, a recent systematic review suggested that
weight reduction through lifestyle intervention in women
with obesity prior to infertility treatment might cause an
increase in the rate of miscarriages [33]. In the Norwegian
Fit for Delivery study, the risk for SGA increased with
higher pre-pregnancy (p-trend = 0.036) or early-pregnancy
(p-trend= 0.043) diet quality scores [80]. The authors
suggested that behaviors focused on energy balance might
lead to a shortage of fuel for child development [80].
However, the relationship was no longer significant in a
model adjusted for other maternal variables that might
explain the higher SGA rate associated with the diet scores.
In a French cohort study [81], a restrictive diet and weight
loss prior to pregnancy resulted in increased gestational
weight gain, which is a known risk factor for large-for-
gestational-age birth weight and overweight in children
[82]. Another study showed an increased risk for SGA in
normal-weight women after weight loss prior to pregnancy
(odds ratio 1.76; 95% confidence interval 1.10–2.81), while
there were no effects on birth weight in children born to
women with overweight/obesity (BMI 25–40 kg/m2) who
had pre-pregnancy weight loss, although the sample size of
this subgroup was small [83].

These findings highlight the challenge for a public health
campaign targeting women who plan a pregnancy. While
supervised weight loss prior to pregnancy might be bene-
ficial to women who are overweight or obese, overly health-
conscious women with normal weight might also follow the
guidance addressed at women with higher BMI and lose
weight or restrict their eating habits at the risk of nutritional
deficiencies and SGA birth weight of babies. The timing,
method, and extent of desirable weight loss in women with
overweight or obesity have to be assessed in future studies.

Following the weight loss of men through bariatric sur-
gery, different effects on sperm quality at 1–2 years after
surgery are reported. In some case studies, reduced
sperm quality or increased rates of infertility were reported

[84–86], whereas others found improvements [87] or no
changes of sperm quality [88]. It remains to be determined
if the timing of weight loss in fathers prior to conception is
associated with later health outcomes in the offspring. In
male mice, pre-pregnancy undernutrition negatively affec-
ted sperm quality and led to adiposity and dyslipidemia in
their offspring later in life [89]. Supplementation of anti-
oxidants and vitamins of the paternal diet prior to mating
them restored offspring metabolic health [89]. If dietary
supplementation in overweight/obese men is beneficial for
offspring health, remains to be studied.

These results suggest that weight loss may lead to
metabolic disturbances affecting gamete quality and if in
close proximity to conception might increase the risk for
metabolic diseases in the offspring. Therefore, caution is
advised when couples planning to become pregnant lose
weight prior to conception. High-quality intervention trials
are needed that test the timing and extent of advisable
weight loss before conception to harvest potential beneficial
effects for mother and child.

Improving diet and health rather than
focusing on weight loss prior to conception

While motivation to change one’s lifestyle might be increased
in persons planning to have a child, the obstacles to achieve
weight loss are no less. In addition, advanced age in mothers
[90] and fathers [91] is another risk factor for adverse preg-
nancy and child outcomes. Therefore, the risk stemming from
increased BMI has to be weighed against the risk from
advanced age, as weight loss and weight maintenance might
take considerable time. One study even found low willingness
in women in their mid-thirties (mean age 34.5 years) with
overweight or obesity to postpone fertility treatment in order to
actively reduce weight [92]. These findings should be con-
sidered in pre-conceptional health advice.

If weight loss is not possible due to advanced age or lack of
means or willingness, then smaller changes in the dietary
patterns might be an option. To shift the focus from weight
reduction to an improved diet might also improve adherence to
the advice, as persons with overweight or obesity and a history
of weight loss attempts are less likely to lose weight in sub-
sequent interventions [93]. Overweight and obesity seem to be
associated with lesser diet quality in pregnant women [94, 95].
Women who adhered to a Mediterranean style dietary pattern
seem to have higher pregnancy rates compared with women
eating a Western style diet [96]. However, in an analysis of the
Nurses’ Health Study II, peri-pregnancy diet quality was not
associated with overweight or obesity in offspring at 12–23
years of age, when adjusted for maternal BMI [97].

Diet composition also affects sperm function and quality
[98, 99]. In obese mice, a diet and/or exercise regime helped
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to restore sperm parameters, even if obesity was sustained
[100]. However, epigenetic variation in sperm from mice
provided with different diets (control diet, low-protein diet,
and HFD) was not dependent on the diet type, and the
authors concluded that there is no immediate effect of diet
on the metabolism of the subsequent generation [101].
These three diets differed in their macronutrient com-
pounds, but diet quality is not only measured in fat, protein,
and carbohydrates. Various plant compounds including
phytochemicals affect epigenetic mechanisms and might
influence epigenetic programming in the embryo as
reviewed elsewhere [102]. In addition, inadequate micro-
nutrient intake, which is common in energy-dense Western
dietary patterns [103] and in pre-conception overweight and
obesity [104], might affect pregnancy and child outcomes
[105], due to different potential mechanisms. First, the
micronutrient density of a diet appears to impact hunger
perception, and a micronutrient-dense diet has been shown
to attenuate the negative experience of hunger [106]. Vice
versa, deficiencies of micronutrients could potentially
exacerbate hunger and thereby drive excessive calorie
consumption and subsequent weight gain. Adequate intake
is therefore a prerequisite for weight maintenance, espe-
cially in the peri-conception phase. Second, low con-
centrations of micronutrients, especially those acting as
methyl donors, increased the cellular expression of genes
that regulate adipogenesis and lipogenesis and altered epi-
genetic processes [107–109]. Even though micronutrient
deficiencies early in human pregnancy have been shown to
be associated with maternal obesity and dyslipidemia, the
implications for offspring metabolic health are not fully
understood [105, 110]. One study in humans showed that
low maternal folate levels were associated with a slight
increase in offspring BMI at age 5–6 years [111]. Besides,
there seems to be a role for the father’s folate status at
conception and offspring embryonic growth [112].

To date, the effects of pre-conception micronutrient defi-
ciency on child outcomes including stunting are mostly stu-
died in low- and middle-income countries in the context of
undernourishment [113], while the consequences of energy-
rich, micronutrient-poor diets at conception remain to be
elucidated. Therefore, research is warranted that assesses the
role of peri-conception dietary patterns rich in fruit and
vegetables, micronutrients, and beneficial lipids on long-term
health outcomes in offspring against a background of exces-
sive energy intake as in overweight and obese mothers.

Outlook

The focus of pre-conception intervention strategies needs to
shift from women to couples, as emerging data show that
fathers contribute to the health trajectory of their progeny.

Future studies should also address possible interactions
between maternal and paternal lifestyle and health status.
While overweight and obesity in parents are risk factors for
undesirable health outcomes in their offspring, weight loss
in close proximity to a planned pregnancy should not be the
main focus of interventions. An improvement of diet quality
might be an alternative to prevent or lessen obesity-
associated adverse health outcomes in offspring. However,
if and what kind of change in parental pre-conception diets
could protect the offspring from undesirable metabolic
programming warrants future studies. Studies that aim to
answer these questions are highly ambitious due to the
challenges in recruitment, the number of subjects needed,
the length of the follow-up, and the costs; however, they
are needed.

The peri-conceptional period sets the stage for a healthy
life of a person. However, how a life is lived, is determined
by its environment. While the pre-conceptional phase might
be a time for motivation to improve one’s health, pre-
conceptional health is also a societal issue and should be
addressed on a global, national, and community scale.
Healthy choices should be attainable to everybody to
improve public health in general. Following a life-course
approach will improve health for couples before, during,
and after pregnancy and improve the health of the future
generations.
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