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Abstract
Nanoparticles play irreplaceable roles in optoelectronic sensing, medical therapy, material science, and chemistry due
to their unique properties. There are many synthetic pathways used for the preparation of nanoparticles, and different
synthetic pathways can produce nanoparticles with different properties. Therefore, it is crucial to control the properties
of nanoparticles precisely to impart the desired functions. In general, the properties of nanoparticles are influenced by
their sizes and morphologies. Current technology for the preparation of nanoparticles on microfluidic chips requires
repeated experimental debugging and significant resources to synthesize nanoparticles with precisely the desired
properties. Machine learning-assisted synthesis of nanoparticles is a sensible choice for addressing this challenge. In
this paper, we review many recent studies on syntheses of nanoparticles assisted by machine learning. Moreover, we
describe the working steps of machine learning, the main algorithms, and the main ways to obtain datasets. Finally,
we discuss the current problems of this research and provide an outlook.

Introduction
Nanotechnology is a science in which nanoparticles

with sizes ranging from 1 to 100 nm are prepared through
multiple synthetic pathways and nanoparticle structure
and size are studied1–4. Nanoparticles have unique
properties based on their nanoscale sizes that larger par-
ticles do not possess. Today, nanoparticles play irre-
placeable roles in many fields, such as molecular biology,
electronic sensing, organic and inorganic chemistry,
medical therapy, and materials science5–8. With the rapid
development of microfluidics, the preparation of nano-
particles in microreactors has received wide attention9–11.
Microreactors have the advantages of better heat transfer
capability, less reagent consumption, easy operation, and
easy integration12–15. In the process of preparing nano-
particles, temperature conditions usually must be trig-
gered to drive the reaction, and the better heat transfer
capabilities of microreactors can make the reactions
happen quickly and controllably16,17. These advantages
make the use of microfluidics for nanoparticle preparation

a superior prospect for development. Since the properties
of nanoparticles play different roles depending on their
sizes and morphologies, syntheses of nanoparticles with
the desired properties require precise control of size and
morphology18–20. In a recent study, Zhang et al.21 found
that the average particle size and standard deviation for
synthesized Cu2O nanoparticles were 0.967 and 0.12 μm,
respectively, when the voltage was 5 V. When the voltage
was 8 V, the average particle size and the standard
deviation decreased to 0.680 and 0.09 μm, respectively.
Therefore, the sizes of nanoparticles can be adjusted with
reaction conditions. Nanoparticles of different sizes
exhibiting different properties in electron optics were
obtained. Lundqvist et al.22 studied six different examples
of polystyrene nanoparticles made with three different
surface chemicals (plain PS, carboxyl-modified, and
amine-modified) and two sizes (50 and 100 nm). They
found that different nanoparticle surface properties and
sizes affected detailed protein corpuscles differently. The
extent of changes observed in the natures of bioactive
proteins in the corona varies when different surface che-
micals are used. Different sizes of nanoparticles have
different effects on protein coronas. However, with
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current technology, syntheses of nanoparticles with
expected properties require large numbers of experiments
and iterative tuning. This is costly in terms of time and
increases the amount of reagents consumed. Therefore,
precise synthesis of nanoparticles is currently the most
daunting problem for researchers23,24.
The most important problem that can be solved in the

field of machine learning is prediction. Machine learning
can construct complex relationships relating to data
samples25. Machine learning is a branch of artificial
intelligence that uses large numbers of known datasets to
predict or respond to unknown data26. The model is
constructed through algorithms that include both simple
linear regressions and very complex nonlinear regressions,
which ultimately allow the model to produce the best
predictions27–29. Thus, the use of machine learning-
assisted syntheses of nanoparticles can overcome the
challenges of preparing nanoparticles with functionality.
In a recent study, Ban et al.30 performed predictive ana-
lyses with machine learning models, and protein predic-
tions showed an R2 value exceeding 0.75. This study
provided a novel approach for accurately and quantita-
tively predicting the functional compositions of protein
corpuscles that determine cell recognition and nanotoxi-
city with machine learning and thereby overcame the
uncertainty involved in synthetic processes and provided
precise syntheses of various nanoparticles.
In this paper, we first review the advantages of synthe-

sizing nanoparticles on microfluidic chips with different
types of microreactors. Second, we describe the working
steps of machine learning, the main algorithms, and the
main ways to obtain datasets. Next, we review many
recent reports of machine learning-assisted syntheses of
nanoparticles with desired properties. Finally, we discuss
the current problems of machine learning and the future
prospects.

Synthesis of nanoparticles by microfluidic
technology
A microfluidic chip is a device that uses micron-scale

channels to handle fluids31–33. It can handle micron- and
nanoscale fluids mainly by taking advantage of its small
size and thus greatly reduces sample consumption,
reduces bioassay costs, and increases reaction rates. It also
has the advantages of high integration and ease of
operation34–36. It shows great promise for biochemical
syntheses, drug development, medical diagnostics,
microbial research, and nanoparticle preparation. The
microreactor is also known as a microchannel reactor. It
can be subdivided into micromixers, microexchangers,
and microreactors37. It is a microreactor with feature sizes
between 10 and 300 microns (or 1000 microns), and it is
manufactured by using precision machining techniques.
The “micro” in the microreactor indicates that the

channels of the process fluid are at the micron level,
rather than referring to the small form factor of the
microreactor or the small yield of product. Microreactors
can mix reagents quickly and uniformly, and they can
accelerate reactions by placing obstacles inside the
microchannels to facilitate fluid mixing or by applying an
external energy field. Since microreactors exhibit small
sizes, they have the advantage of fast heat transfer; this
improves the processes used for preparing nanoparticles,
which require certain temperatures for the reactions to
occur, by improving the heating rate and the reaction
rate38–40. In current biochemistry, electronic sensing, and
other fields, nanoparticles have irreplaceable advantages
due to their unique properties. Therefore, research on the
preparation of nanoparticles is crucial41.
In traditional reaction engineering, the main methods

used for preparing nanoparticles include evaporation
coalescence, mechanical comminution, chemical reduc-
tion, chemical deposition, and sol-gel methods42–45. The
first two methods are commonly used in the early stage.
Evaporation coalescence is a physical method that
involves heating metal materials under a high vacuum,
evaporating them into molecules or atoms, and then
coalescing them into nanoparticles46,47. The advantage of
this method is that the nanoparticles produced are of high
purity and the particle sizes are easy to control, but the
environmental conditions are demanding, and the
operations are difficult. Mechanical comminution is also a
physical method that works by splitting a solid mass
through impact from a comminution force to produce
finer particles48,49. Common crushing forces include
shearing, crushing, impact crushing, and grinding. The
chemical reduction method is a common method for
preparing nanoparticles. According to the state of the
reducing agent used, the reactions can be divided between
liquid-phase and gas-phase reduction methods50–54. The
liquid-phase reduction method is a process in which a
metal salt solution is directly reduced by the reducing
agent at room temperature and atmospheric pressure to
prepare nanoparticles. However, in the traditional method
of preparing nanoparticles, it is difficult to control the
sizes of nanoparticles precisely, and the consumption of
reaction raw materials during the preparation process is
also large. However, compared with traditional reactor
processes, microreactor technology has many advantages,
such as high mass and heat transfer efficiencies, short
reaction times, no amplification effect, safety and relia-
bility, high integration, and green production pro-
cesses55–57. Microreactor technology can significantly
enhance the reaction process; it constitutes an innovation
in chemical synthesis, and it provides an efficient and
convenient operating platform for chemical production.
Therefore, the preparation of nanoparticles on micro-
fluidic chips is imperative58,59.
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There are primarily two different types of microreactors
used for preparing nanoparticles on microfluidic chips,
namely, single-phase continuous flow microreactors and
multiphase flow microreactors60–64. Single-phase con-
tinuous flow microreactors (Fig. 1a) use continuous
laminar flow inverse mixing and reaction of multiple
fluids within the microchannel. To ensure adequate
mixing of the reactants, geometric baffles can be placed
within the microchannels or the geometries of the
microchannels can be changed. This facilitates higher
reaction rates and allows full conversion of reactants to
products. Sun et al.65 developed a unique platform for
sequential micromixing-assisted nanoparticle syntheses
by using AC electric heat flow. Sequential micromixing
was achieved by flexibly adjusting the volume of each fluid
and the AC voltage inside the three-fluid mixer. Nano-
particles of cobalt-iron Prussian blue analogs were syn-
thesized by using two-fluid mixing and three-fluid mixing
methods.
Multiphase flow microreactors can be divided into

segmented flow microreactors (Fig. 1b) and droplet
microreactors (Fig. 1c)66,67. They are characterized by
multiple inlets, and a gas and a liquid or a liquid and a
liquid are introduced separately, thus forming a con-
tinuous and a dispersive section. In the dispersion
section, the various reaction reagents are fully mixed,
and chemical reactions take place. The advantage of the
multiphase flow reactor is that the reaction zone is not
in contact with the outer channel walls. This greatly

reduces the risk of contaminating the prepared pro-
ducts and reduces the risk of clogging the micro-
channels. However, the system is not easy to
manipulate, and there is a chance of reagent dispersion.
It is also not easy to add new reagents for continuous
reaction experiments. Kumar et al.68 segmented flow in
a spiral poly(methyl methacrylate) microreactor by
using silver nanoparticles reduced/sealed with stearic
acid sophorolipids as a model system with kerosene and
air as inert phases. The segment plug size and slip
velocity controlled the nature of mixing within the
segment plug of the reactant phase, and they controlled
the size distribution of the nanoparticles.
Current research on nanoparticles reveals that different

sizes of nanoparticles have different electronic, sensing,
and optical properties. The factors that usually affect the
sizes of nanoparticles are reaction conditions and the type
of reactants used, including the concentration ratio of the
reactants, reaction temperature, reaction time, type of
reaction reagents, reaction precursors, and the structures
of the microchannels. All of these factors can have dif-
ferent effects on the particle sizes and surface properties
of the synthesized nanoparticles. The synthesis of func-
tional nanoparticles is a problem that researchers have
been working to overcome. Machine learning can be used
to construct relationships among predictive variables and
target properties, use reaction conditions to determine the
properties of nanoparticles, precisely control the synth-
eses of nanoparticles with desired functionalities and thus

Fig. 1 Single-phase flow microreactor and multiphase flow microreactor. a Single-phase flow microreactor65, b segmented flow microreactor66,
and c droplet microreactor67.
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enable accurate predictions of nanoparticle properties and
applications69,70. In this paper, we review the extensive
literature on machine learning-assisted preparation of
nanoparticles to facilitate the reader’s understanding of
research reported in recent years.

Machine learning
In this section, we describe the workflow of machine

learning (as shown in Fig. 2), the main algorithms con-
tained, and the main processes used to access datasets.

The machine learning process
Data sources
The first and most important step in machine learn-

ing is the preparation of a dataset, which is crucial. The
size and quality of the dataset directly affects the
accuracy of the machine learning model71. A dataset
comprises a large set of independent variables and
target properties. The way a dataset is obtained will be
reviewed in detail in a later section. The dataset
requires the identification of independent and depen-
dent variables. In nanoparticle preparation techniques,
the independent variables are generally selected as
reaction conditions (e.g., reaction temperature, reaction
time, concentration ratio of chemical reagents, reaction
precursors, reaction ligands, type of solution reagents,
channel structure of the microreactor, and external
stimuli), while the dependent variables are generally the
sizes and shapes of the nanoparticles as well as the
electronic and optical properties72.

Data preprocessing
Once the dataset is constructed, it needs to be pre-

processed to ensure high quality. Since large amounts of
data obtained directly from numerical simulations or
experiments may have errors and large gaps, data pre-
processing is performed73. Data preprocessing is actually
data cleaning, data sorting or general data processing. It
refers to the process of checking and improving data in
various ways to correct missing values or spelling errors,
normalizing or standardizing values to make them com-
parable, converting data, and other issues. Larger datasets
provide more features that can be used for training
machine learning models, which will lead to much higher
predictive power74.

Dataset division
There are two approaches used to partition datasets.

The first approach is to divide the dataset into a training
set and a test set, which generally exhibit a ratio of 7:375.
In the machine learning model development process, it is
expected that the trained model will perform well with
new, unseen data. To make machine learning models
perform well on more than just the training set, it is
necessary to divide the dataset into two parts, one for
training the machine learning model and the other for
testing the predictive power. Another approach is to
divide the dataset into a training set, validation set, and
test set, which generally have a ratio of 6:2:276. The
training set is used to build the machine learning model,
and the validation set is used to evaluate the model.

Data source

Data preprocessing

Data set partitioning

Model finishing and 
online operation

Algorithm selection and 
evaluation

st1  iteration

nd2  iteration

rd3  iteration

th10  iteration

Training folds Test fold

10

1

1

10
i

i
E E

Fig. 2 Workflow for building a machine learning model. It shows workflow diagram, schematic diagram of the dataset, training process, and
selection of algorithms.
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Predictions are made accordingly, and the model with the
best predictive power is selected based on the results
obtained with the validation set. The validation set
operates in a similar way to the training set. Importantly,
the test set is not involved in building and preparing the
machine learning model; it contains a separate set of
samples that are set aside during the training of the
machine learning model to adjust the hyperparameters of
the model and to make a preliminary assessment of the
model’s capabilities.

Selection and evaluation of machine learning algorithms
Machine learning has a rich set of algorithms to choose

from for different tasks. Machine learning algorithms can
be classified into supervised learning, unsupervised
learning, and reinforcement learning. In a later section, we
will elaborate on the three types of algorithms77. For
making the optimal choice of algorithms, it is best to test
the mainstream algorithms separately, evaluate the results
they provide, and select the one with the best perfor-
mance. However, each algorithm has different character-
istics and is suited for different tasks. However, for the
general selection of algorithms, we can also use general
linear criteria for selecting based on the different char-
acteristics of the algorithms. For example, if the training
set is small, a high bias/low variance classifier (e.g., a plain
Bayesian classifier) is preferred to a low bias/high variance
classifier (e.g., a k-nearest neighbor classifier) because the
latter is prone to overfitting. However, as the size of the
training set is increased, low bias/high variance classifiers
start to perform more effectively (they have lower
asymptotic errors) because high bias classifiers are not
sufficient to provide accurate models78.

Model finishing and online operation
After training of the machine learning model is com-

pleted through the above process, the trained model must
be organized into files to ensure easy use and smooth
operation79. The files used are the model file, coding file,
metadata file (algorithm, parameters, and results), and
dataset file (a CSV dataset file of independent and
dependent variables). Finally, the trained machine learn-
ing model is put online and run80.

Datasets and algorithms
Main access to the dataset
As described above, a dataset must be prepared before

building a machine learning model. The dataset generally
consists of a training set and a test set81,82. The dataset
used to train the machine learning model is called the
training set, and the dataset used to verify the accuracy of
the machine learning model is called the test set. Gen-
erally, they have a ratio of 7:3. The predictive power is
usually influenced by the amount of data in the test set,

the choice of kernel function, and the definition of the loss
function. The larger the dataset is, the more accurate the
predictions of the machine learning model, but large
datasets may substantially increase the computational cost
and lead to long computation times83,84. Too much data
may also cause overfitting. Before making predictions,
machine learning models need to be validated to evaluate
the two main ways of constructing datasets. One is to
generate the results through numerical simulations or
new experiments, which are processed to form a dataset.
This is the best way to build a dataset that clearly repre-
sents the relationships among the desired variables and
the target. However, the time cost for numerical simula-
tions or experiments is too high when the datasets are too
large85,86. The second method is to sample the datasets
described in published articles by reviewing the relevant
literature. However, since the variables and targets of the
constructed dataset may differ depending on the purpose
of the work, a dataset thus acquired cannot be used
directly and must be processed, for example, by removing
some variables or redundant data. This method for
dataset acquisition is efficient if one wants to optimize the
parameters of the current algorithmic model to achieve
the same purpose as the prior work87. Datasets obtained
online can be utilized directly to build machine learning
models and optimize the parameters in those models to
minimize losses. This is also a research method. In
addition, there exist a number of open source dataset sites
on the web that contain rich databases88. This is a con-
venient way for novice machine learners to learn how to
train their models. In this paper, we have summarized
some open source databases for readers to use (shown in
Table 1).
When the acquired dataset has missing values or out-

liers, we can process it by ensuring that the average value
of data close to the missing data replaces the missing
value or the missing values are replaced according to a
statistical model. Before building the machine learning
model, we can normalize the data in the prepared dataset,
which can improve the accuracy and computational
convergence velocity of the machine learning model.

Algorithms for machine learning
Machine learning algorithms are usually classified into

three types: supervised learning, unsupervised learning,
semisupervised learning, and reinforcement learning89,90.

Supervised/unsupervised learning In machine learning,
the main difference between supervised and unsupervised
learning is the presence or absence of human supervision.
In supervised learning, the training samples are used with
labels. The training set is composed of input variables and
output targets91,92. Supervised learning can generally be
used to predict data and to classify data samples. The
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difference between regression and classification algo-
rithms is the type of output variable; quantitative output is
called regression, or continuous variable prediction, and
qualitative output is called classification, or discrete
variable prediction93. Of these, predictive models are
more widely used, and in this work, accurate prediction of
the functional properties of nanoparticles is the first
priority. There is a nonlinear link between reaction
conditions and the properties of nanoparticles. If we can
predict the reaction conditions of nanoparticles based on
the desired properties of nanoparticles by using predictive
models, then we can achieve precise control of nanopar-
ticle syntheses and functional nanoparticles. That is why
regression models for machine learning are highlighted
and reviewed. Regression modeling algorithms for super-
vised learning are divided into the following cate-
gories94,95 (Fig. 3).
Support vector machine algorithm (SVM): in the
regression model algorithm, it is assumed that the sample
set of the dataset is D ¼ f x1; y1ð Þ; x2; y2ð Þ; :::; xm; ymð Þg,
and the predicted regression model is f ðxÞ ¼ ωTxþ b,
where b are the parameters of the regression model. The
essence of the regression problem is to find a straight line
or curve so that it fits the data points perfectly96. For a
sample dataset in a traditional regression model, the loss
is defined by the difference between the predicted value
f ðxÞ and the true value y. The loss is minimized when
these two values are equal. However, for support vector
machine regression models (SVR), the principle is slightly

different from the traditional approach. It establishes a
nonlinear relationship between the variables and the
target by first defining a constant ε. For some sample data
points in the dataset, if f ðxÞ � yj j< ε, there is no loss at all.
If f ðxÞ � yj j> ε, then a loss is defined to exist, and the loss
is f ðxÞ � yj j � ε. For different practical problems of
constructing nonlinear regression models, many kernel
functions in SVR algorithms are offered, including linear
kernel functions, polynomial kernel functions, Gaussian
kernel functions, Laplace kernel functions, and sigmoid
kernel functions. However, kernel functions have no
general selection criterion, so it is difficult to choose an
exact kernel function97.
K-nearest neighbor algorithm (KNN): the KNN algo-
rithm can also be used to address regression problems. It
is based on a prediction principle of finding the k-nearest
neighbors of a target sample and assigning an average
value for a target attribute of these neighbors to that
sample or by using the weighted average method, in which
the weight is set by the distance between the neighbor and
the target sample, and the distance is inversely propor-
tional to the weight98. The value of the corresponding
attribute of that sample can be obtained by the above
calculation, which leads to a prediction for which k is the
algorithm parameter. It is determined by the number of
samples in the dataset. The larger the value of k is, the
larger the deviation of the model and the less sensitive it is
to noisy data. A large value of k may cause underfitting.
The smaller the value of k is, the larger the variance of the

Table 1 Access to the dataset.

Database Description Web address

The Inorganic Crystal Structure

Database124
Experimental characterization data of inorganic crystal structure https://icsd.fiz-karlsruhe.de/index.xhtml

Materials Project124 Calculation of data of properties of known and hypothetical materials https://materialsproject.org

Awesome public datasets It is a list of a series of datasets categorized by topic and publicly

maintained by the community, such as biology, economics,

education, etc.

https://github.com/awesomedata/

awesome-public-datasets

Materials Platform for Data

Science124
Peer-reviewed crystal structure, phase diagram, or physical property https://mpds.io/#modal/menu

Materiae124 Topological material database http://materiae.iphy.ac.cn/

Kaggle dataset The website contains a large number of real datasets of various shapes,

sizes, and formats

http://www.kaggle.com/datasets

Droplet87 Datasets on droplet generation with DI water and mineral oil http://dafdcad.org/download

Droplet187 Datasets on droplet generation with LB bacterial cell media and

mineral oil

http://dafdcad.org/download

Droplet287 Datasets on droplet generation with DI water and light mineral oil http://dafdcad.org/download

Google’s dataset

search engine

It is a toolbox that can search datasets by name https://toolbox.google.com/datasetsearch

Chen and Lv NPG Asia Materials (2022) 14:69 Page 6 of 20

https://icsd.fiz-karlsruhe.de/index.xhtml
https://materialsproject.org
https://github.com/awesomedata/awesome-public-datasets
https://github.com/awesomedata/awesome-public-datasets
https://mpds.io/#modal/menu
http://materiae.iphy.ac.cn/
http://www.kaggle.com/datasets
http://dafdcad.org/download
http://dafdcad.org/download
http://dafdcad.org/download
https://toolbox.google.com/datasetsearch


model. When the value of k is too small, overfitting may
result. Therefore, the choice of hyperparameter k also
needs to be debugged. However, KNN has the advantages
of simplicity and speed when training samples99.
Decision tree (DT): the DT model for solving regression
problems is known as a regression tree100. The principle
of the regression tree is to divide the variables in the
dataset by selecting multiple cut points. Loss functions are
calculated for both parts of the divided data, and the cut
point is compared with the cut point that results in the
smallest loss result. The loss function is defined as follows:

Loss y; f xð Þð Þ ¼ f xð Þ � yð Þ2 ð1Þ
The dataset is divided into two parts by the optimal cut
point. The above operation is continued for these two
parts of the dataset, the optimal cut is selected step by
step, and the regression tree model is finally constructed.
The result of the regression tree is actually a segmentation
function. When using a regression tree for prediction,
training and prediction are fast, and it is easy to obtain
nonlinear relationships between variables and targets, but
there are problems such as inaccurate prediction accuracy
and easy overfitting. Regression trees are rarely used to
construct prediction models in real engineering
problems101.
Artificial neural network (ANN): ANN refers to a
complex network structure formed by a large number of
processing units, e.g., neurons, connected to each other. It
works well in constructing nonlinear relationships

between variables and targets in a dataset102. Each neuron
has a weight, which means that the input value sent to
each neuron is multiplied by this factor. There is an
activation function in the neuron so that the output
calculation will be done by the combination of multiple
nonlinear functions. The ANN model is constructed with
an input layer, a hidden layer, and an output layer. One of
the neuron layers constitutes a combination of multiple
neurons. The number of neurons can be set flexibly, and
losses of the prediction model can be minimized by
adjusting the number of neurons and the parameters in
the activation function to achieve accurate predictions103.
ANNs have powerful fitting capabilities. They can
approximate arbitrarily complex nonlinear relationships
very well and perform self-learning and self-adaptive tasks
for uncertain systems. In addition, they are robust and
exhibit fault tolerance. In general, their predictive abilities
and computational costs are superior to those of other
algorithms104.
The various algorithms listed above for regression
prediction demonstrate that machine learning can assist
in the preparation of nanoparticles. The powerful ability
of machine learning to fit nonlinear relationships has led
to widespread interest in its use for easy preparation of
nanoparticles with functionalities.
The samples in unsupervised learning data are not
labeled. The classes of the samples are not known during
the training process, and training samples are needed to
determine the similarities of samples in the dataset so

(a) (b)

?

)f()e()d()c(

Fig. 3 Schematic diagram of machine learning algorithms. a SVM96, b DT100, c KNN98, d clustering algorithm105, e genetic algorithm109, and
f ANN102.
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similar samples can be clustered into one class. In a
nutshell, this is clustering. The methods used in clustering
are listed below105–107.

(1) K-means clustering, which is based on dividing all
data samples into K mutually exclusive groups.
Determination of the size of K is to be considered.

(2) Hierarchical clustering, which is based on the
principle of dividing all data samples into groups
and subgroups, thus forming a tree similar to those
used in genealogy.

(3) Probabilistic clustering classifies all data samples
according to their probabilities, where the
probability can only be 0 or 1. K-means clustering
is a special form of this. Probabilistic clustering is
also known as “fuzzy K-means”.

In experimental syntheses of functional nanoparticles on
microfluidic chips, researchers mainly pursue the construc-
tion of models that can predict the properties of
nanoparticles. Therefore, the clustering algorithm of
unsupervised learning is not applicable. Unsupervised
learning is used because of its powerful clustering ability,
and it can cluster unconnected massive data samples into
several classes based on their inherent similarities. It is
commonly used to process images, and based on its
properties, we conclude with the thought that if it can be
applied in the field of nanoparticle synthesis, it will certainly
bring breakthroughs in areas such as chemical synthesis108.

Reinforcement of learning Reinforcement learning dif-
fers from supervised learning in that it emphasizes action
based on the environment to achieve the maximum
expected benefit, e.g., to achieve optimization. Unlike
supervised learning, which has its own explicit goals,
reinforcement learning can be seen as a system that keeps
scores, remembers and uses actions to obtain low and
high scores, and then continuously asks the machine to
achieve high scores while avoiding low scores. It is
applicable to a wide variety of tasks and captures many of
the essential features of artificial intelligence, such as a
sense of causality and uncertainty109,110. A key aspect of
reinforcement learning is that it can be used as a
substitute for learning good behavior. This means that it
will gradually change or acquire new behaviors and skills.
In the process of achieving optimization, genetic
algorithms or Bayesian optimization (BO) algorithms
combined with algorithms in supervised learning can be
used jointly to construct prediction models. For example,
in the process of constructing a prediction model using
ANN, the predictive accuracy of the obtained model
differs based on the number of neurons and the settings of
the model parameters. If the parameters of the prediction
model can be optimized by combining optimization

algorithms to minimize losses, the accuracy of the final
prediction model will be improved by one level. In
general, the fitness factor is optimized by defining the
fitness function, or the function is optimized by defining
the loss function. Their common purpose is to maximize
the value of the predictive model by reinforcement
learning, e.g., loss minimization.

Machine learning-assisted preparation of
nanoparticles
Preparation of nanoparticles on microreactors has a large

number of synthetic paths available, so it is difficult to
achieve precise control of particle sizes and thus achieve
syntheses of nanoparticles with the desired properties. The
use of machine learning would be beneficial in terms of
accurate syntheses of nanoparticles111–113. The unique opti-
cal properties of metallic and semiconductor nanoparticles
allow them to be used in areas such as electronic sensing,
solar cells, optoelectronic devices, and quantum information
technology114–116. Here, we review machine learning-assisted
syntheses of metal nanoparticles and inorganic semi-
conductor nanoparticles reported in recent years (Table 2).

Metal nanoparticles
Metal nanoparticles exhibit unique properties in various

fields such as pharmaceuticals, energy, and catalysis. In
particular, metal nanoparticles play vital roles in the fields
of medicine and pharmaceutical science117,118. Among
metal nanoparticles, gold and silver nanoparticles are the
most important and frequently used. Moreover, nano-
particles with different sizes and morphologies have dif-
ferent properties and thus perform different functions.
Therefore, when preparing nanoparticles for a specific
application, precise control of nanoparticle size and
morphology is critical. The use of machine learning-
assisted synthesis can solve this problem119,120.
In reactions using citrate and gold salts for preparation

of nanoparticles, the concentration ratio of citrate/gold(-
III), scanning velocity, and radiation intensity affect the
sizes of gold nanoparticles. In this study, the nanoparticles
were characterized by using optical, spectroscopic, and
transmission electron microscopy. ANNs were used as the
main models for prediction; they only need a large dataset
and can establish complex relationships among inputs
and outputs through powerful internal algorithmic cap-
abilities. Since the sizes of nanoparticles can be indirectly
characterized by calculating the local surface plasma
absorption maxima of nanoparticles, ANN models were
developed to predict the nanoparticle plasma absorption
maxima, which allowed predictions of nanoparticle sizes.
In constructing the neural network, the dataset consisted
of three inputs, e.g., the citrate/gold(III) salt ratio, inten-
sity, and scan rate, and one output, e.g., the absorption
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maximum. A total of 118 data samples were included in
the dataset. To improve the accuracy of the training
model, the data in the dataset were preprocessed, and the
input and output values were mapped to a range [−1,1].
The sigmoid function was chosen as the activation func-
tion for the neurons in the hidden layer. The neural
network was comprised of a multilayer feedforward net-
work and backpropagation learning algorithm. The
weights and bias values were adjusted to minimize the
mean square error (MSE) objective function. The MSE is
defined by the following equation121:

MSE ¼
Pn

i¼1 xi � yið Þ2
n

ð2Þ
where xi is the experimental value, yi is the predicted value
of the ANN model, and n is the number of samples in the

dataset. Finally, a predictive model for nanoparticles was
successfully constructed. The results showed that the
absorption maximum and the associated gold nanoparti-
cles sizes increased with decreasing scan intensity,
decreasing citrate to gold(III) ratio, and increasing scan
velocity (Fig. 4c–e). It was found that radiation intensity
had the most important impact on the sizes of the gold
nanoparticles, followed by the scanning velocity and the
ratio of citrate to gold(III).
In the field of medical drugs, nanoparticles are currently

used as alternatives to antibiotics because of their unique
antibacterial abilities. The sizes of the nanoparticles, the
amount of exposure agent used and the type of bacteria
have a direct impact on the antibacterial effects shown by
the nanoparticles. Machine learning models can be used
to predict the antibacterial activities of nanoparticles. A

Table 2 Machine learning-assisted synthesis of nanoparticles.

Nanoparticles Description Machine learning models Ref.

Gold nanoparticles The relationship between the ratio of sodium citrate to gold salt, intensity,

scanning velocity, and absorption maxima was constructed by ANN to enable

prediction.

ANN 121

Gold nanoparticles Machine learning models (LASSO regression, RR, ENR, SVM, RF) were used to

construct the relationship between the size of nanoparticles, the amount of

reagents, and the type of bacteria on the antibacterial effect of nanoparticles.

LASSO regression, RR, ENR, SVM, RF 122

Silver nanoparticles BO based on Gaussian processes is combined with DNN to optimize machine

learning models and improve the accuracy of model predictions.

BO, DNN 124

Gold nanoparticles The unique optoelectronic properties of gold nanoparticles are used as a driving

factor to explore the conditions for synthesizing new shapes of nanoparticles

based on genetic algorithms.

Genetic algorithm 125

Colloidal quantum dots By constructing a neural network model with eight inputs, two hidden layers, and

two outputs, the effects of Pb:S concentration and temperature ratio on half-peak

half-width and band gap were predicted.

ANN 131

CdSe quantum dots Predicting the properties of nanoparticles by building an integrated neural

network.

ENN 102

CdSeTe quantum dots The complex relationships between FWHM, maximum, intensity, and reaction

conditions of quantum dots are constructed by a metamodeling algorithm using

kriging, and then optimized.

Metamodeling by Krieger method 132

CdSe quantum dot By defining the “dissatisfaction coefficient” and using the noise-resistant global

search algorithm to iteratively update the response conditions, the desired

optimization goal is finally achieved.

Noise-resistant global search

algorithm

133

CsPbBr3 type perovskite Linear regression, quadratic regression, quadratic regression with cross terms, and

SVM regression models were constructed for prediction, respectively, and their

predictive abilities were compared.

SVM 127

Inorganic perovskite The quantum yield of inorganic chalcogenide nanoparticles and the composition

at the target band gap are optimized by autonomous optimization with

polydispersity.

Self-optimizing system 138

CsPbBr3 type perovskite By using active learning algorithms, the machine learning model is made to

explore the optimal synthesis route autonomously.

Active learning algorithm 140
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dataset was obtained by compiling data from more than
60 papers in the literature. The data samples were
homogenized and preprocessed before constructing the
predictive model, which enhanced the quality of the data.
In constructing the machine learning models, various
regression algorithms were used to construct the pre-
dictive models to compare the predictive powers of dif-
ferent algorithms, and the constructed models were
validated with different performance metrics. The model
results obtained with the various algorithms in the figure
clearly showed that the random forest (RF) model had the
smallest error and the highest R2 score with the least
absolute shrinkage, selection operator (LASSO) regres-
sion, ridge regression (RR), elastic net regression (ENR),
and SVM algorithms (Fig. 4a, b)122. The extents to which
reaction conditions affected the antimicrobial properties
of the nanoparticles were compared. Nanoparticle size
was the most important property in determining the
antibacterial effect. The amounts of reagent and bacterial
species were relatively important, followed by the coating,
shape, and duration. Syntheses of nanoparticles assisted

by machine learning help researchers synthesize useful
and functional nanoparticles.
For nanoparticle syntheses, particle size is an important

parameter. To investigate the factors affecting particle
sizes, a microfluidic chip consisting of a Y-shaped mixing
microchannel and two piezoelectric valveless micropumps
was designed for the study123. The mixing and reaction
rates of gold salt and reducing agent were adjusted by
controlling the switching frequency of the piezo-point
valveless micropump, which resulted in syntheses of
nanoparticles of different sizes. The results showed that
the sizes of the gold nanoparticles synthesized in this way
increased as the mixing time decreased. This indicated
that a machine learning model could be constructed to
use the relationship between particle size and reaction
time to control the sizes of the synthesized nanoparticles.
In fields such as materials science and medical imaging,

processes used in synthesizing nanoparticles with specific
optical properties have been found to be both expensive
and time-consuming. To rapidly prepare silver nano-
particles with the desired absorption spectrum, the
method of constructing predictive models by machine

Fig. 4 Machine learning-assisted synthesis of metal nanoparticles. a Performance metrics122, b random forest attribute importance analysis
results122, c prediction of gold nanoparticle size by ANN (scanning velocity)121, d intensity121, and e citrate:gold(III) ratio changes (c1 and c2)121.
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learning was used to extract the link between chemical
composition and optical properties. In this study124, tri-
angular nanoprisms with 50 nm edges and 10 nm heights
were selected as the synthetic target, and the theoretical
absorption spectrum was calculated by discrete dipole
scattering (DDSCAT) plasmon resonance simulation. BO
based on a Gaussian process was combined with a deep
neural network (DNN) to optimize the machine learning
model and improve the accuracy of the predictive model.
In this study, a two-step framework-based approach was
proposed to optimize nanoparticle synthesis (Fig. 5a). In
the first step of the framework, the DNN regression model
was trained by BO optimization. In the second step, the
regression function was validated by the DNN model. The
accuracy of the DNN was determined by defining a loss
function. Finally, the DNN model was used to train the
data gathered during the experiment and generate a
spectrum for the entire parameter space. Figure 5b shows
the colors generated by the DNN agent model in the plane
of parameter space. For the four different regions of
parameter space, the absorbance spectra predicted by the
DNN were compared to experimental spectra obtained
under similar conditions to indicate the predictive power
of the model.
In the field of nanoparticle synthesis, the use of genetic

algorithms to assist in optimizing the nanoparticles has

been widely studied. However, this is not autonomous.
Salley et al.125 proposed a robotic platform for autono-
mous drive syntheses of nanoparticles. The platform
could be divided into multiple steps to steadily optimize
the conditions used for synthesizing gold nanoparticles
and explore the conditions needed for synthesizing new
nanoparticle shapes while using the unique optoelectronic
properties of the gold nanoparticles as the driving factor.
Their synthetic method explored the chemical space for
gold nanoparticle syntheses in cycles by using a genetic
algorithm, an approach also known as hierarchical evo-
lution. In the first cycle, gold nanoparticle spheres were
synthesized from seeds and from the original chemical
reagents. In the second cycle, gold nanoparticle rods were
synthesized from seeds and proto-chemical reagents. In
the third cycle, the gold nanoparticle rods synthesized in
the second cycle were used as seeds to evolve and provide
octahedral gold nanoparticles, thus achieving optimiza-
tion of the final product. During the autonomous opti-
mization process, a new target (the desired UV‒visible
spectrum with a peak maximum at 580 nm) was selected
for experiments designed to explore an unknown shape
mechanism. In this optimization run, 15 reactions were
performed on the robotic platform until the health level
remained constant. Based on iterative optimization of the
genetic algorithm, comparisons of the target peak

Fig. 5 Machine learning-assisted synthesis of metal nanoparticles. a Algorithmic framework for a high-throughput experimental loop124,
b colormap of silver nanoparticles predicted by DNN framework in parameter space124, c the evolution of the median fitness per generation for an
extended search that achieves a single peak at 580 nm125, d comparison of the spectra with the highest similarity obtained from the platform in the
wavelength region of the target peak (pink)125, and e TEM images of octahedral shaped gold nanorods125.
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positions, and the resulting transmission electron micro-
scopy images for the octahedral particles (Fig. 5c), the
sample with the highest adaptability was generated from
0.479mL of CTAB, 1.813 mL of HAuCl4, 3.327 mL of
AgNO3, 3.38 mL of ascorbic acid, and 1mL of seed
solution.
In studies of machine learning-assisted syntheses of

gold nanoparticles111, the optimal combination of syn-
thetic conditions on a microfluidic chip can be developed
autonomously and with high efficiency (fewer experi-
ments and shorter experimental times) by using a max-
imum likelihood algorithm. For all experimental datasets
obtained during optimization, the relationships among
reaction conditions and nanoparticle properties can be
constructed by machine learning.

Inorganic semiconductor nanoparticles
Inorganic semiconductor nanoparticles are being

extensively studied by researchers because of their unique
electronic and optical properties, such as their wide
absorption ranges and narrow photoluminescence emis-
sion spectral ranges126–128. The unique properties of
semiconductor nanoparticles enable them to play irre-
placeable roles in fields such as bioimaging, solar cells,
optoelectronic devices, and quantum information tech-
nology. Inorganic semiconductor nanoparticles consist of
two main categories, the first of which is quantum dots.

Quantum dots can be defined as nanoparticles with
dimensions close to or smaller than the Bohr exciton
radius (2–10 nm) and with continuous energy bands
confined to discrete energy levels (quantum confinement
effect)129,130.
Among these, colloidal quantum dots show advantages

in adjusting the band gap over a wide range of visible and
near-infrared spectral regions. Therefore, colloidal quan-
tum dots play an important role in research fields such as
optical sensing and photoemission. In preparing colloidal
quantum dots, machine learning models can be used to
construct specific combinations of parameters that
achieve the desired properties131. The samples contained
in the dataset are shown in the figure, where the lead
precursor volume and injection temperature were the
input variables. The solid circles in the figure are for raw
data used to construct the machine learning model, and
the hollow circles are for experiments performed
according to the machine learning recommendations. The
colors in the figure indicate the band gap wavelengths in
nanometers. Among the many algorithms considered, a
neural network was used to implement a BO model, build
and investigate a data regression model in parameter
space, and optimize the synthesis of a monodisperse
product. It was found that oleylamine (OLA) affected the
particle sizes and the monodispersities of colloidal
quantum dots. The monodispersities of colloidal quantum

Fig. 6 Machine learning-assisted synthesis of quantum dots. a Prediction ability of the constructed ENNs for nanoparticle properties (DDA)102,
b OLA102, c OA102, d experimental data points in the input space of Pb precursor volume and injection temperature131, e combined effect of
increased Pb precursor amount and decreased injection temperature131, and f The machine model predicts the effect of the ratio of Pb:S precursors
on the band gap, with the temperature range limited to the value most suitable for growing CQD with a 1500 nm exciton peak131.
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dots could be further improved with a high Pb:S ratio and
a lower injection temperature, as well as with the addition
of metal chlorides. In constructing the neural network,
the input layer was set up with eight inputs (outdoor
temperature, Pb(OAc)2 volume, OLA volume, TMS
injection temperature, TMS volume, ODE volume, molar
concentration of PbCl2 injected at the highest tempera-
ture and molar concentration of PbCl2 injected at 60 °C),
two hidden layers and two outputs (band gap and line-
width). One of the machine learning models predicted the
effects of Pb:S concentration ratio and temperature on the
half-peak half-width and band gap, as shown in Fig. 6d–f.
During syntheses of CdSe quantum dots, the properties

of the quantum dots are extremely sensitive to various
reaction factors. Machine learning was used to synthesize
CdSe quantum dots with precisely the desired properties.
In this work102, the ANN was trained with a total of 3404
data samples derived from six parameters for CdSe
quantum dot synthetic conditions. The property rela-
tionships among the data samples were constructed with a
neural network model. Three amines were used as addi-
tives: dodecylamine (DDA), OLA, and n-octylamine (OA).
Neural network analyses were performed separately for

each amine dataset. Finally, an integrated neural network
(ENN) was constructed by training 1600 different neural
networks. The results of ENN training for the three
amines are shown in Fig. 6a–c. The constructed ENN
predicted the properties of the nanoparticles well even
with the new experimental conditions.
CdSeTe quantum dots can be synthesized on micro-

fluidic chips by using segmented flow capillary reactors.
To construct complex relationships among the band-edge
emission half height width (FWHM), maximum wave-
length (maximum), and intensity (intensity) of the quan-
tum dots and the reaction conditions, they can be
optimized by fitting them with functions of the meta-
modeling algorithm by using kriging. The properties of
the above quantum dots were taken as input to the gen-
eralized kriging algorithm, and the reaction conditions
were taken as output. This allowed the output of all
sample data in the prediction parameter space. The
results showed that the functional relationships fitted by
this algorithm had good predictive power. As shown in
Fig. 7a–c, the model enabled the construction of a three-
dimensional parameter space considering maximum,
FWHM, and intensity for selected precursor flow ratio (R)

Fig. 7 Machine learning-assisted synthesis of quantum dots. a Metamodels for CdSeTe predicting luminescence maximum132, b FWHM132,
c intensity132, and d scatter plot showing the influence of FCdO, FSe, and the temperature on the value of the dissatisfaction coefficient for the same
target wavelength of 530 nm133.
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and residence time (Time) conditions. The model was
constructed to output the optimum values of the three
properties for the quantum dots. In the synthesis of
CdSeTe quantum dots, the precursor flux ratios were
defined by the following equations132:

R0 ¼ FSe
FTe þ FSe

´ 100 ð3Þ

R ¼ FCd
FCd þ FTe þ FSe

´ 100 ð4Þ

where FTe, FCd, and FSe are the inlet flow rates of the
tellurium, cadmium, and selenium precursors,
respectively.
CdSe quantum dots were also prepared by injecting

CdO and Se solutions into the two inlets of a heated
Y-shaped microfluidic reactor. In this study, a model was
designed for controlling machine learning for the synth-
esis of CsSe quantum dots. The data needed for machine
learning were provided by monitoring the emission
spectra of the obtained particles with an online spectro-
meter. The experimentally obtained dataset was fed into a
noise-resistant global search algorithm to construct a
model that iteratively updated the reaction conditions by
defining a “dissatisfaction factor” (DC), which drove the
model toward the desired goal and reliably output the
injection rate and temperature needed to produce the
optimal intensity for the selected emission wavelength.
The DC is defined by the following equation133:

uγ γc
� � ¼ γc � γt

�� ��

γw � γt
�� �� ð5Þ

where uγ(γc) is the dissatisfaction factor, γc is the current
possible outcome, γt is the target outcome, and γw is the
worst outcome.
The effects of the CdO flow rate (FCDO), the Se flow rate

(FSe), and the temperature (T) on the DC at the target
wavelength of 530 nm are shown in Fig. 7d–f, in which the
positions of the data points represent the corresponding
values of the parameters on the three axes. The color of
data points represents the value of the dissatisfaction
factor. The gray line space in the figure represents the
restricted ranges for flow rate and temperature. The red
line represents the flow conditions that produced a 1:1
ratio of cadmium and selenium in the reaction mixture.
As seen in the figure, the data points were concentrated in
one place. This indicated that the algorithm preferentially
sampled the low flow rate region and the high-
temperature region of the parameter space. The lower
DC data points in the figure are present in multiple parts
of the 3D space, which indicates the presence of multiple
optimal values.

Perovskites represent a second major class of inorganic
semiconductor nanoparticles. With excellent optoelec-
tronic properties and a wide range of applications in
photonic devices, chalcogenide quantum dots are exciting
high-priority candidate materials for rapid development
and flow synthesis134–137.
The chemical reactions used in the preparation of

chalcogenide nanoparticles have numerous reaction
routes and combinations that lead to significant differ-
ences in the properties of the synthesized nanoparticles.
To synthesize perovskites with the desired properties, it is
wise to use machine learning-assisted synthesis. For
example, in the chemical reactions used for the prepara-
tion of CsPbBr3 calixarene-type nanoparticles, SVM
regression models can be used to construct predictive
relationships among the reaction conditions and the
thickness of quantum-limited CsPbBr3 nanoplates127.
SVM models allow for prediction, efficient dataset sample
acquisition, and searches of parameter space, and they
also provide fundamental insights into the roles of reac-
tion ligands in limiting nanocrystal size. In constructing
the predictive models, linear regression, quadratic
regression, quadratic regression with cross terms, and
SVM regression models were considered for prediction,
and their predictive capabilities are shown in Fig. 8a.
Machine learning-assisted syntheses of quantum dot
nanoparticles provide precise localization methods for
efficient navigation of the reaction design space and bring
about breakthroughs in precise control of quantum dot
properties and functionalities.
Optimizing the synthesis of chalcogenide nanoparticles

with numerous reaction routes is one of the challenges in
the field of materials science. To address this problem, a
chemical reaction platform for autonomous synthesis of
perovskites has been proposed138. This chemical reaction
platform can actively synthesize inorganic chalcogenide
quantum dots by using machine learning to perform the
chemical synthesis efficiently and autonomously. The
optimization process was as follows: first, 11 quantum dot
compositions were obtained by using less than 210mL of
quantum dot solution as a starting point and without
human manipulation. Second, the obtained compositions
were used to pretrain machine learning with new syn-
thetic conditions, thus accelerating the discovery of routes
for successful syntheses of quantum dots. Finally, the
optimization resulted in a difference between the average
emission energy of the quantum dots and the target peak
emission energy of less than 1meV.
Determining optimal synthetic routes for emerging

inorganic lead halide perovskites (LHPs) within their large
synthetic parameter space is a challenging task. In another
study139, a modular machine learning-based microfluidic
synthetic method was introduced. This method was used
to intelligently navigate through the parameter space for
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complex LHP synthetic routes. The method used for the
preparation of CsPbBr3 was flow-controlled nanoparticle
synthesis on a microfluidic chip with three-phase (gas‒
liquid‒liquid) flow followed by a fast halide exchange
reaction without an intermediate cleaning step. To rapidly
explore the vast parameter space for synthetic routes to
LHPs, a machine learning model with eight independent
inputs and two output parameters was used to guide the
synthesis. By using an active learning algorithm, the
machine learning model determined autonomously the
optimal synthetic route for CsPbX3. Prior to optimization,
a five-dimensional parameter space for LHP synthesis was
obtained based on the trained integrated neural network
model (Fig. 8b). The exchange reaction with iodide was
shown to provide the peak emission energy (Ep) and
FWHM. Optimization was performed after this by using a
library of archived experimental conditions developed as
prophetic experience; for the target emission colors, 10
optimizations were performed by using an artificial
intelligence-guided strategy, as shown in Fig. 8c. The
results showed that for all targeted peak emission energy
values, the AI-guided microfluidic synthetic platform was
able to reach an Ep within 5 meV after only 5 experiments
(40 min).
In work on the preparation of lead halide chalcogenide

nanoparticles (CsPbBr3), an optimization strategy based

on microfluidics was used to search for the maximum
nanoparticle luminescence intensity and the minimum
emission bandwidth140. Since the luminescence intensities
and the minimum emission bandwidths of nanoparticles
are related to the temperature at which they are formed,
the dosage ratio of reagent ligands, and the structures of
ligand alkyl chains, optimization can be performed by
constructing functional relationships among them. In the
experiments, the ligands chosen were the linear ligands
octanoic acid (C8A) and octylamine (C8B) and the split
domains 2-ethylhexanoic acid (C8Ab) and
2-ethylhexylamine (C8Bb), respectively. The interquartile
ranges of the four ligands at different temperatures and
different ligand ratios are shown in Fig. 9, thus elucidating
the effects of different ligands on reaction output
variables.

Conclusion and outlook
In this paper, we introduced the characteristics and

applications of nanoparticles and described the working
steps and algorithms used with machine learning.
Focusing mainly on metal nanoparticles and inorganic
semiconductor nanoparticles, we reviewed a large number
of recent studies using machine learning-assisted synth-
eses of functional nanoparticles. Ultimately, the analysis
leads us to the following conclusions.

Fig. 8 Machine learning-assisted synthesis of perovskites. a Cross-validation results of four different regression models for predicting
CsPbBr3 synthesis127, b quartile contour plots, plotted for the same color range139, and c comparison of the quartile ranges for the four ligand groups
at constant base:acid ratios and constant temperatures139.
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(1) Syntheses of nanoparticles with expected properties
require repeated and extensive experimental tests
because their properties are affected by numerous
reaction factors, such as the types and
concentration ratios of reactants, reaction time
and temperature, reaction precursors, and the
structures of microchannels. Because machine
learning is capable of constructing complex
mapping relationships among existing data, it can
be employed to assist in the syntheses of
nanoparticles and solve the above problems.
Machine learning models include a variety of
algorithms that offer different advantages for
various practical problems and the datasets that
are used. In general, SVMs and ANNs are most
commonly used to build predictive models. Work
performed to achieve accurate predictions of
nanoparticle properties with the powerful learning
capability of machine learning could bring about
breakthroughs in the currently limited
research field.

(2) For optimization of synthetic nanoparticles and to
improve the prediction accuracy of the machine
learning model, an optimization algorithm can be
used to optimize the hyperparameters used in the
constructed model. Optimization is performed by
defining a loss function such that its minimum
value is the objective function. Iterative
optimization by selecting suitable data based on
previous experimental experience through
autonomous learning can also be used.Although
machine learning models can be used to synthesize
nanoparticles with desired properties, there are still
nonnegligible problems with the construction of
datasets and with the predictive power of the

algorithms. For example, the construction of large
datasets is time-consuming, and the presence of
incorrect or missing data in the dataset directly
affects the predictive power of the machine learning
model. However, in recent studies, supervised
learning algorithms were used with machine
learning to assist in the syntheses of nanoparticles
since they are commonly used to build predictive
models. Research on the use of unsupervised
learning in the field of nanoparticle synthesis is
relatively scarce141–143. With respect to the
abovementioned problems, we provide an outlook
with the following points:

(1) Creation and sharing of a nanoparticle database.
The most important thing for machine learning
before algorithm training is to prepare the dataset.
The size and quality of the dataset directly affect
the accuracies of the constructed models. If a
comprehensive and universal database covering
many nanoparticle synthetic pathways can be
constructed and made openly available to
researchers, it will facilitate excellent progress in
the field of nanoparticle research.

(2) Research on the use of machine learning in
syntheses of nanoparticles requires skill in the
application of algorithms. This is very difficult for
researchers who do not specialize in computer
science. If the program resources of complete
model algorithms can be shared on open source
websites, they will provide very convenient access
for researchers who do not specialize in computer
applications. This would also drive the
development of a further depth of content in this
field of research.

(3) ANNs have powerful abilities to process images,

Fig. 9 Machine learning-assisted synthesis of perovskites. a Five-dimensional visualization of experimental data in LHP synthetic space trained by
ENN model (Ep)

140, b FWHM140, and c sample output values for machine learning guided LHP optimization algorithm140.
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and if the sizes of nanoparticles can be
characterized in combination with neural
networks instead of by measurements with online
spectrometers alone, the errors resulting from
characterizing the sizes of nanoparticles can be
greatly reduced.

Overall, although there are still problems with machine
learning-assisted syntheses of nanoparticles, this does not
detract from the fact that the technique still has great
potential and offers advantages in this field.
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