
REVIEW ARTICLE

Calreticulin and cancer
Jitka Fucikova1,2, Radek Spisek1,2, Guido Kroemer 3,4,5,6,7 and Lorenzo Galluzzi8,9,10,11,12

Calreticulin (CALR) is an endoplasmic reticulum (ER)-resident protein involved in a spectrum of cellular processes. In healthy cells,
CALR operates as a chaperone and Ca2+ buffer to assist correct protein folding within the ER. Besides favoring the maintenance
of cellular proteostasis, these cell-intrinsic CALR functions support Ca2+-dependent processes, such as adhesion and integrin
signaling, and ensure normal antigen presentation on MHC Class I molecules. Moreover, cancer cells succumbing to
immunogenic cell death (ICD) expose CALR on their surface, which promotes the uptake of cell corpses by professional
phagocytes and ultimately supports the initiation of anticancer immunity. Thus, loss-of-function CALR mutations promote
oncogenesis not only as they impair cellular homeostasis in healthy cells, but also as they compromise natural and therapy-driven
immunosurveillance. However, the prognostic impact of total or membrane-exposed CALR levels appears to vary considerably
with cancer type. For instance, while genetic CALR defects promote pre-neoplastic myeloproliferation, patients with
myeloproliferative neoplasms bearing CALR mutations often experience improved overall survival as compared to patients
bearing wild-type CALR. Here, we discuss the context-dependent impact of CALR on malignant transformation, tumor progression
and response to cancer therapy.
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INTRODUCTION
According to current models, oncogenesis involves two main,
highly-interconnected components: (1) the accumulation of
genetic and/or epigenetic defects that endow (initially) normal
cells with an increased proliferative potential, an accrued
resistance to cell death, the ability to drive neo-angiogenesis, as
well as the capacity to disseminate to form metastases,1 and (2)
the escape from local and systemic control by the host immune
system (immunoevasion).2,3 Thus, malignant transformation (i.e.,
the process through which a healthy cell becomes a neoplastic
cell precursor) and tumor progression (i.e., the proliferation of
such precursor coupled with the acquisition of increasingly
malignant features), as well as the response of established tumors
to therapy, occur in the context of a bidirectional interaction
between (pre-)malignant cells and their host that ultimately
dictates clinical outcome.4–7 In this context, alterations that
simultaneously endow cancer cells with an intrinsic proliferative
advantage and limit the ability of the immune system to recognize
and eliminate them (Box 1) are expected to be potent drivers of
oncogenesis.
Calreticulin (CALR) is a Ca2+-binding endoplasmic reticulum

(ER) protein that aids the folding of proteins destined to
secretion and insertion in the plasma membrane, de facto
providing a major contribution to the maintenance of cellular
homeostasis when unfolded proteins accumulate within the ER
(e.g., in the context of viral infection).8–10 Moreover, CALR

mechanistically contributes to the initiation of adaptive antic-
ancer immunity in the context of immunogenic cell death (ICD),
a functional variant of regulated cell death (RCD) that is
sufficient to elicit an antigen-specific immune response in
immunocompetent, syngeneic hosts (provided that dying cells
express antigens not covered by central or peripheral toler-
ance).11–13 In particular, CALR exposed on the surface of cancer
cells undergoing ICD mediates robust pro-phagocytic effects,
hence facilitating the uptake of dying cells or their corpses by
antigen-presenting cells (APCs), in particular immature dendritic
cells (DCs), that migrate to lymph nodes to cross-prime tumor-
specific naïve CD8+ T cells.11,12

Thus, wild-type CALR expressed at physiological levels operates
at the interface between the preservation of cellular homeostasis
and the initiation of an immune response that eradicates cells
experiencing damage beyond recovery in support of organismal
fitness.14,15 In line with this notion, CALR is mutated or down-
regulated in a variety of neoplasms.4,16,17 Here, we discuss the
cell-intrinsic and immunological mechanisms whereby CALR
influences malignant transformation, tumor progression and
response to therapy.

CALR IN CELLULAR HOMEOSTASIS
CALR is a highly conserved Ca2+-binding chaperone of 417
amino acids (MW: 46 kDa) that is predominantly localized in the
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ER lumen.18 CALR consists of three distinct domains: (1) an N-
terminal lectin-like globular domain that is responsible for the
interaction of CALR with α integrins and contains a steroid
receptor-like DNA-binding site involved in chaperone functions;
(2) a central proline-rich (P) domain with high-affinity and low-
capacity for Ca2+ binding that participates in CALR chaperone
activity; and (3) a highly acidic C-terminal region with low-
affinity and high-capacity for Ca2+ binding that is involved in
CALR Ca2+-buffering functions, followed by a C-terminal KDEL
domain that ensures CALR retrieval from the Golgi apparatus to
the ER18,19 (Fig. 1a).
As a reticular protein, CALR is involved in a quality control

system for newly synthesized proteins and glycoproteins that
relies on multiple additional chaperones, including (but not
limited to) calnexin (CANX), heat shock protein family A (Hsp70)
member 5 (HSPA5, also known as BiP or GRP78), heat shock
protein 90 beta family member 1 (HSP90B1, also known as
GRP94), protein disulfide isomerase family A member 3
(PDIA3).20 Globally, such a system (which is commonly known
as the CALR/CANX cycle) prevents the premature export of
misfolded proteins from the ER as it supports refolding20

(Fig. 1a), hence occupying a central position in the homeostatic
response to the accumulation of unfolded polypeptides.9

Alongside, the Ca2+-binding functions of CALR are central for
physiological Ca2+ and integrin signaling in both excitable and
non-excitable cells.21–23 In particular, a cytosolic pool of CALR is
required for integrin-dependent cell adhesion, reflecting the
ability of CALR to reversibly bind the KxGFFFKR domain in the
cytoplasmic tails of α integrins.23,24 In line with the key role of
CALR in whole-body physiology, Calr−/− mice die in utero at day
12.5–16.5 as they fail to absorb the umbilical hernia and
manifest prominent cardiac alterations.25 Interestingly, such
developmental alterations seem to result from transcriptional
defects caused by Ca2+-related nuclear pore complex malfunc-
tion,26 rather than from reduced contractility. Consistent with
this interpretation, the adult heart expresses low CALR levels25

and transgene-enforced CALR overexpression in the adult heart
causes contractility issues that culminate with complete heart
block and sudden death.27 Moreover, the Calr−/− genotype
imposes functional defects to a variety of cell types beyond

cardiomyocytes,28 such as T cells,29 endothelial cells,30 vascular
smooth muscle cells,31 fibroblasts,32 and oocytes.33

Recurrent somatic mutations in CALR affecting the majority of
patients with myeloproliferative neoplasms (MPNs) who do not
bear mutations in Janus kinase 2 (JAK2) and MPL proto-oncogene,
thrombopoietin receptor (MPL) were first documented in
2013.34,35 Such CALR mutations most often consist of insertions
and/or deletions in exon 9, resulting in a C-terminal domain that
bears a novel, positively-charged amino acid sequence and lacks
the KDEL domain (Fig. 1b), thus enabling mutant CALR to escape
the ER and form stable complexes with MPL by interacting with
glycans on MPL N117 residue.36,37 These complexes are exposed
on the surface of hematopoietic precursors through normal
anterograde ER-to-Golgi transport, culminating with thrombo-
poietin (TPO)-independent MPL dimerization, consequent JAK2
and mitogen-activated protein kinase (MAPK) activation, and final
signal transducer and activator of transcription (STAT) signal-
ing.36,38–40 Ultimately, this cascade drives the deregulated clonal
expansion of hematopoietic stem cells and megakaryocytes that
underlies MPNs, as documented in a variety of animal models.41–43

In support of this hierarchical signal transduction model, the
oncogenic potential of human CALR mutations is highly compro-
mised upon the depletion of either MPL or JAK2, as well as in the
presence of pharmacological JAK2 inhibitors.44,45

Preclinical data suggest that type I CALR mutations, which
eliminate all negatively-charged amino acids from the CALR C-
terminus (e.g., del52), appear to be superior to their type II
counterparts, which only eliminate approximately half of such
residues (e.g., ins5), at driving thrombocytosis progression
to myelofibrosis,40,46 an oncogenic function that strictly depends
on the CALR N-terminal domain.47 Consistent with this notion,
patients with type I CALR mutations experience a more aggressive
disease course with rapid progression to acute lymphoid leukemia
(AML) as compared to individuals with type II mutations.48 Of
note, both type I and type II CALR mutations not only promote
constitutive MPL signaling to support TPO-independent prolifera-
tion, but also compromise (at least to some degree) cellular
responses to unfolded protein accumulation and oxidative
stress,49 thus promoting oncogenesis via accrued generation of
reactive oxygen species (ROS) and consequent genomic instabil-
ity.50 Moreover, both type I and type II CALR mutations have
recently been shown to cause TPO-independent Ca2+ fluxes in
megakaryocytes,51 thus promoting uncontrolled proliferation.52 As
type I mutations are expected to impair the Ca2+-binding
functions of CALR more than their type II counterparts, this latter
mechanism may contribute (at least partially) to the differential
disease course of patients affected by type I versus type II CALR
mutations.
Taken together, these observations delineate a precise mole-

cular pathway whereby genetic defects in CALR support malignant
transformation in the hematopoietic system via trophic, cell-
intrinsic mechanisms. The loss of wild-type CALR functions,
however, is also expected to favor oncogenesis by compromising
immunosurveillance, as discussed below.

CALR IN ANTIGEN PRESENTATION
CALR is an integral part of the so-called peptide-loading complex
(PLC), a transient multicomponent complex that assembles at the
membrane of the ER to ensure the proper loading of cellular
antigens onto MHC Class I molecules.53–55 Besides CALR, the PLC
involves PDIA3, TAP-binding protein (TAPBP, also known as
tapasin), transporter 1, ATP-binding cassette subfamily B member
(TAP1) and transporter 2, ATP-binding cassette subfamily B
member (TAP2), which collectively mediate: (1) the assembly of
MHC Class I heavy chains with beta 2 microglobulin (B2M); (2) the
ATP-dependent transportation of cytosolic peptides to the ER
lumen; (3) the loading of such peptides on the antigen-binding

Box 1 Cancer immunosurveillance at a glance

For a long time, cancer was considered to originate solely from genetic or
epigenetic defects affecting one (or a few) neoplastic cell precursor(s) that
progressively acquire(s) the ability to proliferate relentlessly, resist cell death,
promote the formations of new vessels and invade local as well as distant sites to
generate metastases.1 However, pioneer work from the late 1990s and early
2000s suggested that the host immune system has a key role in the control of
emerging and progressing tumors.174–176 Since then, an abundant literature has
accumulated in support of the notion that the immune system eliminates (pre)
neoplastic cells as they form, but the latter — at least in some cases — can
acquire additional (epi)genetic alterations that result first in an equilibrium phase,
and then in overt immunoevasion coupled to local and distant progression.177

Importantly, the pressure imposed on developing tumors by the host immune
system operates as an evolutionary bottleneck, de facto limiting the
immunogenicity (or accruing the immunosuppressive functions) of cancer cells
that successfully evade immunosurveillance.3,178 According to current models,
cancer immunosurveillance is mainly mediated by a specific subset of classical
dendritic cells known as cDC1 cells,179–181 type I helper (TH1) CD4

+ cells, CD8+

cytotoxic T lymphocytes (CTLs)182–184 and (at least in some oncological settings)
natural killer (NK) cells.185–187 In particular, while cDC1 cells, TH1 CD4+ cells, and
CD8+ CTLs support the elimination of cancer cells expressing antigens that are
not covered by thymic or peripheral tolerance (adaptive immunosurveil-
lance),188–191 NK cells preferentially target neoplastic precursors or metastatic
cancer cells that express NK cell-activating ligands on their surface in response to
microenvironmental stress.185,186,192,193 The role of other immune cells in the
control of oncogenesis and tumor progression remains to be clarified. Indeed,
granulocytes, macrophages and B cells all appear to resemble DCs as they can
exist in an ample spectrum of phenotypic and functional states spanning from
purely immunostimulatory and anti-cancer to purely immunosuppressive and
pro-cancer.194–201

Review Article

6

Cell Research (2021) 31:5 – 16



pocket of MHC Class I molecules, and (4) the release of loaded
MHC Class I for anterograde ER-to-Golgi transport and exposure
on the plasma membrane.56 CANX also participates in peptide
loading by binding to (and hence stabilizing) MHC Class I heavy
chains prior to their stabilizing interactions with B2M56 (Fig. 2).
Specifically, CALR contributes to PLC functions by at least two

different mechanisms.57 First, by interacting with PDIA3 in a
glycan-dependent manner, CALR preserves steady-state levels of
TAPBP and MHC Class I heavy chains.58,59 Second, CALR can
retrieve suboptimally assembled MHC Class I molecules from post-
ER compartments, notably the ER-Golgi intermediate compart-
ment (ERGIC) and the cis-Golgi.60 Thus, both mouse and human
cells lacking CALR exhibit a major (50%–80%) reduction in peptide
loading onto MHC Class I molecules and exposure of properly
loaded MHC on the cells surface,61 a defect that cannot be
rescued by re-expression of CALR variants lacking the C-
terminus.62 Consistent with this, cancer-related CALR mutants
are unable to support the activity of the PLC and hence are
associated not only with constitutive MPL signaling (see above),
but also with reduced antigen presentation on MHC Class I
molecules,63 de facto favoring immunoevasion upon loss of tumor

antigenicity.64 Further supporting this notion, even in the absence
of oncogenic mutations, CALR levels are reduced in multiple solid
tumors at advanced stage, generally correlating with reduced
MHC Class I exposure on the cell surface and poor disease
outcome.65–67

Apparently at odds with the above, at least some cancer-
relevant mutations of CALR exon 9 have been shown to generate
shared tumor neoantigens (TNAs) eliciting spontaneous immune
responses in patients with MPNs.68,69 Such responses, however,
largely rely on antigen presentation by MHC Class II molecules and
appear to involve a population of CD4+ T cells with cytolytic
functions,68 explaining why they can arise in the context of
impaired MHC Class I presentation. Of note, spontaneous CALR-
targeting immune responses in MPN patients appear to be under
strict regulation by cytotoxic T lymphocyte-associated protein 4
(CTLA4) and programmed cell death 1 (PDCD1, best known as PD-
1) signaling.70 Consistent with this, administration of the PD-1-
targeting immune checkpoint blocker (ICB) pembrolizumab
restored T cell immunity against mutant CALR in some patients
with MPN.70 Notably, CD8+ T cell responses were also detected in
this setting,70 potentially reflecting the ability of interferon gamma

Fig. 1 Cell-intrinsic functions of wild-type and mutant calreticulin. a Wild-type calreticulin (CALRWT) mediates key functions not only as it
cooperates with CANX and PDIA3 in the control of protein folding within the ER, but also as it contributes to reticular Ca2+ buffering.
b Cancer-associated CALR mutations compromise the capacity of mutant CALR (CALRMUT) to be retained in the ER, resulting in anterograde
CALR transport from the ER to the plasma membrane via the Golgi apparatus, constitutive association with MPL, and TPO-independent
oncogenic signaling (at least in some cells) via JAK2 and MAPKs. P, phosphate.
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(IFNγ) produced by type I helper (TH1) CD4
+ cells to overcome the

defect in MHC Class I presentation associated with CALR
mutations.71

Taken together, these findings suggest that shared mutations in
CALR exon 9 are amenable to targeting by immunotherapy, and a
phase I clinical trial testing a therapeutic peptide-based vaccine
specific for mutant CALR in subjects with MPN is ongoing
(NCT03566446).72 Since CALR mutations are the second most
common MPN drivers and the TNAs they generate are shared
among different patients, this therapeutic strategy, if successful,
may be beneficial for a significant number of patients with
MPN.35,73

CALR IN DANGER SIGNALING
Preclinical and clinical data accumulating over the past decade
indicate that besides playing a key role in the maintenance of
reticular homeostasis and in antigen presentation, CALR is a major
determinant of cellular adjuvanticity, i.e., the ability of stressed
and dying cells to deliver co-stimulatory (rather than co-inhibitory)
signals to immune cells11,12 (Fig. 3). This function does not
originate from physiological CALR pools within the ER or ERGIC,
but from an expanded pool of CALR molecules that are exposed
on the membrane of cells undergoing the so-called integrated
stress response (ISR),74 a multipronged, cell-wide reaction to
specific perturbations of the extracellular or intracellular micro-
environment that cause (in a majority of cases) the loss of ER
homeostasis.75,76 In particular, the translocation of CALR on the
outer surface of the plasma membrane, which relies on the
inactivating phosphorylation of eukaryotic translation initiation
factor 2 subunit alpha (EIF2S1, best known as eIF2α)77 (Box 2), can
be induced by a number of chemotherapeutic agents (i.e.,
anthracyclines, taxanes, oxaliplatin, bortezomib, PT-112, and
others),78–84 radiation therapy,85,86 some variants of photody-
namic therapy,87–91 high hydrostatic pressure,92,93 oncolytic
peptides,94–96 and oncolytic viruses,97–101 among others.102,103

Cell surface-exposed CALR delivers potent pro-phagocytic
signals to APCs including DCs and their precursors,104,105 de facto

initiating the uptake of dying cells or their corpses in the context
of immunostimulation.106,107 This process is a conditio sine qua
non for the initiation of a tumor-targeting immune response by
cancer cells undergoing ICD.11,12 In line with this notion, wild-type
mouse cancer cells exposed to an ICD inducer in vitro can be used
as vaccines to establish long-term prophylactic immunity against
living cancer cells of the same type (in immunocompetent
syngeneic mice), but lose their vaccination potential when CALR
is lost, downregulated or blocked.74,89,108 Supporting a specific
role for surface-exposed (as opposed to reticular) CALR in this
setting, surface adsorption of recombinant CALR generally
restores the prophylactic power of CALR-depleted cancer cells
undergoing ICD in vitro.74,108 Importantly, CALR exposure on the
surface of cells undergoing ICD is generally required, but not
sufficient, for cell death to be perceived as immunogenic, as dying
cells must also express antigens that are not covered by central or
peripheral tolerance in a specific host and emit several other
adjuvant-like signals, collectively known as damage-associated
molecular patterns (DAMPs),109 as they die.11 These signals, which
are decoded by pattern recognition receptors expressed by
immune cells,110 include, but are not limited to: (1) ATP secretion,
favoring the recruitment of DCs and their precursors to sites of
ICD, and their activation;111 (2) the release of the nuclear protein
high mobility group Box 1 (HMGB1), which mediates immunos-
timulatory functions;112 (3) the secretion of annexin A1 (ANXA1),
which directs the interaction of DCs to dying cells or their
corpses;113 and (4) the synthesis and secretion of type I interferon
(IFN), which amplifies local immunostimulation via cancer cell-
intrinsic and -extrinsic mechanisms.114–117 Finally, the site of cell
death must be compatible with the initiation of an immune
response, and hence be scarcely infiltrated by immunosuppressive
cells but accessible to myeloid and lymphoid immune effectors.11

The pro-phagocytic effects of surface-exposed CALR have
largely been attributed to LDL receptor-related protein 1 (LRP1,
best known as CD91) on the surface of APCs.118 However,
additional proteins that bind extracellular CALR have been
described, including thrombospondin 1 (THBS1), which has been
proposed to cooperate with CALR in the regulation of integrin-

Fig. 2 Calreticulin in antigen presentation. CALR, CANX and PDIA3 are key to the proper assembly of MHC Class I heavy chains with B2M in
the ER lumen, as well as to (1) the loading of antigenic peptides onto mature MHC Class I molecules and (2) the retrieval of sub-optimally
assembled MHC Class I molecules from post-ER compartments, notably the ERGIC and the cis-Golgi. TCR, T-cell receptor.
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independent cell adhesion;119,120 complement C1q A chain
(C1QA), which appears to harness CALR as a receptor for cell
surface binding;121 as well as members of the mannose-binding
lectin (MBL) family.122 Of note, both C1QA and lectin, mannose
binding 1 (LMAN1, also known as MBL1) have also been proposed
to support the CALR-dependent phagocytosis of apoptotic
bodies.123,124 The potential involvement of CD91 in these latter
processes, however, remains to be clarified.
The pro-phagocytic effects of surface-exposed CALR are

counteracted by at least two different mechanisms. On the one
hand, cells undergoing caspase-dependent apoptosis generally
expose abundant amounts of phosphatidylserine (PS), a phos-
pholipid normally confined to the inner leaflet of the plasma
membrane, on their surface.125–127 Surface-exposed PS can be
rapidly recognized by the receptor jumonji domain-containing 6,
arginine demethylase and lysine hydroxylase (JMJD6, best known
as PSR), which initiates the rapid, immunologically silent clearance
of cell corpses by macrophages.128–130 Thus, CALR must be
exposed prior to PS for cell death to be perceived as

immunogenic.77,131 On the other hand, the phagocytosis of dying
cells is actively inhibited by CD47, an integrin-associated protein
that operates by binding signal regulatory protein alpha (SIRPA)
on the surface of APCs.132–134 Thus, the relative levels of surface-
exposed CALR and CD47 dictate the ultimate outcome of the
physical interaction between dying cells and phagocytes.135

Multiple companies are developing CD47- or SIRPA-targeting
antibodies to promote the phagocytosis of dying cancer cells in
the context of immunostimulatory signals that support therapeu-
tically relevant tumor-targeting immunity.136 The clinical potential
of these agents, however, remains to be clarified.
Interestingly, surface-exposed CALR seems to mediate immu-

nostimulatory effects that are not directly related to the
phagocytosis of dying cells. In particular, high levels of CALR on
the surface of AML blasts, which correlates with signs of an
ongoing ISR, favors the accumulation of a population of
CD11b+CD14+ myeloid cells that express high levels of matura-
tion markers and interleukin 15 receptor, alpha chain (IL15RA).137

This endows CD11b+CD14+ myeloid cells with the ability to

Fig. 3 Calreticulin in danger signaling. The exposure of CALR on the surface of stressed and dying tumor cells mediate multipronged
immunostimulatory effect. First, surface-exposed CALR promotes the uptake of dying cells or their corpses by DCs, a process that is actively
inhibited by CD47. Second, the exposure of CALR has been associated with the activation of an IFN response in dying cells, although the
underlying mechanisms remain to be elucidated. Third, surface-exposed CALR promotes the expansion of CD11b+CD14+ monocytes that
proficiently trans-present IL15 to NK cells. CXCL10, C-X-C motif chemokine ligand 10; IL2RB, interleukin 2 receptor subunit beta; IL2RG,
interleukin 2 receptor subunit gamma; PDT, photodynamic therapy; SIRP1A, signal regulatory protein alpha.
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trans-present interleukin 15 (IL15) to natural killer (NK) cells, de
facto boosting their effector functions against AML cells.137,138

Moreover, CALR exposure on the surface of AML cells has been
associated with signatures of type I IFN signaling,137,139 and the
immunological control of AML cells engineered to constitutively
translocate CALR to the outer leaflet of the plasma membrane is
abrogated in mice lacking interferon alpha and beta receptor
subunit 1 (IFNAR1).139 Although the molecular mechanisms linking
CALR exposure and type I IFN signaling in AML blasts have not yet
been elucidated, these findings point to a functional link between
two different ICD-relevant DAMPs.
Importantly, both type I and type II mutations in exon 9

compromise the KDEL domain of CALR, which normally enables its
traffic from the ER to the Golgi apparatus and back with limited
surface exposure or extracellular secretion.48 In line with this
notion, cancer cells bearing type I CALR mutations (i.e., del52)
secrete increased amount of CALR as compared to their wild-type
counterparts.140 Moreover, patients with MPNs driven by CALR
exon 9 mutations display elevated plasma levels of CALR as
compared to healthy individuals.140 Mechanistically, soluble CALR
acts as a decoy for CALR receptors in APCs, de facto limiting
the uptake of dying cancer cells and their ability to initiate
protective immunity in immunocompetent hosts, correlating with
the accumulation of immunosuppressive cells in the spleen and
peripheral blood.140 CALR secretion as a consequence of KDEL loss
also compromises the therapeutic response of AML to immune
checkpoint blockers targeting PD-1, at least in mice.140 In
summary, while wild-type CALR operates as a key DAMP in the
context of ICD, its mutant counterpart prevents the initiation of
tumor-targeting immunity, which identifies yet another immuno-
logical advantage conveyed by CALR mutations to cancer cells.

PROGNOSTIC AND PREDICTIVE VALUE OF CALR
Accumulating data lend further support to the notion that wild-
type CALR mediates oncosuppressive effects by limiting malignant
features and/or enabling the immunosurveillance of developing
tumors (Table 1).17

Low CALR levels have been associated with accrued malignant
features including hyperproliferation in preclinical models of
prostate cancers141 as well as advanced disease stage in 128
patients with urothelial carcinoma.65 Along similar lines, robust

CALR expression in diagnostic biopsies have been linked with
improved disease outcome in 68 patients with colorectal
carcinoma,142 68 subjects with neuroblastoma,143 three indepen-
dent cohorts of 270, 125 and 23 individuals with non-small cell
lung carcinoma (NSCLC),108,144 105 patients with AML,145 30 sub-
jects with osteosarcoma,146 9 patients with glioblastoma,147 as
well as in three independent cohorts of 152, 202 and 302 women
with ovarian carcinoma.108,148 In many of these settings, high
CALR levels correlated with activation of the ISR,145,148 and/or one
or multiple signs of ongoing anticancer immunity, including
infiltration by CD45RO+ memory T cells in colorectal carcinoma,142

and abundant intratumoral levels of DCs and TH1 CD4+ T cells in
NSCLC.144 Similarly, abundant CALR exposure on the surface of
malignant cells has been linked to superior disease outcome in
two independent cohort of 50 and 20 patients with AML,
correlating with increased levels of T cells specific for tumor-
associated antigens149 or limited CD47 expression.150 Importantly,
these latter studies were performed in chemotherapy-naïve
patients,149,150 suggesting that AML blasts can spontaneously
expose CALR on their surface (at least in some settings),
potentially as a cellular response to oncogenic stress or adverse
microenvironmental conditions in the leukemic marrow.151

Apparently at odds with the above, high CALR levels in
diagnostic biopsies have also been associated with negative
prognostic value in some patient cohorts (Table 1). In particular,
robust CALR expression has been correlated with rapid tumor
progression and poor disease outcome in 79 patients with gastric
carcinoma,152 58 subjects with NSCLC,153 two independent
cohorts of 228 and 33 women with breast carcinoma,154,155 two
independent sets of 478 and 251 individuals with neuroblas-
toma,135 two independent cohorts of 80 and 68 patients with
pancreatic cancer,156,157 two independent sets of 165 and
30 subjects with bladder carcinoma,135 and two independent
cohorts of 92 and 71 patients with mantle cell lymphoma.135

These findings suggest that the intracellular functions of CALR as a
key regulator of Ca2+ homeostasis and integrin-dependent
signaling may be required for some tumors to progress.
Alternatively, the negative prognostic impact of robust CALR
expression in some oncological settings may originate from the
compensatory overexpression of CD47, as documented in AML,
acute lymphocytic leukemia (ALL) and chronic lymphocytic
leukemia (CLL) samples.135 Supporting this possibility, elevated
CD47 levels have been linked to poor disease outcome in 132
patients with karyotypically normal AML,158 265 women with
ovarian carcinoma,159 and 102 individuals with esophageal
squamous cell carcinoma.160

Recently, somatic frameshift mutations in CALR exon 9 have
been identified in a large proportion of patients with primary
myelofibrosis (PMF), essential thrombocythemia (ET) or polycythe-
mia vera (PV) bearing wild-type JAK2 and MPL.35 These patients
are younger and exhibit lower hemoglobin levels, decreased
leukocytosis and higher platelet counts as compared to their JAK2-
and MPL-mutant counterparts.161 Similarly, PMF and ET patients
bearing CALR mutations are younger, and display lower incidence
of anemia and leukocytosis, lower Dynamic International Prog-
nostic Scoring System (DIPSS) score and reduced frequency of
spliceosome mutations, as well as higher platelet counts than
patients with wild-type JAK2, MPL and CALR, de facto experien-
cing improved disease outcome (median survival: 16 vs 2.3
years).162,163 Altogether, these findings document that CALR
mutations constitute a positive prognostic factor in patients with
MPN and a valuable predictive biomarker for allocating these
patients to allogenic hematopoietic stem cell transplantation.164

Consistent with this, CALR mutational status has recently been
incorporated into numerous PMF scoring systems, including the
MYelofibrosis Secondary to PC and ET Prognostic Model (MYSEC-
PM), the Mutation-enhanced International Prognostic Scoring
System for transplant-eligible patients (MIPSS70), and the

Box 2 Molecular mechanisms of CALR exposure

CALR is translocated from the ER lumen to the outer leaflet of the plasma
membrane in cells responding to specific microenvironmental perturbations
(either productively, i.e., as they survive to stress, or non-productively, i.e., as they
succumb to stress) via a tri-modular mechanism inserted into the so-called
integrated stress response (ISR).75 The first functional module is strictly related to
the ISR and involves the inactivating phosphorylation of eukaryotic translation
initiation factor 2 subunit alpha (EIF2S1, best known as eIF2α) by eukaryotic
translation initiation factor 2 alpha kinase 3 (EIF2AK3, best known as PERK).77

Consistent with this, CALR exposure driven by anthracyclines is abolished in
mouse colorectal carcinoma CT26 cells depleted of PERK by RNA interference or
expressing a non-phosphorylatable variant of eIF2α.77 The second functional
module is related to apoptotic signaling,202 as it involves the pro-apoptotic Bcl-2
family members BCL2 associated X, apoptosis regulator (BAX) and BCL2
antagonist/killer 1 (BAK1), caspase 8 (CASP8) as well as the CASP8 substrate B-
cell receptor-associated protein 31 (BCAP31, also known as BAP31).77 Thus,
anthracycline-driven CALR exposure is lost in CT26 cells depleted of BAX, BAK1 or
CASP8, as well as in CT26 cells expressing a non-cleavable variant of BAP3177 or
exposed to a pan-caspase inhibitor.78 The third module involves the machinery
for anterograde ER-to-Golgi transport.203,204 In line with this notion, knockdown
of vesicle-associated membrane protein 1 (VAMP1) or synaptosome-associated
protein 25 (SNAP25) in CT26 cells inhibits CALR exposure driven by
anthracyclines. Of note, at least in some cancer cells including CT26 cells, CALR
translocation to the outer leaflet of the plasma membrane obligatorily relies on
the co-translocation of protein disulfide isomerase family A member 3 (PDIA3).131

That said, it is probable that the molecular machinery for CALR exposure exhibits
at least some degree of heterogeneity linked to cell type and initiating trigger.
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Genetically Inspired Prognostic Scoring System (GIPSS).165–167

Conversely, the CALR, JAK2 and MPL mutational status does not
appear to influence the survival of patients with ET.161 The
immunobiological bases for this discrepancy remain to be
elucidated.
CALR mutations yielding a secreted protein that serves as a

decoy to saturate CALR receptors, hence subverting the immune
recognition of CALR-exposing stressed and dying tumor cells,
have also been documented in ~1%–2% of solid neoplasms.140

Although this percentage is insufficient for prognostic or
predictive assessments, it is tempting to speculate that such
mutations, which preferentially occur in the C-terminus of the
protein,140 may subvert immunosurveillance and favor tumor
progression.

In summary, CALR appears to influence malignant transforma-
tion, disease progression and response to therapy in various
tumor types, standing out as a prominent prognostic factor in
multiple oncological settings. To harness the prognostic and
potentially predictive potential of CALR, however, it will be
important to identify and exclude potential confounders, such as
CD47 expression.

CONCLUDING REMARKS
CALR influences a variety of processes that are key to organismal
homeostasis, including (but presumably not limited to) protein
folding, Ca2+ homeostasis, cellular adhesion, motility, antigen
presentation and danger signaling. It is therefore not surprising

Table 1. Prognostic impact of CALR in cancer patients.

Cancer type No. of
patients

Therapy Detection Impact Ref.

AML 20 Anthracyclines FC ↑ CALR exposure on blasts correlated with improved RFS 150

AML 50 Anthracyclines FC ↑ CALR exposure on blasts correlated with improved
RFS and OS

149

AML 105 Cytarabine and anthraclycines RT-PCR ↑ CALR levels correlated with improved, DFS, RFS and OS 145

Bladder 30 Chemotherapy Microarray ↑ CALR levels correlated with poor DSS 135

Bladder 165 Surgery, chemotherapy Microarray ↑ CALR levels correlated with poor OS 135

Breast 23 Surgery IHC ↑ CALR levels correlated with poor MFS 155

Breast 228 n.a. IHC ↑ CALR levels associated with advanced stage and
metastatic dissemination

154

Colorectal 68 Surgery, chemotherapy IHC ↑ CALR levels correlated with improved OS 142

ET 292 n.a PCR CALR mutations correlated with improved OS 163

ET 576 n.a. PCR CALR mutations correlated with limited incidence of
thrombosis

162

ET 745 n.a. PCR CALR mutations correlated with limited incidence of
thrombosis

161

Gastric 79 Surgery IHC ↑ CALR levels correlated with poor disease outcome 152

Glioblastoma 9 Radiation therapy and temozolomide IHC ↑ CALR levels correlated with improved OS 147

MCL 71 None Microarray ↑ CALR levels correlated with poor OS 135

MCL 92 Chemotherapy Microarray ↑ CALR levels correlated with poor OS 135

Neuroblastoma 68 Surgery, chemotherapy IHC ↑ CALR levels correlated with improved disease outcome 143

Neuroblastoma 251 Surgery, chemotherapy Microarray ↑ CALR levels correlated with poor OS 135

Neuroblastoma 478 Surgery, chemotherapy Microarray ↑ CALR levels correlated with poor OS 135

NSCLC 23 Radiation therapy Microarray ↑ CALR levels correlated with improved OS 108

NSCLC 58 Chemotherapy IHC ↑ CALR levels correlated with advanced stage 153

NSCLC 125 Surgery, chemotherapy IHC ↑ CALR levels correlated with improved OS 144

NSCLC 270 Surgery IHC ↑ CALR levels correlated with improved OS 144

Osteosarcoma 30 Chemotherapy IF ↑ CALR levels correlated with local (vs metastatic) disease 146

Ovarian 152 Surgery, chemotherapy IHC ↑ CALR levels correlated with improved RFS and OS 148

Ovarian 220 Chemotherapy Microarray ↑ CALR levels correlated with improved DFS and OS 108

Ovarian 302 Surgery, chemotherapy Microarray ↑ CALR levels correlated with improved OS 148

Pancreatic 68 Surgery IHC ↑ CALR levels correlated with poor disease outcome 157

Pancreatic 80 Surgery IHC ↑ CALR levels correlated with poor disease outcome 156

PMF 133 Allogeneic HSCT PCR CALR mutations correlated with improved OS 164

PMF 267 n.a PCR CALR mutations correlated with improved OS 163

PV 490 n.a. PCR CALR mutations correlated with limited incidence of
thrombosis

161

Urothelial 128 Surgery, chemotherapy, radiation
therapy

IHC ↑ CALR levels correlated with improved OS 65

AML acute myeloid leukemia, CALR calreticulin, DFS disease-free survival, DSS disease-specific survival, ET essential thrombocythemia, FC flow cytometry, HSCT
hematopoietic stem cell transplantation, IHC immunohistochemistry, MCL mantle cell lymphoma, MFS metastasis-free survival, n.a. not available, NSCLC non-
small cell lung carcinoma, OS overall survival, PMF primary myelofibrosis, PV polycythemia vera, RFS relapse-free survival.
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that loss-of-function CALR mutations favor (at least in some
cases) oncogenesis, tumor progression and resistance to
treatment.
At least in part, this scenario is reminiscent of tumor protein p53

(TP53).168 TP53 (best known as p53) mediates indeed a variety of
oncosuppressive functions that span from the regulation of
metabolism, redox homeostasis and cell fate in (pre)neoplastic
cells to the initiation of innate and adaptive anticancer immune
responses.168 However, p53 is often inactivated as a consequence
of point mutations or hyperactivation of the p53-degrading
enzyme MDM2 proto-oncogene (MDM2), which (at least theore-
tically) can be targeted pharmacologically.169,170 Conversely, CALR
mutations are small indels that compromise the C-terminus of the
protein, and hence appear difficult to target with pharmacological
interventions. Potentially, patients with MPNs bearing CALR
mutations may benefit from agents that specifically disrupt
CALR–MPL interactions.171 However, the development of such
molecules is still in its infancy.
Finally, while the cancer cell-intrinsic functions of CALR may

support tumor progression at least in some settings, pharmaco-
logical inhibitors affecting the reticular functions of CALR
employed as systemic agents may have considerable side effects,
in line with the key role of the wild-type protein in several adult
tissues (see above). This situation is reminiscent of autophagy.
Autophagy is an evolutionarily conserved mechanism for the
preservation of cellular and organismal homeostasis that some
tumors harness in support of disease progression and resistance
to treatment.76 However, autophagy is key to the physiological
functions of many tissues, notably the brain, which complicates
considerably the use of autophagy inhibitors delivered systemi-
cally for cancer therapy.172

Thus, for the time being, CALR stands out mostly as a promising
prognostic and/or predictive factor (rather than as a therapeutic
target), especially for patients with MPNs. As a potential exception,
a phase I clinical trial is currently investigating the safety and
preliminary efficacy of a therapeutic peptide-based vaccine
specific for mutant CALR in subjects with MPN (NCT03566446).
Until now, however, therapeutic peptide-based vaccination has
demonstrated limited efficacy in clinical settings,173 which
dampens (at least to some degree) enthusiasm on the possibility
to treat MPN with a peptide-based vaccine specific for mutant
CALR. Additional work is urgently required to devise a therapeutic
strategy to target CALR in cancer.
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