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Chemotherapy-induced ovarian damage and infertility are significant concerns for women of childbearing age with cancer;
however, the underlying mechanisms are still not fully understood. Our study has revealed a close association between epigenetic
regulation and cyclophosphamide (CTX)-induced ovarian damage. Specifically, CTX and its active metabolite 4-hydroperoxy
cyclophosphamide (4-HC) were found to increase the apoptosis of granulosa cells (GCs) by reducing EZH2 and H3K27me3 levels,
both in vivo and in vitro. Furthermore, RNA-seq and CUT&Tag analyses revealed that the loss of H3K27me3 peaks on promoters led
to the overactivation of genes associated with transcriptional regulation and apoptosis, indicating that stable H3K27me3 status
could help to provide a safeguard against CTX-induced ovarian damage. Administration of the H3K27me3-demethylase inhibitor,
GSK-J4, prior to CTX treatment could partially mitigate GC apoptosis by reversing the reduction of H3K27me3 and the aberrant
upregulation of specific genes involved in transcriptional regulation and apoptosis. GSK-J4 could thus potentially be a protective
agent for female fertility when undergoing chemotherapy. The results provide new insights into the mechanisms for chemotherapy

injury and future clinical interventions for fertility preservation.
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INTRODUCTION

Over the last two decades there have been significant advances in
the development of early diagnosis methods and regular
treatments for cancers, and consequently, the long-term survival
rates of patients with malignant tumors have greatly increased [1].
Current conventional oncotherapies include surgery, radiotherapy
and chemotherapy. All of these therapies, however, will inevitably
impair the reproductive system and fertility of the patients [2].
There is thus a need for fertility protection and preservation
strategies, especially for children, adolescents, and young female
patients. Clinical treatments to preserve female fertility include
adjuvant medicine, assisted reproduction technologies for oocyte,
embryo, ovarian cortex cryopreservation, and the emerging stem
cell therapies [3, 4]. However, the effectiveness of the above
strategies and subsequent pregnancy rates are not satisfactory.
Exploring the mechanisms of ovarian damage in relation to
oncotherapy may shed light on new protective strategies for
ovarian function.

Different chemotherapeutic agents cause varying degrees of
ovarian damage with diverse mechanisms [3, 5]. Multiple studies
have confirmed that alkylating agents are more detrimental to
ovarian follicles than other chemotherapeutic agents, and they are
most likely to cause premature ovarian failure (POF) [5]. Cyclopho-
sphamide (CTX) is one of the most widely used alkylating agents

in the treatment of various cancers and autoimmune diseases, as
well as for immunosuppression after blood and marrow trans-
plantations [6]. As the active metabolite of CTX in vivo,
phosphoramide mustard induces inter- and intra-strand DNA
crosslinks, followed by the generation of double strand breaks
(DSBs), the most serious form of DNA damage. Under this
circumstance, DNA damage checkpoints are activated to maintain
genome integrity with cell cycle arrest and activation of DNA-
repair mechanisms, leading to apoptosis and cell death if the DSBs
are not repaired [6, 7]. Great efforts have been made to develop
new agents with therapeutic potential to preserve ovarian
function against chemotherapy through a variety of mechanisms
[3, 8-13].

The long-term effects of CTX and other chemotherapeutic
agents on female fertility are noted by the reduction of
primordial follicles and ovarian hormones, and the increase of
follicular atresia, while the short-term effects of CTX on
growing follicles is much less concentrated. Granulosa cells
(GCs), one of the major groups of cells in the ovaries, are
closely involved in hormone synthesis, follicle development
and ovulation. GCs in growing follicles are characterized by
rapid proliferation, similar to that of cancer cells and they are
highly sensitive to chemotherapeutic drugs. CTX was shown to
induce GCs apoptosis in growing follicles by activating
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mitochondria-dependent apoptosis pathway [13]. Thus, how to
alleviate the short-term injury before fixing the long-term
damage of CTX on GCs is of great interest.

Epigenetic modifications (including DNA/RNA modifications
and histone modifications) can cause reversible and heritable
changes to specific genes without changing their sequences
[14]. Previous studies have found that histone modification
enzymes and relevant histone modifications change dynamically
in GCs at different developmental stages [15-17]. Histone
modifications and chromatin remodeling regulate the expres-
sion of several luteinization-related genes, such as steroidogenic
acute regulatory protein (StAR), cytochrome P450 family 19 sub-
family a polypeptide 1 (Cyp79aT), and family 11 subfamily a
polypeptide 1 (Cypllal), which in turn regulate hormone
synthesis [16, 17], indicating that histone modifications are
closely involved in the regulating the functions of GCs. To date,
numerous studies have reported on DNA damage and con-
comitant ovarian damage caused by chemotherapy, but
whether epigenetic modifications participate in the regulation
of gene expression after chemotherapy has not been widely
investigated. Our previous research has shown that the long-
term side effects of CTX caused alterations in DNA methylation
and histone modifications in oocytes, followed by the transcrip-
tional suppression of multiple maternal genes [18]. Another
experimental study also found that maternal exposure to CTX
altered the DNA methylation of specific imprinted genes in the
oocytes of offspring [19]. These studies indicate that CTX may
exert its toxicity not only by directly inducing DNA damage, but
also by modifying epigenetic modifications and gene
expression.

Tri-methylation of histone H3 lysine 27 (H3K27me3), whose
stability is maintained by the balance between the methyltrans-
ferases EZH1/2 (enhancer of zeste homolog 1/2), and the lysine-
specific demethylase 6A/B (KDM6A/B, also known as UTX/JMJD3),
is closely related to transcriptional inhibition and plays an
important role in regulating gene expression, balancing cell
proliferation and differentiation [20]. In multiple human cancer
cells, the inhibition of EZH2 promotes the apoptosis induced by
DNA-damaging agents by abrogating both G1 and G2/M
checkpoints and cell cycle arrest [21]. However, whether
H3K27me3 is involved in CTX-induced ovarian damage, especially
in GCs, requires further research.

In this study, we examined the levels of EZH2 protein and
H3K27me3 shortly after CTX or its active metabolite
4-hydroperoxy cyclophosphamide (4-HC) treatment to investigate
the role of EZH2 and H3K27me3 in CTX-induced GCs apoptosis.
Thus, we attempted to elucidate the underlying mechanisms
involved in this process and to find future clinical interventions for
fertility preservation.

RESULTS

Acute exposure to CTX induced DNA damage and apoptosis in
GCs of growing follicles

To investigate the effects of CTX on the ovaries, 3-week-old ICR
females were used to establish animal models, which were
similar to adolescent humans and more vulnerable to che-
motherapeutics with less aging-related follicular atresia. The
DNA damage caused by ionizing radiation or alkylating agents
results in the phosphorylation of histone H2AX on serine residue
139 (yH2AX) at the damage sites [22]. If the DSBs are not
repaired, further apoptosis would be mediated by cleaved
caspase-3 (CC3) [23]. Poly ADP-ribose polymerase (PARP) can be
cleaved by caspase-3, resulting in the separation of its
N-terminal DNA-binding domain (24 kDa) and C-terminal cata-
lytic domain (also known as cleaved-PARP or cPARP, 89 kDa)
[24]. During the late stages of apoptosis, fractured DNA could be
labeled and visualized by end-deoxynucleotide transferase
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catalyzed dUTP end-labeling (TUNEL) reactions. Thus, they can
be used as ovarian damage markers. Within 24 h after CTX
treatment, there was no significant change in ovary weight (Fig.
S1A), but the levels of yH2AX and the ratio of cPARP to PARP
protein, as indicators of DNA damage and apoptosis, were
evidently increased, especially after 6 h (Fig. TA). Thus, ovaries
collected 6 and 24 h after CTX treatment were selected for
further experiments. Compared to the untreated ovaries, the
GCs in the rapidly-growing antral follicles after CTX treatment
were arranged in a disordered manner with a decreased number
of cellular layers morphologically, and there were signs of early
apoptotic changes such as nuclear condensation and fragmen-
tation in the ovarian sections under the light microscope
(Fig. 1B); this was consistent with the previous research that
proliferative cells are more sensitive to CTX [25]. The CTX
treatment also caused significant increases in the proportion of
TUNEL, yH2AX, and CC3-positive follicles at 6 and 24 h (Fig. 1C,
D). However, the proliferative capacity of the surviving GCs was
not obviously changed, as indicated by the Ki-67 immunofluor-
escence (Fig. S1B, C); this could be explained by the short
treatment time. Ovulation was activated by the injection of hCG
44 h after a PMSG injection and the ovulated oocytes were
collected 16 h after hCG injection. The CTX treatment caused a
remarkable decrease in ovulation (Fig. 1E), which was due to the
damaged GCs. However, there was no notable influence on
the polar body emissions and meiotic spindle configurations of
the oocytes (Fig. 1F, G), indicating that ovulation, instead of
oocyte meiosis, was seriously impaired after acute exposure to
CTX.

The GCs, regulated by the hypothalamic-pituitary-ovarian axis,
produce hormones that are crucial for the growth of ovarian follicles
and ovulation [26, 27]. This study has thus focused on GCs to help
elucidate the mechanism by which CTX impairs ovarian functions
and tried to explore new methods for preserving ovarian functions.

CTX-induced reduction of H3K27me3 and EZH2 associated
with GC apoptosis

The H3K27me3 was found to decrease gradually after CTX
treatment and no significant changes were detected in the other
histone modifications, such as mono-ubiquitination of histone
H2A lysine 119 (H2AK119ub1), tri-methylation of histone H3 lysine
4 (H3K4me3), and tri-methylation of histone H3 lysine 9
(H3K9me3) (Fig. 2A). Further immunofluorescence experiments
showed that the fluorescence signals of H3K27me3 were
dramatically decreased in apoptotic GCs, as was indicated by
the TUNEL staining (Fig. 2B). Meanwhile, the fluorescence signals
of H3K9me3 in apoptotic GCs were not altered (Fig. 2C), which
further confirmed that the H3K27me3 levels were specifically
decreased in the GCs after CTX treatment. Therefore, the influence
of CTX on the histone methyltransferase responsible for
H3K27me3 was investigated further. The results identified that
EZH2, which was the catalytic core of the polycomb repressive
complex 2 (PRC2) to generate H3K27me3, also decreased
gradually after CTX treatment, which was similar to the changes
in H3K27me3 (Fig. 2A, D), while another PRC2 component
SUZ12 showed no significant changes (Fig. 2A). Overall, these
results suggested that the decrease of H3K27me3 may result from
EZH2 reduction after CTX treatment.

To further verify the influence of CTX on H3K27me3 and EZH2,
an active metabolite form of CTX 4-HC [28] was applied to primary
GCs in vitro. H3K27me3 and EZH2 were decreased in primary GCs
with the extending 4-HC incubation time, while the yH2AX levels
were evidently increased (Fig. 2E), resembling the pharmacologi-
cal effects of the CTX treatment in vivo. To confirm whether the
level of H3K27me3 was related to apoptosis, siRNAs were used to
knock down the expression of Ezh2 in primary GCs. The expression
of Ezh2 mRNA decreased by approximately 70% (Fig. 2F) and the
EZH2 protein decreased (Fig. 2G) after application of the siEzh2 for
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(Fig. 2G), which was consistent with the in vivo results. Overall, the Given that the apoptosis of CTX-treated GCs was possibly related
CTX treatment reduced the level of EZH2 and H3K27me3, which to alternations in the gene expression and signaling pathways,
were closely related to apoptosis in GCs. RNA-seq analyses of the GCs from the CTX-treated and control

Cell Death Discovery (2023)9:413 SPRINGER NATURE



Y. Chen et al.

Fig. 1 CTX-induced DNA damage and apoptosis in the GCs of growing follicles. A Western blot results of YH2AX, cPARP, PARP, and BCL-2
levels of the ovaries from mice treated with or without CTX. GAPDH and p-tubulin were blotted as loading controls. N =6 mice per time point
for each group. B Hematoxylin and eosin (H&E) staining of ovary sections 24 h after i.p. injection of PBS or CTX. Scale bar, 250 pm.
C Immunofluorescence staining of ovaries collected at 6 and 24 h after the i.p. injection of PBS or CTX. TUNEL was probed with Alexa Fluor 488
(green). Rabbit monoclonal antibodies CC3 and yH2AX were detected using anti-rabbit IgG (red and yellow, respectively). Cell nuclei were
labeled with DAPI (blue). Scale bar, 100 um; N = 6 ovaries from different mice per time point for each group. D Quantitative plots for TUNEL,
CC3, and yH2AX-positive follicles/total follicles. E The number of oocytes collected from the oviducts of the mice with or without CTX
treatment after hCG injection. N = 8 mice for each group. F PB1 emission rates of oocytes collected from the oviducts of mice in vivo 16 h after
ovulation induction. The number of analyzed oocytes is indicated (n). G Immunofluorescent staining for a-tubulin (green), phalloidin (blue),
and DNA (red) of the oocytes collected from the oviducts of mice in vivo 16 h after ovulation induction. Scale bar, 20 pm. Data are the
mean = SD of at least three independent experiments. Statistical analyses were carried out using a two-tailed Student’s t-test; n.s. non-

significant; **P < 0.01; and ***P < 0.001.
<

groups (N=3, respectively) were performed 6h after CTX
treatment. The global transcriptional changes across the groups
(PBS v.s. CTX) were presented using a volcano plot and hierarchical
clustering. In total, 590 differentially expressed genes (DEGs) were
identified, of which 406 (68.81%) were upregulated and 184
(31.19%) were downregulated after CTX treatment (Fig. 3A, B).
Consistent with the previously verified CTX-induced reduction of
H3K27me3, the epigenetic modifications associated with inactive
transcription, the CTX treatment was more effective at upregulat-
ing gene expression. Gene ontology (GO) analysis of the genes
that were upregulated by CTX treatment indicated that these
genes were mainly related to transcriptional regulation, apoptosis,
negative regulation of cell proliferation, and some other pathways
(Fig. 3C). Gene set enrichment analysis (GSEA) also indicated that
the upregulated genes were closely related to apoptosis and the
p53 pathway (Fig. 3D). Further RT-gPCR was conducted to confirm
the CTX-induced upregulation of these genes. A number of the
upregulated genes were involved in pathways such as apoptosis
(Cdkn1a, Eda2r, and Fas), DNA damage (Ccng1 and Gadd45g), and
transcription (Egr4, KIf4, and Btg2). Furthermore, the increase in
these genes was more apparent with time (Fig. 3E), which may
account for the increased apoptosis and altered gene expression
in the GCs after CTX treatment.

Reduced H3K27me3 peaks on upregulated genes induced by
CTX treatment

To determine whether the upregulation of selected genes induced
by CTX treatment were associated with loss of H3K27me3 on
specific gene regions, an anti-H3K27me3 CUT&Tag experiment
was performed [29] using GCs under the same condition with the
RNA-seq experiments. Principal-component analysis (PCA) on
targeted H3K27me3 peaks showed that the CTX-treated groups
were readily separated from the control groups with a high
consistency in each group (Fig. 4A). The proportion of H3K27me3
peaks in the promoter region showed the most obvious reduction
in the GCs after CTX treatment (29.11% v.s. 24.90%) (Fig. 4B, C).

Of the 1650 genes with noticeable altered H3K27me3 peaks
after CTX treatment, 971 (58.84%) had lower and 679 (41.16%) had
higher H3K27me3 peaks (Fig. 4D). In both groups, the H3K27me3
peaks were mainly distributed around the transcriptional start site
(TSS) (Fig. 4C, E), indicating its function of regulating gene
expression, as reported in previous studies [20]. As the reduction
of H3K27me3 has been previously confirmed (Fig. 2A), overall
H3K27me3 peaks were lower than that of the control group after
CTX treatment (Fig. 4C, E). Those regions with downregulated
H3K27me3 peaks were also enriched around the TSS (Fig. 4F, top),
and those regions with upregulated H3K27me3 peaks excluded
TSS (Fig. 4F, bottom), suggesting that downregulated H3K27me3
around the promoters participated in CTX-induced gene
regulation.

Among the H3K27me3-marked genes activated by CTX treat-
ment, Egr4 and KIf4 were both transcription factors extensively
studied in cancers. Early growth response protein 4 (Egr4), a
transcription factor belonging to the EGR family of zinc-finger
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transcription factors, is reportedly involved in the regulation of cell
growth and apoptosis in cancers [30, 31]. Krippel-like factor 4
(KIf4), a member of the evolutionarily conserved family of zinc-
finger transcription factors, is a transcription factor regulating cell
proliferation, differentiation, and apoptosis [32]. In this study,
abnormal expression of Egr4 and Kif4 might lead to further
aberrant expression of downstream apoptosis genes in the GCs.
Consistent with the previously verified upregulation of Egr4 and
Kif4 transcription after CTX treatment (Fig. 3E), the H3K27me3
peaks were remarkably lower on their promoters, which demon-
strated that the upregulation of these genes directly resulted from
the reduced H3K27me3 levels (Fig. 4G). Besides, GO analysis
showed that the genes with reduced H3K27me3 peaks after CTX
treatment were mainly related to pathways about transcriptional
regulation, cell differentiation, and negative regulation of cell
proliferation (Fig. 4H), which was consistent with the pathways in
which upregulated genes were enriched from the RNA-seq data
(Fig. 3C).

Taken together, these results suggest that the reduction of
H3K27me3 peaks in the promoter region induced by CTX was
directly and indirectly involved in the abnormal gene expression
and following apoptosis of GCs.

GSK-J4 relieved CTX-induced apoptosis and transcription
aberrance

To explore methods to rescue ovarian functions from CTX toxicity,
we managed to alleviate H3K27me3 reduction using a GSK-J4 pre-
treatment (Fig. 5A), which was a potent dual inhibitor of
H3K27me2/3-demethylases KDM6A/B. Administration of GSK-J4
(5mg/kg, three times a week) before CTX treatment could
attenuate the CTX-induced reduction of H3K27me3 effectively
(Fig. 5B). The GSK-J4 pre-treatment reduced the level of yH2AX
and the ratio of cPARP to PARP protein (Fig. 5B), indicating its
protective effects against CTX. The expression levels of the genes
upregulated after CTX treatment (such as Kif4, Egr4, Btg2, Cdkn1a,
Gadd45g, and Alox5) were also partially restored (Fig. 5Q),
suggesting that GSK-J4 could rescue the CTX-induced abnormal
overexpression of specific genes. The apoptotic index (TUNEL-
positive follicles/total follicles) was also rescued in the GSK-J4-
pretreated ovaries when compared with the DMSO-treated ovaries
after CTX treatment, suggesting the inhibition of CTX-induced
apoptosis (Fig. 5D, E). Taken together, GSK-J4 was found to restore
H3K27me3 levels and alleviate the GCs apoptosis induced by CTX.
Thus, the abnormal gene expression and accompanying GCs
apoptosis induced by CTX could be reversed by restoring
H3K27me3 levels with GSK-J4.

DISCUSSION

CTX is widely used as a chemotherapeutic and immunosuppres-
sive drug for the treatment of multiple tumors and autoimmune
diseases. However, CTX is known to have a negative impact on
fertility. Our study has shown that after CTX treatment, the GCs in
the growing follicles exhibited a rapid decline of H3K27me3, an
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Rabbit monoclonal antibodies H3K27me3 (B), H3K9me3 (C), and EZH2 (D) were detected using anti-rabbit IgG (red). TUNEL was probed with
Alexa Fluor 488 (green). Cell nuclei were labeled with DAPI (blue). Scale bar, 100 pm. N = 6 ovaries from different mice per time point for each
group. E Western blot results for EZH2, H3K27me3, and yH2AX levels in the negative control (NC) and 4-HC treatment groups. p-actin and H3
were blotted as loading controls. F Quantitative expression of Ezh2 in the siNC and siEzh2-1 + 2 + 3 groups. G Western blot results of EZH2,
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Fig. 3 RNA sequencing analyses of GCs isolated from the ovaries of mice treated with or without CTX for 6 h. A Volcano plot comparing
the transcripts of the GCs isolated from the ovaries of mice treated with or without CTX for 6 h. Transcripts that increased or decreased by
more than 2-fold in the GCs isolated from the ovaries of mice treated with CTX were highlighted in red or blue, respectively. GCs isolated from
3 mice were pooled. N =3 biological replicates. B Heatmap of differentially expressed genes in the GCs isolated from the ovaries of mice
treated with or without CTX for 6 h sorted by adjusted P value by plotting their log, transformed expression values in replicates. C, D GO (C)
and GSEA (D) analysis of significantly enriched pathways in the upregulated gene sets of GCs isolated from the ovaries of mice treated with
CTX. E Relative expression of cyclin-dependent kinase inhibitor 1A (Cdkn1a, also known as p21), ectodysplasin A2 receptor (Eda2r), TNF
receptor superfamily member 6/Fas cell surface death receptor (Fas), cyclin G1 (Ccng1), growth arrest and DNA-damage-inducible 45 gamma
(Gadd45g), arachidonate 5-lipoxygenase (Alox5), early growth response 4 (Egr4), Kruppel-like transcription factor 4 (KIf4), and BTG anti-
proliferation factor 2 (Btg2) mRNA levels by RT-gPCR in the GCs isolated from the ovaries of mice treated with or without CTX. N = 6 mice per
time point for each group. Data are the mean + SD of at least three independent experiments. Statistical analyses were carried out using two-
tailed Student’s t-test; n.s. non-significant; ***P < 0.001.

epigenetic modification closely related to transcriptional inhibi-
tion. Mechanistically, CTX reduced the EZH2 protein level, which is
an H3K27 methyltransferase, resulting in the loss of H3K27me3 on
specific gene promoters, and aberrant expression of transcription-
and apoptosis-regulative genes, which further amplified CTX

toxicity. To rescue the H3K27me3 loss induced by CTX, a pre-
treatment with a KDM6A/B dual inhibitor GSK-J4 was adopted to
maintain the H3K27me3 status. This approach restored the
H3K27me3 level in GCs and alleviated CTX-induced gene over-
expression, DNA damage, and apoptosis in vivo (Fig. 6).
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Fig. 4 Anti-H3K27me3 CUT&Tag assay of GCs isolated from the ovaries of mice treated with or without CTX for 6 h. A PCA analysis of the
targeted H3K27me3 peaks of the GCs isolated from the ovaries of mice treated with or without CTX for 6 h. GCs isolated from 3 mice were
pooled. N = 3 biological replicates. B Distribution of H3K27me3 peaks on the functional regions of genes. C Metaplot showing H3K27me3
enrichment with 2 kb upstream and downstream of the gene body in the GCs isolated from the ovaries of mice treated with or without CTX.
D Heatmap showing the genes with significantly low or high H3K27me3 peaks in the GCs isolated from the ovaries of mice treated with or
without CTX. E Metaplot and heatmap showing H3K27me3 enrichment of individual genes in GCs isolated from the ovaries of mice treated
with or without CTX. F Distribution of significantly downregulated (top) and upregulated (bottom) H3K27me3 peaks relative to the TSS sites.
G Genome browser view showing H3K27me3 enrichment near Egr4 and Kif4 in GCs isolated from the ovaries of mice treated with or without
CTX. H GO analysis of significantly enriched pathways in the gene sets mapped to the downregulated H3K27me3 peaks in GCs isolated from
the ovaries of mice treated with CTX.

A chemotherapy-induced ovarian failure mouse model was to be associated with the short treatment time. The results of this
generated using i.p. injection of CTX. Consistent with previous study showed that the yH2AX, cPARP/PARP, and CC3 levels as well
studies, CTX caused a significant increase in GCs apoptosis as the TUNEL signals in the ovaries from the CTX group, were
morphologically [8-13], while the ovarian weight showed no evidently increased, especially in the GCs (Fig. 1A, C, D). Further
change within 24 h after CTX treatment (Fig. S1A), and this is likely investigation into the epigenetic modifications showed that
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two-tailed Student’s t-test; *P < 0.05; **P < 0.01; and ***P < 0.001.

H3K27me3 and its methyltransferase EZH2 decreased after CTX
treatment in a time-dependent manner in vivo (Fig. 2A, B, D). The
application of 4-HC and sifzh2 also had identical effects on the
primary GCs in vitro with increased DNA damage, and decreased

SPRINGER NATURE

levels of H3K27me3 and EZH2 (Fig. 2E-G), indicating that CTX
specifically induced the decline of EZH2 and H3K27me3, which in
turn regulated GC apoptosis. The reduction of EZH2 may result
from  ataxia  telangiectasia  mutated kinase-mediated
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demethylases maintains appropriate gene expression and cellular homeostasis in GCs. Acute exposure to CTX induces rapid decline of EZH2,
the catalytic component of PRC2 complex, resulting in the loss of H3K27me3 on the promoters of transcription-related genes, led to further
aberrant transcription of apoptosis-related genes and cell apoptosis in GCs. A pre-treatment with a KDM6A/B dual inhibitor GSK-J4 can rescue
H3K27me3 status, alleviate gene overexpression, DNA damage, and apoptosis after the CTX treatment.

phosphorylation of EZH2 under genotoxic stress to decrease its
stability [22, 33, 34], but this will require further investigation. The
correlation between EZH2 and apoptosis is supported by studies
in which microRNA 26a targets Ezh2 to reduce EZH2 expression,
inducing GCs apoptosis in mice [35] or colorectal cancer cell
apoptosis [36]. While in renal tubular epithelial cells, similar to our
findings, EZH2 inhibition with 3-deazaneplanocin A (DZNep) has
been found to upregulate Deptor by reducing H3K27me3 in the
promoter region, which subsequently inhibits mTORC1/2 activ-
ities, downregulates the expression of apoptosis suppressor
genes, and results in cell apoptosis [37].

GCs are the main secretors of ovarian hormones including
estrogen and progesterone. The function of GCs is not solely
related to oocyte growth, maturation and ovulation, but also
involved in subsequent fertilization and early embryo develop-
ment [26, 27, 38]. In this study, ovulation was severely damaged
within 24 h of CTX treatment (Fig. 1E), which was in line with
increased GCs apoptosis. Previous studies on ovarian injury
induced by CTX have predominantly focused on the mitochon-
drial oxidative stress-related apoptosis in GCs, but the abnormality
of gene expression profiles and the underlying mechanisms are
largely unknown. Thus, RNA-seq analyses were performed using
the GCs collected 6 h after CTX treatment and from the control
group collected at the same time point. With 406 (68.81%)
upregulated genes and 184 (31.19%) downregulated genes
(Fig. 3A, B), the CTX treatment tended to activate the gene
transcription of the GCs, as pathways related to positive regulation
of transcription were also enriched by the GO analysis (Fig. 3C).

Cell Death Discovery (2023)9:413

Consistent with the apoptosis phenotype, CTX induced the
upregulation of apoptosis-related genes, and this was confirmed
by the GO analysis, GSEA analysis and RT-qPCR (Fig. 3C-E).
Importantly, the upregulation of transcription-related genes may
result in larger cascade effects on aberrant gene transcription. In
this study, the upregulation of KIf4 was induced by the depletion
of EZH2 and H3K27me3. A previous study has reported that Kif4
negatively regulates the long noncoding RNA PiHL and impairs
PiHL's function to remove EZH2 from the promoter region, which
in turn inactivates the transcription of a high mobility group AT-
hook 2 (Hmga2) via EZH2-mediated H3K27 methylation. The
downregulation of Hmga2 could sensitize colorectal cancer cells to
oxaliplatin and promote drug-induced cell apoptosis by inactivat-
ing the PI3K/AKT pathway [39]. This regulatory axis may be
involved in negative feedback to help mitigate the reduction of
EZH2 and H3K27me3 induced by CTX but may also contribute to
the amplification of aberrant gene transcription and cell apoptosis
after CTX treatment. Future studies will be needed to further
investigate this regulatory mechanism.

Multiple studies have shown that changes in the gene
expression of GCs could be regulated by epigenetic modifications,
including DNA methylation and histone modifications, except for
the traditional activation of transcription factors. The variability of
DNA methylation in mural GCs from the diminished ovarian reserve
(DOR) group is significantly elevated when compared with normal
groups [40]. In addition, the expression of the fragile X messenger
ribonucleoprotein 1 (FMRT) gene in the GCs of DOR patients is
approximately 2-fold higher than that of the control group,
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resulting from epigenetic changes in the FMRT gene including
H3K9ac, H3K9me2, and H3K9me3 [41]. Sen et al. defined the role of
androgen in regulating the expression of key ovarian genes
through the modulation of H3K27me3 by inhibiting the expression
and activity of EZH2 and inducing the expression of KDM6B in GCs
[42, 43]. In rats, H3K4me3 increases, while H3K9me3 and
H3K27me3 decreases in the promoter regions of the StAR and
Cyp11al gene after ovulation induction, contributing to the rapid
induction of StAR and Cyp11al, both of which are involved in the
synthesis of progesterone [16, 17]. Another study also reported that
H3K9me3 and H3K27me3 decrease in the C/EBP binding region of
the Vegf gene in GCs undergoing luteinization after hCG injection
[44]. In the meantime, histone H3/H4 acetylation and H3K4me3
decrease, and H3K27me3 increases in the Cyp19al promoter after
ovulation induction, contributing to the rapid suppression of
Cyp19al, a key aromatase for estrogen synthesis [17]. Progressive
decreases in DNA methylation in approximately 40% of genes [45]
and the variable expression of histone modification enzymes,
including Ezh2, Setdb2, Hdac4, Hdac10, and Cllta can be detected
in GCs undergoing luteinization after ovulation induction [15]. In
porcine, H3K27me3 transcriptionally represses the transcription
factor runt-related transcription factor 1 (Runx1), which in turn
influences GCs' steroidogenesis, anti-apoptotic activity, and cell
proliferation activity [46]. A study using GC-specific Kdm6b-KO mice
has demonstrated that KDM6B promotes follicle growth by
regulating the expression of genes critical for mitochondrial
function in GCs [47]. The above studies identify the importance
of H3K27me3 stability in the regulation of GCs’ function and cell
viability. However, few studies have addressed the role of
H3K27me3 during GCs apoptosis induced by CTX.

To further discover whether changes in GCs gene expression
after CTX treatment are regulated by H3K27me3, an anti-
H3K27me3 CUT&Tag experiment was conducted. The distribution
of the H3K27me3 peaks showed an evident reduction around the
promoters (Fig. 4B, C). As H3K27me3 is a transcriptional repressive
marker, the removal of H3K27me3 around the promoters de-
condenses the chromatin and enhances transcription factor
accessibility to promote the transcription of certain genes. In this
study, the abundance of H3K27me3 peaks around the TSS were
substantially lower than that of the control group (Fig. 4C, E, F).
Genes upregulated in GCs after CTX treatment showed reduced
H3K27me3 peaks (Fig. 4G) in accordance with transcriptional
activation in the CTX group found in our RNA-seq data. The results
have defined the role of H3K27me3 in CTX-induced apoptosis and
the abnormal changes of gene expression in GCs.

Chromatin remodeling induced by the loss of H3K27me3 might
enhance CTX toxicity of the GCs in this study. Previous studies
have confirmed that compacted chromatin exhibit greater
resistance to DNA damage [48, 49]. A recent study on AML cells
has confirmed that the inhibition of EZH2 to de-condense the
chromatin could enhance the chemotherapeutic accessibility to
chromatin, chemotherapy-induced DNA damage, and cell apop-
tosis [50]. In this study, restoring the H3K27me3 status by
inhibition of the H3K27 demethylases KDM6A/B might exert its
protective potential by condensing the chromatin, decreasing
DSBs formation, and partially resisting CTX-induced DNA damage
and subsequent apoptosis in GCs (Fig. 5).

In conclusion, this is the first study to compare the global gene
expression profiles between the GCs with and without the acute CTX
treatment. We elucidate the role of EZH2-H3K27me3 axis in gene
regulation of CTX-treated GCs. Mechanistically, CTX induces a
decline in H3K27me3 via a reduction in EZH2. Loss of H3K27me3
on promoters activates the expression of transcription-related and
downstream apoptosis genes, which amplifies the aberrance of
downstream gene expression and GCs apoptosis (Fig. 6). A thorough
understanding of this mechanism by which acute exposure of CTX
damage ovarian function could contribute to new fertility protection
and preservation strategies for female patients with cancer.

SPRINGER NATURE

MATERIALS AND METHODS

Animal models

Female ICR mice were obtained from the Animal Center of Sir Run Run
Shaw Hospital (Hangzhou, Zhejiang Province, China) and housed in
specific pathogen-free conditions with temperature (22+1°C) and
humidity (60+10%) controls on a 12h light/12h dark cycle, with ad
libitum access to water and regular rodent chow. All the animal protocols
were approved by Zhejiang University Animal Care and Use Committee
(Hangzhou, Zhejiang Province, China). 3-week-old female mice were
intraperitoneal (i.p.) injected with 5 IU of pregnant mare's serum
gonadotropin (PMSG) to activate follicular development. For CTX-
induced ovarian damage models, the mice were randomly divided into
two groups: PBS and CTX (N = 6 per group) 22 h after PMSG injection. The
mice were weighed and then treated with a single i.p. injection of CTX
(120 mg/kg, Baxter, Milan, Italy), or an equal volume of phosphate buffer
saline (PBS) as the control. Both groups were sacrificed immediately or 3, 6,
12, or 24 h after CTX treatment, and ovaries were collected for further
analysis. For the GSK-J4-pretreated models (N =4 per group), GSK-J4 (HY-
15648B; MedChemExpress, Monmouth Junction, NJ, USA) and dimethyl
sulfoxide (DMSO) as a solvent control were i.p. injected into 3-week-old
female mice three times in a week before PMSG and CTX i.p. injection
(Fig. 5A).

Ovulation induction and oocyte collection

Mice were injected with 5 IU of human chorionic gonadotropin (hCG) 44 h
after the PMSG injection to induce ovulation and they were sacrificed 16 h
later. Oocytes and cumulus complexes were harvested from the oviducts
of the mice in the M2 medium (M7167; Sigma-Aldrich, St. Louis, MO, USA).
The numbers of ovulated oocytes and the first polar body (PB1) emission
rates were analyzed after digestion with hyaluronidase.

Immunofluorescence

For the immunofluorescence of oocytes, oocytes were fixed in 4%
paraformaldehyde in PBS for 30 min, then permeabilized in PBS containing
0.5% Triton X-100 for 20 min and blocked with 1% bovine serum albumin
(BSA) in PBS for 30 min sequentially. After being incubated with the
primary antibodies for 1 h at 26 + 1 °C, the oocytes were labeled with Alexa
Fluor 568- or 488-conjugated secondary antibodies and 4’,6-diamidino-2-
phenylindole (DAPI) for 30 min.

For the immunofluorescence of the ovary section, ovaries were
collected, fixed in 4% paraformaldehyde in PBS for at least 16 h, and
dehydrated using a 10%, 20%, and 30% sucrose gradient until the
ovaries completely sank to the bottom of the centrifuge tube. The
ovaries were embedded in optimum cutting temperature (O.C.T., Sakura,
USA) compound and frozen in liquid nitrogen. Frozen ovary sections that
were 10 um were made with a microtome (Leica, Weztlar, Germany) and
stored at —80°C. When the immunofluorescence staining was
performed, the sections were placed at 26+ 1°C for 5min, rinsed 3
times in PBS for 5min each time, permeabilized and blocked in PBS
containing 0.3% Triton X-100 and 5% BSA for 1h sequentially. After
being incubated with the primary antibodies for at least 16 h, the
sections were rinsed 3 times in PBS for 5 min each time, and then labeled
with Alexa Fluor 568- or 488-conjugated secondary antibodies and DAPI
for 30 min. Imaging was performed on a LSM710 confocal microscope
(Zeiss, Oberkochen, BW, Germany). The antibodies used are listed in
Supplementary Table 1.

Western blot analysis

Western blot analysis was conducted in accordance with a previous study
[18]. Briefly, proteins were extracted from the ovaries (after being weighed)
or primary GCs with RIPA lysis buffer (R0010; Solarbio, Beijing, China)
containing a protease inhibitor cocktail (P8340; Sigma-Aldrich, St. Louis,
MO, USA) and diluted with Laemmli protein sample buffer (1610747; Bio-
Rad, Hercules, CA, USA). After denaturation for 10 min at 95 °C, equal
amounts of extracted proteins (approximately 10 ug each) were separated
via electrophoresis on 10% sodium dodecyl sulfate-polyacrylamide gel
(SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) mem-
branes (Millipore, Billerica, MA, USA). The membranes were blocked in TBST
buffer containing 5% skimmed milk for 1h and then incubated with
primary antibodies for at least 16 h at 4 °C. The antibodies used are listed in
Supplementary Table 1. The membranes were rinsed 3 times for 5 min
each time with TBST buffer, then incubated with secondary antibodies and
visualized using enhanced chemiluminescence (WBKLS0500; Millipore,
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Billerica, MA, USA) with a ChemiDoc Touch imaging system (Bio-Rad,
Hercules, CA, USA).

Primary GCs in vitro culture and treatment

Ovaries were collected from 3-week-old mice 24 h after i.p. injection of the
5 IU PMSG to harvest the GCs, as described previously [51]. Antral follicles
were punctured with a 26.5-G needle to release the GCs. The GCs were then
cultured with DMEM/F12 (Invitrogen, Carlsbad, CA, USA) supplemented
with 5% (v/v) fetal bovine serum (Gibco, Carlsbad, CA, USA) and 1% (v/v)
penicillin and streptomycin (Meilunbio, Dalian, China) in 12-well plates. To
evaluate the direct role of CTX, the GCs were treated with 2.5 uM 4-HC (the
in vitro active form of CTX, HY-117433; MedChemExpress, Monmouth
Junction, NJ, USA).

Small interfering RNA transfection

To determine the role of EZH2 and H3K27me3 in the GCs, the GCs were
transfected with small interfering RNAs (siRNAs) targeting Ezh2 (siEzh2) or a
negative control siRNA (siNC) for 48 h using the Lipofectamine™ 3000
Transfection Reagent (L3000015; Thermo Fisher Scientific, Waltham, MA,
USA), in accordance with the manufacturer’s instructions. These siRNAs
were purchased from RiboBio Co., Ltd (Guangzhou, China). The siEzh2-1,
sifzh2-2, siEzh2-3 sequences were 5'-GCTGATGAAGTAAAGACTA -3/, 5'-
GGATAATCGAGATGATAAA -3’ and 5- CAGAGAATGTGGATTTATA -3/,
respectively.

RNA-seq library preparation and gene expression analysis
RNA-seq was performed to compare the global gene expression profiles
between the GCs with CTX treatment and the GCs without CTX treatment
(N =3 biological replicates each group). Samples (GCs extracted from
ovaries of 3 mice per sample) were collected from mice 6 h after treatment
with or without CTX for RNA-seq. High throughput sequencing and
bioinformatics analyses were conducted at Novogene (Beijing, China). A
volcano plot of the differentially expressed genes (DEGs) was generated
using the gplots package in Bioconductor. DEGs with a log,(CTX/PBS) > 1
were labeled in red (P < 0.05); DEGs with log,(CTX/PBS) < — 1 were labeled
in blue (P < 0.05). Only transcripts with more than a two-fold change and a
corrected P < 0.05 were considered statistically significant.

CUT&Tag library preparation, sequencing, and analysis

GCs samples were collected under the same condition as for the RNA-
seq experiments and in accordance with the manufacturer’s instructions
(Novogene, Beijing, China). Library construction was performed as
described previously [29]. Briefly, the GCs samples were bound to
Concanavalin A-coated magnetic beads, and the cell membrane was
permeabilized using Digitonin. The enzyme pA-Tn5 transposase
precisely binds the DNA sequence near the target protein under the
antibodies guidance and results in a factor-targeted tagmentation. DNA
sequences were then tagmented, with adapters added at the same time
to both ends, which could be enriched by PCR to form the sequencing-
ready libraries. After the PCR reaction, libraries were purified with the
AMPure beads and library quality was assessed on the Agilent
Bioanalyzer 2100 system. The clustering of the index-coded samples
was performed on a cBot Cluster Generation System using a TruSeq PE
Cluster Kit v3-cBot-HS (lllumina, San Diego, CA, USA), according to the
manufacturer’s instructions. The library preparations were sequenced on
lllumina Novaseq platform. The CUT&Tag reads were aligned to the
mouse genome mm10 using BWA (Version 0.7.12). Only uniquely
mapped (MAPQ > 13) and de-duplicated reads were used for further
analysis. All peak calling was performed with MACS2 (Version 2.1.0). By
default, peaks with a g-value threshold of 0.05 were used for all data
sets. ChIPseeker was used to retrieve the nearest genes around the peak
and annotate the genomic region of the peak. Peak-related genes can be
confirmed using the ChlPseeker, and this was followed by Gene
Ontology (GO) enrichment analysis to identify the functional enrichment
results. GO enrichment analysis was implemented using the GOseq R
package, in which gene length bias was corrected. GO terms with
corrected P<0.05 were considered significantly enriched by peak-
related genes. Peaks of different groups were merged using the
‘bedtools merge’. The mean RPM for each group was calculated in the
merge peak. Only peaks with more than two-fold changes in RPM were
considered as differential peaks. Genes associated with different peaks
were identified using ChIPseeker.
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Real-Time quantitative PCR (RT-qPCR)

RNA was extracted from the GCs collected as described above using the
RNeasy Mini Kit (74104; Qiagen, Hilden, NRW, Germany), in accordance
with the manufacturer’s protocol. Reverse transcription was conducted
using HiScript Il Reverse Transcriptase (R201-1; Vazyme, Nanjing, China).
RT-qPCR was performed using the SYBR qPCR Master Mix (Q511-02;
Vazyme, Nanjing, China) on a CFX96 Real-time System (Bio-Rad, Hercules,
CA, USA). The relative mRNA expression levels were normalized to the
endogenous Actb mRNA levels and compared with those in the control
group, and all RT-gPCR assays were performed in triplicate. The primers are
shown in Supplementary Table 2.

Statistical analysis

GraphPad 9.0 and SPSS 26.0 software were used for all statistical analyses.
Definition of “center values” as mean; definition of error bars as SD. All
quantitative results were shown as the mean + SD. Each measurement was
performed using the data from at least three independent experiments.
Differences between two groups were evaluated using a two-tailed
unpaired Student’s t-tests. P < 0.05 indicated statistical significance.

DATA AVAILABILITY

All data are included in this published article and its supplementary information file.
RNA-seq and CUT&Tag data have been deposited in the NCBI Gene Expression
Omnibus database (GSE235907 and GSE236296, respectively).
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