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Cancer heterogeneity has posed a great challenge to traditional cancer treatment, with the reappearance of cancer heterogeneity
of inter and intra patients being especially critical. Based on this, personalized therapy has emerged as significant research focus in
recent and even future years. Cancer-related therapeutic models are developing, including cell lines, patient-derived xenografts,
organoids, etc. Organoids are three-dimensional in vitro models emerged in the past dozen years and are able to reproduce the
cellular and molecular composition of the original tumor. These advantages demonstrate the great potential for patient-derived
organoids to develop personalized anticancer therapies, including preclinical drug screening and the prediction of patient
treatment response. The impact of microenvironment on cancer treatment cannot be underestimated, and the remodeling of
microenvironment also allows organoids to interact with other technologies, among which organs-on-chips is a representative one.
This review highlights the use of organoids and organs-on-chips as complementary reference tools in treating colorectal cancer
from the perspective of clinical efficacy predictability. We also discuss the limitations of both techniques and how they complement
each other well.
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FACTS

● Tumor treatment needs personalized treatment based on
standardized treatment.

● Organoid can recapitulate the characteristics of
parental tumor.

● Several organoid studies have proved that organoid has great
potential to predict drug response.

● Organ-on-chip can simulate microenvironment by combining
two or more cell types.

● The combination of organoid and organ chip can provide
broad research prospects for precise tumor treatment.

OPEN QUESTIONS

● How to carry out effective clinical transformation of drug
prediction function of organoid model?

● How to effectively combine organoid and organ-on-chip?
● How can the interaction of these two models be used for the

study of immunotherapy and antivascular therapy?

INTRODUCTION
Colorectal cancer (CRC) now ranks third in estimated new cases
and emerges in the top three leading causes of death [1, 2]. There
are proposals to bring forward CRC screening from 50 to 45,
implying that cancer risk becomes earlier [3, 4]. Although
advanced surgical techniques and modified adjuvant therapy
have resulted in good colorectal cancer treatment outcomes, yet,
CRC mortality remains high due to metastasis and post-treatment
recurrence [5]. Colorectal cancer is a group of heterogeneous
neoplastic diseases that usually originate from abnormal crypts.
The heterogeneity of CRC can show distinct clinical and
pathological features, leading to diverse outcomes and prognoses.
Most colorectal cancers show changes in proto-oncogenes and
tumor suppressor genes [6]. Generally, it is the result of an
accumulation of genetic changes and epigenetic modifications
over time and shows abnormalities in some of the following
signaling pathways: Wnt/β-catenin, EGFR-RAS-RAF, MEK-MAPK,
PI3K, p53, and TGF-β-SMADs [6, 7]. These molecular biomarkers
can be used as a predictive and prognostic tool based on the
application of next-generation sequencing.
The differences in clinical patient responses may be partly due

to tumor heterogeneity. Thus, personalized treatment for different
patients with different conditions is necessary, such as gene
detection or evidence-based medicine [8]. Relying solely on
diagnostic guidelines and molecular sequencing is insufficient to
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cover all patients. Human cancer cell lines are the most commonly
used basic cancer and drug research models. However, few of
them can fully recapitulate the mutation and transcriptional
heterogeneity of primary tumors [9]. Another in vitro model,
patient-derived xenograft (PDX), is relatively difficult to construct
but with higher accuracy. The apparent limitations of its clinical
application include low fluxes and long processing time. Because
of the integrity of PDX microenvironment, it remains the gold
standard for verifying drug sensitivity [10]. Organoids are three-
dimensional cellular complex made by the self-organization of
stem cells based on developmental biology principles [11], while
organs-on-chips are microfluidic cell culture devices manufactured
by the microchip manufacturing method [12]. The emergence of
cancer organoids and organs-on-chips is currently suitable as a
preclinical model for clinical transformation and precision

medicine [13, 14] (Fig. 1). Significant advances in organoids and
organs-on-chips technologies have facilitated the construction of
in vitro near-physiological three-dimensional tissues and organs.
Incorporating organoid precise recurrence of tumor features and
organ-chip microenvironment integration may provide a tremen-
dous opportunity to accelerate clinical transformation [15].
In this review, we discuss two preclinical models of the adult

stem cell-derived organoid system and organs-on-chips technol-
ogy efficacy in predicting systemic treatment of colorectal cancer.
We focused on the consistency of in vitro and in vivo drug
responses based on these two models and the feasibility of
adjusting treatment strategies in clinical patients based on this
predictive effect as a supplement to the clinical treatment
reference index. Finally, we discuss the two models’ limitations
and look forward to organoids-on-a-chip technology.

Fig. 1 Systemic therapy for colorectal cancer. This figure depicts chemotherapy drugs, targeted drugs, and immunotherapy drugs
commonly used in basic and clinical research of colorectal cancer based on organoid and organ chips.
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THE ORGANOID SYSTEM
Organoid is a three-dimensional cellular complex with a certain
spatial structure formed by cells differentiated from stem cells
cultured in vitro. Hans Clevers’s group in 2009 demonstrated that
one single leucine-rich repeat-containing G protein-coupled
receptor 5 (LGR5+) intestinal stem cell could initiate 3D crypt-
villus organoids. The small intestine organoids cultures were
suspended in Matrigel accompanied by R- spondin 1 (a ligand of
LGR5 and WNT agonist [16], epidermal growth factor (EGF), and
the bone morphogenetic protein (BMP) inhibitor noggin). To date,
organoids from most parts of the human body have been
established, including healthy and tumor organoids from brain
[17, 18], esophagus [19], lung [20, 21], breast [22], liver [23, 24],
stomach [25, 26], pancreas [27, 28], kidney [29, 30], colon [21, 31],
bladder [32, 33], prostate [34, 35] and so on. The culture systems
for colorectal cancer organoids are summarized in Table 1, while
the articles without clear reporting methods have been excluded.
Adult stem cells and induced pluripotent stem cells (iPSCs) are the
two main sources of organoids. Higher cell integrity and a greater
diversity of cell types are frequently observed in iPSC-derived
organoids. Organoids can capture the characteristics of their
corresponding parental tumors [36]. The histological and genetic
characteristics between organoids and parental tumors are highly

consistent. Even in the course of culture for a certain period, the
corresponding characteristics are not lost [37].
Furthermore, organoids outline many developmental-related

biological parameters, such as heterogeneous cell construction
and cell-cell/cell-matrix interactions. Current applications for
cancer biology in tumor organoids mainly include screening for
clinical and preclinical drugs [38] and drug discovery [39], the
study of the exploration microenvironment [40] and tumor
heterogeneity [22], as well as response prediction and persona-
lized medicine [10]. Peculiarly, considering time cost, economic
cost, operability, and success rate, the organoid system maintains
particular superiority in drug response prediction and persona-
lized medicine. Despite the potential of organoid models in
biomedicine, there are significant limitations. Lack of a vascular,
nervous or immune system is a major disadvantage of organoids.
Besides, matrigel and other animal-derived matrices are com-
monly used in organoid cultures. Uncertain protein composition
and variation among batches of animal-derived matrices are
ongoing issues which may result in low controllability of cell
microenvironment and low reproducibility of organoids. These
constraints may prevent organoids from responding to specific
pathophysiological parameters and carrying out downstream
conversion application.

Table 1. Culture systems for colorectal cancer organoids.

Cancer lesion Enzyme Concentration Digestion time Growth factors Required
or absent

Function of
growth factors in
organoid culture

Ref

Colon Collagenase IX
Dispase II

75 U/mL
125 g/mL

30–60min Adv.DF12+++
Wnt3a*
R-spondin
Noggin
EGF
Nicotinamide
N-acetylcysteine
Gastrin-1
A83-01
SB202190
Y-27632
PGE2#
FGF-2#
FGF-10#
N2 supplement#
B27 supplement

+
+/−
+
+
+
+
+
+
+
+
+/−
+/−
+/−
+/−
+/−
+

Basal medium to
reduce serum use
Stemness/Wnt
signaling
activator
Stemness/Wnt
signaling
enhancer
BMP inhibitor
Mitogen
Stemness/cystic
phenotype
Antioxidant
Mitogen/Prolong
survival
TGF-β inhibitor
p38MAPK
inhibitor
ROCK inhibitor
/Block apoptosis
Wnt activator/
cystic phenotype
Mitogen
Mitogen
Cofactor mixture
Cofactor mixture
based on N2

[21]

Colon
and Rectum

Collagenase II
Hyaluronidase

1.5 mg/ml
20 ug/ml

30min [68]

Colon and
Rectum,
Liver and
ovarian
(metastasis)

Liberase TH
TrypLE Express

1x
1x

60min [31]

Colon
and Rectum

Collagenase IV
Trypsin-EDTA

250 U/mL
0.05%

unknown [10]

Colon
and Rectum
(metastasis)

PBS/EDTA
TrypLE Express

1mM
2x

60min [67]

Colon and
Rectum,
Liver and
Peritoneum
(metastasis)

Collagenase II
Hyaluronidase IV

1.5 mg/mL
10mg/mL

15–60min [100]

Rectum Collagenase XI
Dispase II
TrypLE Express
DNase I

100 U/ml
125 μg/ ml
1x
3mg

40+ 10min [69]

Colon
and Rectum

Collagenase A
Hyaluronidase

0.5 mg/mL
20mg/mL

30min [85]

Rectum Collagenase IV
Collagenase II
Hyaluronidase
Dispase II

500 U/mL
1.5 mg/mL
20mg/mL
0.1 mg/mL

30–60min [70]

Peritoneum
(metastasis)

Collagenase IV
Dispase
Hyaluronidase
DNase I

67.5 U/mL
0.23 U/mL
8–20 U/mL
50 units/mL

30–60min [74]

Adv.DF12+++ is Advanced DMEM/F12-based medium supplemented with HEPES, Glutamax, penicillin and streptomycin.
*Wnt3a is usually withdrawn to reduce normal organoid contamination in colorectal tumor organoid culture.
+, Required; −, Absent; # Not strictly required.
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ORGANS-ON-CHIPS
Organs-on-chips can be defined as a small functional unit that
mimics the level of human organs in vitro [41]. Generally, it is
based on an organ’s anatomy and simplified for assembly in vitro
with the presence of essential elements necessary for physiolo-
gical function [12]. Briefly, organ chips are microfluidic cell culture
devices made of optically transparent materials, such as poly-
dimethylsiloxane (PDMS). The main structure is the irrigation-
controlled microchannel for the growth of living cells like cell lines,
primary cells, and stem cells. The chips can simulate a
microenvironment by combining two or more cell types. Different
cells, such as organ-specific epithelial cells and stromal cells, are
typically separated by ECM gel in different channels. Accordingly,
it can recapitulate the multicellular structure of human organs and
tissue-tissue interfaces, chemical gradients, vascular perfusion
systems, and mechanical properties at the level of multicellular
structure. At present, organ chips that encompass many organ
types have been developed, including lung alveoli [42, 43] and
bronchioles [44, 45], kidney [46, 47], liver [48], pancreas [49, 50],
heart [51, 52], bone and bone marrow [53, 54] as well as the
blood-brain barrier (BBB) [55, 56]. Some orthotopic cancer organ
chips are developed to mimic tumor structure and physiology,
such as lung adenocarcinoma chip [57], breast cancer chip [58]
and multiple myeloma chip [59]. Table 2 summarizes the
characteristics of CRC-related devices that have been reported in
the articles since 2016 [60, 61]. The ability to capture human
physiology and pathophysiology from a different perspective than
organoids make them capable in vitro models for preclinical
evaluation [62]. The dynamic study of microenvironment, the
reduction of using animal models, novel drug development, drug
efficacy, and toxicity assessment are all areas of applied research
in organ chips technology that are currently in full swing [63].

PRE-CLINICAL MODELS FOR CHEMOTHERAPY
Chemotherapy, surgery, and radiation are still considered the
mainstream antitumor therapy for CRC in clinical setups and have

improved many patients’ overall survival [5]. Despite its severe
side effects and pervasive drug resistance, chemotherapy remains
the most compelling part of systematic therapy. The chemother-
apy backbone for CRC or mCRC treatment is drugs like 5-
fluorouracil, capecitabine, oxaliplatin, and irinotecan, and several
protocols that combine with them, such as FOLFOX, FOLRIRI, and
CAPEOX regimen [64, 65] (Fig. 1). However, the chemotherapeu-
tics strategies are constantly adjusted in response to changes in
the patient’s actual condition. Colorectal cancer has entered the
era of precision therapy, such as MMR/MSI status to predict the
efficacy of adjuvant chemotherapy. Currently, preclinical models
like organoids and organs-on-chips show great potential in
anticancer-drug screening, personalized therapy, and drug
response prediction associated with patient outcomes [66, 67].
These high-fidelity, high operational in vitro models have come to
the fore in translational research.
Large-scale drug screening was performed in CRC and mCRC

organoids in clinical trials and practice, including chemothera-
peutic drugs and targeted agents [67, 68]. The results demon-
strated the feasibility of high-throughput drug screening and
forecasting the response of patients’ drug therapy. Based on these
successful organoid-drug response platforms, a joint analysis of
clinical patients’ therapeutic response and patient-derived orga-
noids’ drug treatment response can sufficiently provide robust
evidence [67]. For instance, they established a biorepository of 65
patient-derived rectal cancer (RC) organoids from lesions of
primary, metastatic and recurrent; Ganesh and colleagues treated
21 different RC organoids with single-drug 5-FU and FOLFOX
regimen (5-FU, leucovorin, and oxaliplatin). Based on the sufficient
clinical follow-up of seven patients, the organoid drug responses
significantly correlated with the corresponding patients’
progression-free survival [69].
Similarly, Yao and colleagues tested 80 rectal cancer organoids

with single-agent 5-FU, irinotecan, or radiation and tested 23 with
combinational therapies. Comparing monotherapy and combina-
tional therapies in organoids almost remained consistent when
they observed organoid drug responses with tumor regression

Table 2. Technological overview of organ-on-a-chip models of colorectal cancer.

In vitro
platform

Cancer
cell type

Other
biological
components

Material Chip
configuration

Fabrication
technique

Media
exchange method

Ref

Vascularized
micro-organs

HCT116,
SW620,
SW480

ECs, matrix and
stromal cells

PDMS 2-layered
channels

Soft lithography Direct exchange [77]

Organotypic
tumor
spheroids

MC38,
CT26,
Primary cells
from human
and mouse
(Organotypic
Tumor
Spheroids)

Organotypic
Tumor
Spheroids
contains
immune cells
and
stromal cells

PDMS 3-layered
channels

Soft lithography Perfusion [66]

Colorectal
tumor chip

HCT116 HCoMEC PDMS 3-layered
channels

Soft lithography Perfusion [86]

CRC-on-chip Caco2,
C2BBe1,
HCT116,
HT29,
CRC organoid

HUVEC and
human primary
fibroblasts

PDMS 2-layered
channels

Soft lithography Perfusion [60]

Vascularized
micro-tumors

HCT116,
SW480

ECs, matrix and
fibroblasts

PDMS 3-layered
channels

Soft lithography Direct exchange [78]

Tumor-on-
chip

SW620 Spheroids
within Matrigel

Polycarbonate 2-layered
channels

Micromachining Perfusion [61]

PDMS polydimethylsiloxane, ECs endothelial cells, HCoMEC human colonic microvascular endothelial cells, HUVEC human umbilical vein endothelial cells.
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grading (TRG) after surgical resection [70]. Although drug dosages
employed during in vitro drug screening and in vivo, chemother-
apeutics may remain significant, the sensitivity of the drugs could
be reflected to verify the predictability of organoids. Lately, they
have used liver metastatic organoids to complement their cohort
and demonstrated that organoids have a good potential to
predict drug sensitivity and clinical outcome of FOLFOX or FOLFIRI
[71]. In addition to the single lesion, drug response on organoids
from multiple lesions may explain the clinical reaction of specific
patients. the test about TAS-102 (an oral combination agent) on
mCRC organoid from different metastases in the same site (liver)
and pre-and post-treatment metastases emphasized the correla-
tion between heterogeneity and drug response as well as the
consistency of efficacy [67]. The organoids from baseline
segments were more sensitive to TAS102 than those from disease
progression segments of pre-and post-treatment, consistent with
the size of tumor foci from CT scan. Some prospective studies
have provided the rudiment of preclinical guiding pharmacy. A
successful chemotherapy response prediction was performed by
mCRC organoids in contrast with CT and CEA tumor markers from
the corresponding patient of treatment-refractory metastatic
colon cancer along with alterations in APC and TP53. They
received re-treatment of FOLFOX regimen and FOLFIRI regimen
combined with panitumumab successively [72]. Before the patient
benefitted from re-treatment of FOLFOX chemotherapy, organoids
were confirmed sensitive to 5-FU and oxaliplatin but not to single-
agent 5-FU.
Voest and colleagues reported another prospective clinical

study to verify the feasibility and potential value of PDO as a
predictive tool for chemotherapeutics regimens in CRC. Although
there was no intervention with the patient, their PDO-based
classifier indicated that it is clinically feasible to employ mCRC
organoid to deliver a prediction on the outcome of irinotecan-
based chemotherapy, yet, it failed on 5-FU-oxaliplatin combina-
tion therapy [73]. Still, with prospective studies that recruited 28
CRPMs patients, Woods and colleagues could not distinguish
samples from 9 patients with partial response (PR) or stable
disease (SD) versus progressive disease (PD) following FOLFOX
treatment based on FOLFOX sensitivity of peritonoids [74]. The
potential mechanism of the role of FOLFOX in mCRC organoids
may be worth figuring out [75]. Impressively, they supplied a
gemcitabine-capecitabine combination to a patient whose peri-
tonoids were sensitive to multiple therapeutics. FDG PET-CT scans
showed partial response after three months of treatment but
followed by disease progression in further two months of
treatment [74]. This variation in drug potency is prevalent in
clinical settings, possibly due to multiple heterogeneous lesions or
other unknown changes. Resampling organoids from altered
lesions may aid in revealing changes in the tumor itself following
treatment.
The organs-on-chips (OOCs) platform is another preclinical

system for evaluating responses to cancer therapies. The
combination of spheroid culture and microfluidic platform may
be a successful strategy in the OOCs field to mimic the in vivo
tumor microenvironment for drug screening of anticancer
candidates [76]. Although low simulation of the tumor itself in
cell lines or spheroids compared to organoids, the endotheliocyte,
fibroblast, and immune cells can be assembled in organs-on-chips
to mimic a relatively intact tumor microenvironment [77–79].
Earlier, the microfluidic devices combined with spheroids from
human LS174T colon carcinoma cells were exposed to a
continuous fluid medium to mimic microenvironment gradients
in the vasculature of solid tumors [80]. A vascularized micro
tumors platform was recently reported to test FOLFOX regimen
and single agents such as 5-FU, oxaliplatin, and vincristine in three
CRC cell lines and endothelial cells, matrix cells, stromal cells [77].
More recently, another vascularized micro tumor model (VMT) was
also tested with FOLFOX regimen but compared with

corresponding monolayer cultures, spheroids, and xenografts,
and the tumor growth curves of VMT and xenografts were highly
similar [78]. In reality, not many studies have been done to predict
the anticancer agent efficacy of CRC on organs-on-chips [14].
Relatively ideal curative efficacy prediction requires primary
culture spheroids or primary culture cells to ensure a degree of
similarity to the patient’s parental tumor. In future studies, OOCs
model may construct cellular components with primary culturing,
microenvironment-related cells, and vasculature to evaluate drug
response and mechanisms of drug action [66, 79]. Following that,
drug concentrations similar to blood, chemical gradients caused
by drug penetration, and drug response under microenvironment
will be studied and adjusted as closely as possible to the drug
response in vivo, based on dynamic perfusion of vasculature and
integrated microenvironment. Chemotherapy efficacy can thus be
predicted to some extent in this manner.
Organoids can be used as a therapeutic prediction tool and

have been preliminarily used to instruct adjustment of patients’
chemotherapy strategies [71]. With the improvement of organs-
on-chips technology, efficacy prediction can also be carried out
from another aspect.

TARGETED THERAPY PREDICTION FOR INDIVIDUAL
The genomic and heterogeneous similarities between patient-
derived tumor organoids and corresponding parental-tumor
specimens have aided in developing personalized cancer therapy
[81]. Compared to chemotherapy, targeted therapy is more
dependent on gene-drug associations. The well-known biologic
anti-EGFR agents, such as cetuximab, and panitumumab, con-
sistently execute poor efficacy for RAS and RAF mutant CRC
tumors, leading to the indispensability of testing KRAS and NRAS,
and BRAF mutations before considering the anti-EGFR therapies
[5, 68] (Fig. 1). The two main signaling pathways of EGFR activation
are the RAS-RAF-MAPK pathway and PI3K-PTEN/PTEN/AKT path-
way. Many other targeted drugs in clinical practice have been
derived from these two pathways, such as BRAF-inhibitors, MEK
inhibitors, etc. Another renowned biologic agent was the anti-
VEGF monoclonal antibody like bevacizumab, aflibercept, and
ramucirumab. Unfortunately, resistance to targeted drugs is as
common as chemotherapy drugs. Some KRAS and BRAF wild-type
CRC patients also could not benefit from anti-EGFR agents
because of the effect from other relevant pathways and potential
pathway crosstalk [82]. The detection of molecular characteristics
alone is no longer sufficient for the existing clinical adjustment of
clinical therapeutic strategy [10]. Compared to potentially complex
resistance mechanisms that would necessitate extensive research,
combining a better phenotype and simple molecular character-
istics would be a more direct and effective method.
Organoid platforms were verified that allow for genomic and

functional studies at the level of individual patients [68]. The gene-
drug association captured by organoids lays the foundation for
investigating the molecular basis of drug response and predicting
targeted therapy efficacy [83]. Despite a lack of validation in
xenograft models and patients, the initial gene-related drug
screening on CRC organoids shows that KRAS mutant organoids
and KRAS wild-type/BRAF mutant organoids were insensitive to
cetuximab, which were consistent with the response of targeted
clinical therapy [68, 84]. Some KRAS-mutated organoids could be
restrained by combinatorial EGFR-KRAS G12C inhibition [85].
Ulteriorly, Two CRC cases were involved in combination drug
screens. KARS/TP53 mutated organoid was insensitive to most
drugs, including frequently-used 5-FU, oxaliplatin, and EGFR
inhibitors, consistent with clinical patient response [84]. The
trametinib-based combinatorial targeted treatment, on the other
hand, was highly influential on this gene-type organoid but was
not validated in PDX models [10]. Another APC-mutant organoid
was more insensitive to the combination of afatinib and histone
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deacetylase (HDAC) inhibitors than FOLFOX regimens accepted by
patients at the time [10]. The result was further verified in
corresponding PDX models. Five PDOs and their respective mCRC
patients have recently tested the predictive value to the response
of EGFR blockage cetuximab. The most impressive was the biopsy,
along with EGFR amplification as well as no RAS pathway
mutation, from a disease-progressive patient who initially
responded to cetuximab but gradually turned to resistance. No
response to cetuximab showed in its organoids consistent with
the patient’s clinical response [67]. Signally, multiple tyrosine
kinase inhibitors, regorafenib, have also been consistent clinical
responses in PDO-xenografts due to lacking vasculature in
organoids [67]. This predictive value must eventually manifest in
the patient. The attempts are made by two CRC peritonoids and
their respective patients. The combination of MEK inhibitors
trametinib and cobimetinib and the multi-tyrosine kinase inhibitor
vandetanib significantly reduced the viability of KRAS G12D-
mutant organoids that were resistant to most monotherapy
chemotherapeutics. No obvious response was found with
adjusted four weeks of vandetanib therapy in the patient but
did not include MEK inhibitors [74]. The other peritonoid showed
sensitivity to adavosertib, the combination of EGFR inhibitor
Osimertinib, and HDAC inhibitor vorinostat. However, adavosertib
remains in phase II clinical trial for advanced colorectal cancer, and
two other drugs were restricted by funding and off-label use [74].
Received gemcitabine–capecitabine combination therapy ulti-
mately according to drug access, cost, and toxicity; this patient
displayed partial response (PR) but still turned to disease
progression (PD) subsequently, as described before. The general
pattern of transformation from organoid to clinical is displayed in
Fig. 2a. The Netherlands Cancer Institute performed a prospective
clinical study (SENSOR study, NL50400.031.14 EudraCT2014-
003811-13) involving colon cancer and NSCLC patients for
targeted treatment. In this study, patients’ treatment strategies
would be altered with screening results from organoids of these

patients’ tumors [81]. Other registration numbers for other
organoid clinical trials are listed in Fig. 2b. The organoids may
be particularly appropriate as predictive tools for targeted
therapies, considering the robust capture of genomic alterations.
Organs-on-chips could also be used for screening specific drugs.

The in vitro vascularized micro tumors (VMTs) are a relatively
representative model in colorectal cancer. The vasculature derived
from endothelial cells commendably complements the composi-
tion of microenvironment [77, 78]. Ten kinds of clinically-approved
receptor tyrosine kinase (RTK) inhibitors targeted to VEGFR2,
PDGFR, Tie2, and FGFR1, including pazopanib and sorafenib, were
tested in VMTs [77]. Novel targeted drug like galunisertib, a TGF-
βR1 antagonist, finished in phase II clinical trials for hepatocellular
cancer, was also tested in VMT loading with SW480 and HCT116
attributed to the presence of fibroblasts in the microenvironment
[78] In addition, drug delivery and penetration have been
performed in similar colorectal cancer organ-chip systems
[86, 87]. Though the fidelity of the tumor itself is not superior to
the organoid, the integrity of microenvironment can better
explore the interaction of medicine and the cell-extracellular
matrix. The influence of complex microenvironments on drug
efficacy cannot be ignored, such as drug targeting to the stroma,
dynamic microenvironmental drug concentrations, and micro-
environmental barriers [88]. These conditions can also provide a
basis for predicting the efficacy of targeted therapy in organs-on-
chips.
By assembling primary tumor cells, patient efficacy can be

predicted to a certain extent. Similar efficacy prediction studies
have been conducted on other tumor chips. Two chips were
combined to test the anti-ES tumor effect and cardiotoxicity of
lincitinib, a selective IGF-1R inhibitor. The results were also
compared with those from clinical trials [89]. Notably, Hickman
and colleagues established a reconfigurable multi-organ system to
investigate anticancer drug efficacy and off-target effects in two
different cancer-derived models. One was the combination of two

Fig. 2 Organoids as a supplement of the clinical treatment reference index. A Patient-derived tumor organoids have the potential to
choose therapy for the individual patient. It can provide feedback to the clinician to adjust the treatment decision based on the drug
screening results. B This shows the registration numbers of ongoing clinical trials based on colorectal cancer organoids [129], including
registered Clinical trials from US ClinicalTrials.gov, Chinese Clinical Trial Registry, etc [130, 131].
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leukemia cell lines and primary hepatocytes to study imatinib and
diclofenac. Another system used to study tamoxifen was a
multidrug-resistant vulva cancer line, a non–multidrug-resistant
breast cancer line, primary hepatocytes, and induced pluripotent
stem cell-derived cardiomyocytes [90]. The results were compared
to published clinical and preclinical data. These cases provide
direction and gist to explore drug efficacy prediction and
evaluation in the organs-on-chips system, even in colorectal
cancer.

DEVELOPMENT OF PERSONALIZED IMMUNOTHERAPY
Immunotherapy, including immune checkpoint inhibitors and
adoptive cell therapy, regulates the tumor microenvironment or
immune system to identify and attack tumor cells [91].
Unfortunately, immunotherapy plays a limited role in solid tumors,
while yields unusually brilliant results in hematologic tumors. For
4–5% of CRC with mismatch-repair-deficient (dMMR) or high levels
of microsatellite instability (MSI-H), immune checkpoint inhibitors
(ICIs), including PD-1 blockade and CTLA-4 inhibitor, have received
US Food and Drug Administration’s (US-FDA) approval [92, 93]
(Fig. 1). ICIs, on the other hand, are ineffective in most clinical CRC
patients with mismatch-repair-proficient (pMMR) and
microsatellite-stable (MSS) or low levels of microsatellite instability
(MSI-L) due to low mutant neoantigen burden and a lack of
immune cell infiltration [94, 95]. Several MSI CRCs with a high
mutational load could not benefit from ICIs [96]. In addition,
adoptive T cell therapies have limited colorectal cancer effects.
Unlike pharmacotherapy, the improvement of cell therapy always
directly depends on many clinical studies subjected to many
restrictions [97–99]. Developing cell therapies for solid tumors
may therefore be slow. Accordingly, as a predictive tool, the
emerging preclinical models may effectively accelerate the
development of immunotherapy in solid tumors.
Organoids generally lack immune system components, making

tumor-immune interaction difficult. Exploiting the air-liquid inter-
face (ALI) system for the immune microenvironment and
organoids/immune cell co-culture system makes it possible to
study immunotherapy [100, 101]. ALI system could retain the
original innate immune components for a certain period. Another
one was an artificial combination of organoids and immune cells.
The co-culture system of peripheral blood lymphocytes and tumor
organoids were validated primarily in dMMR patients. In four of
eight major histocompatibility complex (MHC) class I+ colorectal
organoids, CD8+ T cells showed tumor-specific responses but not
in MHC class I deficient organoids [100]. MHC class I deficiency
was also inherited from its parental tumor. Numerous studies have
found that HLA/MHC gene expression is closely related to ICI
treatment response [102, 103]. The co-culture result showed that
tumor-responsive T cell populations could be amplified and the
capture of MHC-based immune reactivity. The author and
colleagues co-cultured organoids with T cell populations loading
tumor responsive with or without MHC class I and MHC class II
blockages. The cytotoxic effect of T cells was observed in CRC
organoids but not in healthy organoids [100]. General stratification
of patient immunotherapy response includes expression of the
immune checkpoint, Infiltration of immune cells, mismatch repair
mechanism, tumor neoantigen burden [104], TCR clonality, and
immune gene signatures. These factors have more or less been
studied and recapitulated in CRC organoids, containing the
expression of HLA molecular [100–103, 105].
The capture of immune-related components and co-culture

system testifies to the possibility of ICIs efficacy prediction.
Apparently, this treatment prediction requires validation from
more prospective studies and clinical outcome correlation to
screening appropriate patients for enriching clinical ICIs response.
Voest and Haane reported an ongoing exploratory NICHE study
about neoadjuvant immunotherapy in pMMR and dMMR early-

stage colon cancer [106]. 100% and 27% responses were found in
patients with dMMR and pMMR colon cancer, respectively, after
the employment of CTLA-4 inhibitor and PD-1 blockage for
neoadjuvant treatment. Notably, they investigate the low
reactivity of pMMR tumors in clinical responders’ coculture
platforms. The reactivity of autologous T cells in an organoid co-
culture system was limited to colon tumors that responded
clinically to ICIs. In vitro reactivity was not observed in all clinical
responders [106]. The result proves the predictability of organoids
in ICI therapy from the side. Otherwise, Farin and colleagues
developed a quantitative co-culture platform for CAR-mediated
cytotoxicity toward PDCOs. They proved that organoids could be
tested for CAR toxicity in a complex and competitive microenvir-
onment by co-culture of EGFR variant III-expressing CRC
organoids, EGFRvIII-CAR NK-92 cells, and healthy colon organoids
[107]. Likewise, the application of organoid-based adoptive cell
therapy required further exploration in vivo experiments
[100, 107]. Compared to chemotherapy and targeted therapy,
the prediction of personalized immunotherapy responses in CRC
organoids response suffer more challenges.
A popular organ-on-chip type is similar to the organoid-immune

cell co-culture system but with a higher degree of integration.
Cancer cell lines, cancer-associated fibroblasts (CAFs), immune
cells from healthy donors’ PBMCs, and endothelial cells are
typically involved in this system. Within the chips, dynamic
changes in the tumor immune microenvironment can be
quantified and visualized [108]. Accordingly, some mutual
problems may be figured out. For instance, trastuzumab may
promote cancer-immune cell interactions and CAFs played an
inhibitory role in the immune microenvironment in breast cancer
[79]. Whereas the lack of individual characteristics is insufficient for
personalized precision immunotherapy. The main part of organs-
on-chip construction needs to come from individual patients to
accomplish the prediction of immunotherapy [66]. The murine-
and patient-derived organotypic tumor spheroids (MDOTS/
PDOTS) are more satisfactory subjects for forecasting immunor-
eaction. It retained autologous lymphoid and myeloid cell
populations [66, 109]. This type of OOCs was proved that could
simulate the response to PD-1 blockade and ascertain specific
interventions to counteract resistance [66]. However, it was limited
to tumor infiltrating lymphocytes (TILs) and could not reflect the
recruitment of additional immune cells [109]. The evaluation of
immune cell recruitment has also been carried out in Breast
tumor-on-a-Chips [110]. The addition of autologous circulating
immune cells or biomimetic lymph nodes may be a future
direction [111, 112]. Even though organs-on-chips have some
advantages in the integration of immune-related systems, there is
still a lack of research closely related to clinical transformation.

FUTURE PROSPECTS
Further exploration of these in vitro preclinical models has
revealed many limitations. Compared to cancer cell lines,
patient-derived organoids and organs-on-chips consume more
time and resources in culturing. The primary limitations of tumor
organoid culture are the lack of a microenvironment, the short-
term expansion, contamination from normal organoids, the effects
of serum and growth factors in the culture system, and the
requirement for mouse-derived extracellular matrix (ECM). Mean-
while, despite simulating a relatively complete microenvironment,
organs-on-chips are limited to technical robustness, time cost, raw
materials for chips, and relatively lower complexity of 3d structure
than organoids. Many of them have the potential to influence the
prediction of curative effects. For example, except for organoids
derived from colorectal cancer, some organoid drug efficacy
comparisons for other cancers have not been particularly
favorable [113], which may directly relate to the lack of
microenvironment [114]. Likewise, the same is valid for fetal
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bovine serum and some mouse-derived small molecules or ECM
[115, 116]. Routinely, effective predictive models require drug
screening in the window of meaningful short-term clinical
treatment. Long-term response to drug treatment is also critical.
In terms of immunotherapy, the long-term clinical response has
been unsatisfactory, attributed to immune failure related to the
immune microenvironment. In the model, this may necessitate
extending the duration of drug action, analyzing the internal
changes of individual immune cells [117] and constantly introdu-
cing new lymphocytes or forming multi-organ organ chips
containing lymph nodes to stimulate immune cell recruitment
from tertiary lymphoid structure [111]. The presence of a small
number of potentially healthy organoids or deliberately importing
healthy organoids may make the outcome of drug response more
precise [100, 107]. This demonstrates that in vitro model has great
potential for improvement. Thommen and his colleagues built a

patient-derived tumor fragment platform to dissect the early
immunological response to ex vivo PD-1 blockade. Compared to
matched clinical response data, the ex vivo immunological
response clinical outcomes were in concordance with clinical
outcomes in a high degree of 26 patients, including 12 melanoma
and non-small cell lung cancer (NSCLC) patients who did not
respond to clinical PD-1 blockade [118]. This gives inspiration to
microenvironment capture. It also shows the importance of early
immunotherapy intervention [106] and of tracking the long-term
dynamics of the immune microenvironment from the side.
Furthermore, low cost and high throughput must be considered
a reference supplement for individual clinical efficacy prediction.
This role could be filled by commercial organs-on-chips [88].
Therefore, without limitation to the perfection of the model itself,
being consideration of pros and cons of these two models,
organoids-on-a-chip may be a promising future direction.

Fig. 3 Organoids meet organs-on-chips to perfect the quasi-physiological structure. The figure depicts a possible future, more potent
in vitro technology by loading organoids and other stromal cells into microfluidic chips to complement the limitation of the two models. One
channel was loaded with cancer organoids and enterocytes, while the other was coated with stromal cells. The middle figure is based on Ref.
[126]. The top right is adapted from Ref. [126], Springer Nature Limited. The middle right is adapted from Ref. [116], Cell Limited. The lower one
is adapted from Ref. [125], Springer Nature Limited. The lower left one is adapted from Ref. [100], Cell Limited. The surrounding experimental
figures do not represent the actual situation of this model.
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Organoids-on-a-chip is an integration of organoids with organ-
on-a-chip technology. It’s essentially an interaction between the
stem cell field and the engineering field. Organoids are further
designed to break the limitations by controlling stem cell behavior
and cell microenvironment. Organs-on-chips are the target
organ’s artificial construction and are precisely controlled artifi-
cially [119]. Organoids follow intrinsic developmental programs to
self-assemble [11]. The fusion of these two distinct but
complementary technologies has been accepted by most
scientists [81, 120, 121]. Enhancing fidelity and reproducibility is
the top priority task of organoids-on-a-chip [15]. The biophysical
and biochemical microenvironment and the nutrient supply must
be controlled during the assembly of organoids-on-a-chip.
Mechanical flow has been shown to promote additional

physiological integrity in developing PSC-derived intestinal and
islet organoids [122, 123]. Physiological flow promoting angiogen-
esis was demonstrated on kidney organoids-on-chip [124]. An
embryonic-like malleable vasculogenic endothelial cells was
reported can break through the limitations of synthetic scaffolds
and semi-permeable membranes with its ability to self-organize
3D lumenized vascular networks. Co-cultures of organoids with
the specialized endothelial cells can serve as a tissue-specific
biological platform containing vascular niche [125]. Analogously,
The co-culture system of cancer-associated fibroblasts and
pancreatic cancer organoids has also been applied to niche
studies [116]. Lutolf and colleagues constructed an intestinal
organoids-on-a-chip to attain more physiologically relevant organ
shapes, sizes, and functions [126]. The application of fluid scour,
and lumen structure scaffold well simulates the biophysical
microenvironment. Remarkable tissue homeostasis was shown in
the self-organization of functional intestinal epithelium in confin-
ing hydrogel scaffold. Induced epithelial injury and long-term
parasite infection verified the regenerative and physiologic
mimicry of intestinal organoids-on-a-chip. The authors also
introduced intestinal myofibroblasts and macrophages to mimic
organ-level complexity [126]. Lutolf’s team recently developed a
hydrogel-based microfabrication method for controlling the
spatiotemporal morphogenesis of intestinal organoids with
defined shape and structure [127]. Morphogenesis of other tissues
may be extended based on this in the future. These strategies
further improve organoid and organ-on-chip models in a visual
and controllable manner, allowing the possibility of reproducing
in vivo complex tissues or organs in vitro. High fidelity may be
achieved by introducing a complete microenvironment, including
the vasculature, and its application may take developmental
medicine and regenerative medicine to a new level. We can
consider the possibility of organoid-on-hips with personalized
characteristics of patients based on these analogous models (Fig.
3). The patient’s primary cells are introduced into the chip in an
organoid fashion, and various types of stromal cells are also
delivered to further refine the physiological structure in vitro. The
dynamic changes in drug response can then be detected in the
flow system.On the one hand, it increases fidelity to complete the
current bottleneck in basic research. On the other hand, it
simplifies the technical difficulty within a controllable range to
improve repeatability to serve as more versatile and predictive
preclinical tools for precision medicine [15, 128]. This synergistic
engineering may be a pivotal bridge to translation from lab to
clinic.

CONCLUSION
Although it remains a long way from being practical and widely
used, it has great potential in predicting therapeutic efficacy. A
corresponding number of clinical trials based on these models are
currently underway. In terms of the treatment time window, cost,
drug screening efficiency, and accuracy, these in vitro models will

likely be used as a clinical reference shortly to guide the
optimization of treatment strategies for individual patients
through technological advancement or technology fusion.
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