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The C-terminal HSP90 inhibitor NCT-58 kills
trastuzumab-resistant breast cancer stem-like cells
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N-terminal HSP90 inhibitors in development have had issues arising from heat shock response (HSR) induction and off-target
effects. We sought to investigate the capacity of NCT-58, a rationally-synthesized C-terminal HSP90 inhibitor, to kill trastuzumab-
resistant HER2-positive breast cancer stem-like cells. NCT-58 does not induce the HSR due to its targeting of the C-terminal region
and elicits anti-tumor activity via the simultaneous downregulation of HER family members as well as inhibition of Akt
phosphorylation. NCT-58 kills the rapidly proliferating bulk tumor cells as well as the breast cancer stem-like population, coinciding
with significant reductions in stem/progenitor markers and pluripotent transcription factors. NCT-58 treatment suppressed growth
and angiogenesis in a trastuzumab-resistant xenograft model, concomitant with downregulation of ICD-HER2 and HSF-1/HSP70/
HSP90. These findings warrant further investigation of NCT-58 to address trastuzumab resistance in heterogeneous HER2-positive
cancers.
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INTRODUCTION
Heat shock protein 90 (HSP90) is a chaperone that governs the
maturation, stabilization, and activation of client proteins [1, 2].
HSP90 also interacts with a variety of pathways that can become
oncogenic, and its aberrant activity is implicated in tumorigenesis
and cancer progression [2–4]. For example, HSP90 has been
shown to regulate the tyrosine kinase activity of human epidermal
growth factor receptor 2 (HER2), facilitating pro-survival signaling
[5–7].
Trastuzumab is a humanized anti-HER2 monoclonal antibody

used for the treatment of HER2-positive breast cancer, however,
most patients eventually develop resistance to the drug within
1–2 years [8–10]. Key mechanisms responsible for trastuzumab
resistance include HER2/HER3 and HER2/EGFR interactions,
hyperactivation of PI3K/Akt signaling, and accumulation of
truncated forms of HER2 [10, 11]. Truncated p95HER2 is a
constitutively active form of the tyrosine kinase that activates
downstream signaling through dimerization with other HER family
members [11–13]. These trastuzumab resistance-related factors
are HSP90 client proteins [5–7, 14], and therefore the inhibition of
HSP90 may suppress several potent oncogenic drivers and
trastuzumab-refractory factors.
HER2-positive tumors are typically highly heterogeneous

consisting of differentiated tumor bulk cells and a smaller
subset of breast cancer stem cells (BCSCs) with tumorigenic
potential and asymmetric cell division capability [15, 16]. A
positive association has been reported between CSCs and

trastuzumab resistance in HER2-positive cancer [17–19]. Expres-
sion of the stem/progenitor cell marker ALDH1 is highly
elevated in HER2-positive breast cancer and is associated with
an aggressive phenotype [20, 21]. Subpopulations with
CD44high/CD24low mesenchymal stem-like phenotypes are often
resistant to trastuzumab [18, 22, 23]. Therefore, new therapeutic
strategies that effectively target both cancer stem cells and
trastuzumab resistance are needed to improve clinical out-
comes. In addition, recent studies have shown that HSP90
confers stability to the pluripotent transcription factors Oct4
and Nanog by preventing degradation via the ubiquitin-
proteasome pathway, further highlighting the potential advan-
tages of HSP90 inhibition with regard to attenuating pluripo-
tency and self-renewal capacity [24, 25].
Although HSP90 is a promising target for cancer treatment,

there are no approved inhibitors due to issues including heat
shock response (HSR) induction and off-target effects [26–28].
Inhibition of HSP90 by binding to its N-terminal domain also
triggers heat shock factor-1 (HSF-1)-mediated HSP transcription,
leading to upregulation of HSP27, HSP40, HSP70, and HSP90
[2, 3, 27]. Collectively, this series of reactions is called the HSR and
is an intracellular defense mechanism that promotes survival of
malignant cells.
We developed the novel C-terminal HSP90 inhibitor NCT-58

to address the shortcomings of N-terminal HSP90 inhibitors.
NCT-58 (compound 80) is one of 90 synthesized O-substituted
analogues of the B- and C-ring truncated scaffold of deguelin,
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which is a naturally occurring C-terminal inhibitor (Fig. 1A).
NCT-58 specifically binds to the C-terminal domain of HSP90
and was identified through a molecular docking study [29]. We
sought to further evaluate its efficacy against cancer stem cells
in trastuzumab-resistant HER2-positive breast cancer.

RESULTS
NCT-58-dependent apoptosis is mediated by caspase
activation in HER2-positive breast cancer cells
We first sought to evaluate the effect of NCT-58 on cell viability
and apoptosis in HER2-positive breast cancer cells. NCT-58
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Fig. 1 NCT-58 reduces cell viability and induces apoptosis in HER2-positive breast cancer cells. A Chemical structure of deguelin and NCT-
58. B BT474 and SKBR3 cells were treated with various concentrations of NCT-58 (0.1–20 μM) or DMSO (solvent control) for 72 h. Cell viability
was determined by MTS assay (***p < 0.001, n= 4). C Morphological changes of BT474 and SKBR3 cells after treatment with NCT-58 (2–10 μM,
for 72 h) as seen through phase-contrast microscopy. D Cells were treated with NCT-58 (2–10 μM) for 72 h and the sub-G1 population was
assessed by flow cytometry (***p < 0.01, n= 3). E Early and late apoptotic cells in the presence or absence of NCT-58 were quantified by
annexin V/PI staining (right panel, **p < 0.01; ***p < 0.001, n= 3). F Effect of NCT-58 on expression of cleaved-caspase-3, cleaved-caspase-7,
cleaved-PARP and survivin in BT474 and SKBR3 cells. G Quantitative graphs of these protein levels (*p < 0.05; **p < 0.01; ***p < 0.001, n= 3).
GAPDH was used as an internal loading control. H The sub-G1 fraction of the normal human mammary epithelial MCF10A cells was analyzed
through flow cytometry after exposure to 10 μM of NCT-58 for 72 h (NS, not significant, versus DMSO control, n= 3). The results are presented
as mean ± SD of at least three independent experiments and analyzed by one-way ANOVA or Student’s t-test followed by Bonferroni’s post
hoc test.
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treatment (0.1–20 μM for 72 h) dose-dependently reduced cell
viability in HER2-positive BT474 and SKBR3 cells (Fig. 1B). NCT-58
(2–10 μM, 72 h) elicited morphological features of apoptosis
(Fig. 1C), including a marked accumulation of cells in the sub-
G1 phase (Fig. 1D) and an increase in the number of early and late

apoptotic cells (Fig. 1E). These effects were accompanied by
caspase-3/−7 activation and PARP cleavage, as well as down-
regulation of survivin (Fig. 1F, G, and Supplementary Fig. S1). NCT-
58 did not affect normal human mammary epithelial MCF10A
cells, as determined by sub-G1 cell cycle analysis (Fig. 1H).
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NCT-58 targets the C-terminal domain of HSP90 and
downregulates the expression of EGFR/HER2/HER3
We examined whether NCT-58 regulates HSP90 major client
proteins including HER family members. The expression and
phosphorylation levels of HER2, EGFR, and HER3 were determined
by immunoblot analysis. NCT-58 treatment was found to down-
regulate the expression levels and phosphorylation of HER2
(Tyr1221/1222), HER3 (Tyr1289), and EGFR (Tyr1068) in BT474 and
SKBR3 cells (Fig. 2A, B). Immunoblot analyses also showed that
NCT-58 (2–10 μM, 72 h) did not impact HSP70 and HSP90
expression in HER2-positive breast cancer cells (Fig. 2A, B).
To investigate whether NCT-58 induces the HSR, the subcellular

localization of HSF-1 and the expression levels of HSP70 and
HSP90 following NCT-58 treatment were determined by immu-
nocytochemical analysis. SKBR3 cells were treated with geldana-
mycin (300 nM), a known N-terminal HSP90 inhibitor, and NCT-58
(300 nM and 10 μM) for 24 h and immunostained for HSF-1,
HSP70, and HSP90. No increase in HSF-1 was observed following
exposure to NCT-58, whereas a marked increase in nuclear
accumulation of HSF-1 occurred after geldanamycin treatment
(Fig. 2C). NCT-58 did not affect HSP70 or HSP90, while
geldanamycin markedly upregulated HSP70 (Fig. 2D) and HSP90
(Fig. 2E). We further confirmed that NCT-58 had no effect on
HSP70 and HSP90 expression in HER2-positive breast cancer cells
at 24 h, as determined by immunoblotting (Supplementary Fig.
S2). NCT-58 competitively inhibited binding between HSP90α CTD
and its co-chaperone peptidylprolyl isomerase D (PPID) to a
greater extent than geldanamycin and novobiocin, a well-
characterized C-terminal HSP90 inhibitor (Fig. 2F).

NCT-58 kills trastuzumab-resistant cells and suppresses HER
family members
We further evaluated the impact of NCT-58 on trastuzumab
resistance using JIMT-1 and MDA-MB-453 cells, which are
trastuzumab-resistant cell lines. NCT-58 treatment (0.1–20 μM,
72 h) significantly suppressed the viability of JIMT-1 and MDA-MB-
453 cells in a dose-dependent manner (Fig. 3A). NCT-58 (10 μM)
elicited apoptotic morphological changes with cytosolic shrinkage
(Fig. 3B), while flow cytometry analysis revealed that NCT-58
caused a marked increase in the sub-G1 population (Fig. 3C) and
early/late apoptosis (Fig. 3D) in JIMT-1 cells. These responses were
associated with increased caspase-3/-7 activation and down-
regulation of PARP and survivin in JIMT-1 cells (Fig. 3E and
Supplementary Fig. S3). Following exposure to NCT-58, the
expression and phosphorylation of HER2/HER3/EGFR were sig-
nificantly reduced in trastuzumab-resistant JIMT-1 cells (Fig. 3G
and Supplementary Fig. S4), but without upregulation of HSP70
and HSP90 (Fig. 3F and Supplementary Fig. S5).
The Ras/Raf/mitogen-activated protein kinase pathway

(MAPK) signaling cascade is activated by dimerization of HER
family members and plays a crucial role in various aspects of
breast cancer progression including the cell cycle, proliferation,
apoptosis, and angiogenesis [11, 30]. Furthermore, Ras, Raf, Mek,
and Erk are client proteins of HSP90, and their expression and

activation are also controlled by HSP90 [31]. We observed that
NCT-58 significantly impaired their expression as well as the
phosphorylation of Ras, Raf (Ser338), Mek (Ser217/221) and Erk
(Tyr202/204) in JIMT-1 cells (Fig. 3H and Supplementary Fig. S6).
It is noteworthy that NCT-58 exposure effectively reduced the

levels of truncated p95HER2 and its phosphorylated form, as well
as downregulation of Akt and phospho-Akt (Ser473) protein
contents in JIMT-1 (Fig. 3G and Supplementary Fig. S4). We
further confirmed this phenomenon in p95HER2-overexpressing
MDA-MB-231, a typical triple-negative breast cancer (TNBC) cell
line (Fig. 3I). HER2-overexpressing cells expressed both ECD- and
ICD-HER2, whereas p95HER2-overexpressing cells specifically
expressed ICD-HER2 (Fig. 3J). Following NCT-58 treatment,
p95HER2 expression and phosphorylation was dramatically
reduced in the p95HER2-overexpressing MDA-MB-231 cells, and
levels of Akt and p-Akt were also significantly reduced (Fig. 3K
and Supplementary Fig. S7).

NCT-58 eradicates HER2-positive BCSCs without triggering the
HSR
HSF-1 plays a major role in the maintenance of BCSC-like
properties [32]. ALDH1-positive or –negative cells were sorted
from HER2-positive BT474 and JIMT-1 cell populations, respec-
tively, and the levels of HSR-related factors were examined (Fig. 4A
and Supplementary Fig. S8A). In agreement with previous findings
[33], HER2 was preferentially overexpressed in the ALDH1-positive
population (Fig. 4B and Supplementary Fig. S8B). Immunocyto-
chemistry analysis and intensity profiling revealed that HSF-1 is
highly elevated and accumulates in the nucleus of ALDH1-positive
cells, whereas ALDH1-negative cells exhibit comparatively lower
levels of HSF-1 (Fig. 4C and Supplementary Fig. S8C). Considerable
overexpression of HSP70 was found in ALDH1-positive cells,
implying that abundant HSF-1 likely enhances the transcription of
HSP70 in the BCSC subpopulation (Fig. 4D and Supplementary
Fig. S8D).
Mammospheres are enriched in mammary stem/progenitor

populations that possess self-renewal and differentiation
potential, as well as higher ALDH1 activity [21, 34]. The
mammosphere-forming ability of BT474 and JIMT-1 was
diminished in the presence of NCT-58 (Fig. 4E). It is noteworthy
that HSF-1 protein content was significantly upregulated in
BCSC-enriched mammospheres and this effect was consider-
ably downregulated by NCT-58 treatment. NCT-58 also sig-
nificantly downregulated HSP70 and HSP90 protein content
(Fig. 4F). Levels of the pluripotent transcription factors Nanog,
Oct4, and Sox2 as well as ALDH1 were markedly diminished in
the presence of NCT-58 (Fig. 4G).
After exposure to NCT-58, a dose-dependent reduction in

Aldefluor-positive cells was observed in both trastuzumab-
sensitive BT474 and -resistant JIMT-1 cells (Fig. 4H), together with
marked reductions in the JIMT-1 CD44high/CD24low population
(Fig. 4I). It is noteworthy that formation of mammospheres derived
from trastuzumab-resistant xenograft tumor was significantly
suppressed by NCT-58 treatment (Fig. 4J, K)

Fig. 2 NCT-58 targets the C-terminal domain of HSP90 and downregulates HER2, HER3, and EGFR expression. A Immunoblot analyses of
HER2, phospho-HER2 (Tyr1221/1222), EGFR, phospho-EGFR (Tyr1068), HER3, phospho-HER3 (Tyr1289), HSP70, and HSP90 protein expression
in BT474 and SKBR3 cells following exposure to NCT-58 (0–10 μM, 72 h). GAPDH was used as a loading control. B Quantitative graphs
represent the ratio of expression of HER2 family members, HSP70 and HSP90 relative to GAPDH expression in the presence or absence of NCT-
58 (*p < 0.05; **p < 0.01; ***p < 0.001, n= 3). C–E Comparison of the effects of NCT-58 and geldanamycin on induction of HSR. SKBR3 cells were
treated with NCT-58 (300 nM and 10 µM) or geldanamycin (300 nM) for 24 h. Cells were immunostained for HSF-1 (green, C), HSP70 (red, D) or
HSP90 (red, E) with DAPI (nuclei, blue). Fluorescence intensity of these proteins is represented in arbitrary units as defined by the software
using the intensity profile tool. F Potency of C-terminal HSP90 inhibition (novobiocin, geldanamycin, and NCT-58) was determined with an
HSP90α (C-terminal) inhibitor screening assay. The inhibitory effect of each drug (500 μM) on recombinant HSP90α (C-terminal):PPID binding
activity was measured with an AlphaScreen microplate assay (***p < 0.001, CTL vs NCT-58 or Novo; ##p < 0.01, Novo vs NCT-58, n= 3). CTL
control, Novo novobiocin, Gelda geldanamycin, PPID peptidylprolyl isomerase D.
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NCT-58 administration suppresses trastuzumab-resistant
tumor growth
To confirm the physiological relevance of our in vitro
observations, we evaluated the impact of NCT-58 on tumor
angiogenesis, expression of BCSC makers and tumor growth
in a trastuzumab-resistant xenograft model. JIMT-1 cells

(3 × 106) were orthotopically injected into the right fourth
mammary fat pads of BALB/c female nude mice (n = 6, each
group). The mice were treated with NCT-58 (30 mg/kg body
weight, every other day) or vehicle control (1:9, DMSO:corn
oil). NCT-58 administration caused a significant impediment
of tumor growth (Fig. 5A) and a marked decrease in tumor
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weight (Fig. 5B). There were no significant differences in
body weight between the groups (Fig. 5C). No histological
abnormalities were observed in the lungs, liver, and kidneys
after administration of NCT-58 (Fig. 5D). To examine the
potential organ toxicity of NCT-58, aspartate aminotransfer-
ase (AST), alanine aminotransferase (ALT) and blood urea
nitrogen (BUN) assays were performed with serum samples
from the animals. No significant changes were found
between the control and treatment groups, suggesting that
the inhibitor does not overtly affect liver or kidney function
(Fig. 5E).
The antitumor effect of NCT-58 was observed concurrently with

a marked reduction in Ki-67-positive cells (Fig. 5F) and a significant
increase in apoptosis as detected by TUNEL-positivity (Fig. 5G). To
further evaluate the effect of NCT-58 on tumor angiogenesis, a
microvessel density (MVD) assay was performed using the
endothelial-specific marker CD31 [35]. NCT-58 administration
significantly reduced the number of CD31-positive vessels in both
peritumoral and intratumoral areas (Fig. 5H). Consistent with
in vitro observations, NCT-58 administration significantly sup-
pressed the expression of both ICD-HER2 (Fig. 5I) and full-length
HER2 (Fig. 5J).

Anti-tumor effect of NCT-58 is accompanied by the
suppression of BCSC-like characteristics and downregulation
of HSF-1/HSP70/HSP90
The cell surface glycoprotein CD44, as a marker of trastuzumab
resistance [11, 18], is highly expressed in the plasma membrane of
JIMT-1 control tumor cells. Animals receiving NCT-58 exhibited a
noticeably lower level of CD44 in vivo (Fig. 6A). Furthermore,
ALDH1 expression was also significantly different between the
groups (Fig. 6B).
HSF-1 activity was suppressed after NCT-58 treatment, as

evidenced by a significant decrease in the signal intensity of
nuclear HSF-1 (Fig. 6C) as well as downregulation of its
downstream client proteins HSP70 (Fig. 6D) and HSP90 (Fig. 6E).

DISCUSSION
HSP90 orchestrates the activation and stability of more than 200
potential client oncoproteins [1]. However, N-terminal inhibitors of
this target have been shown to induce the HSR, representing a
considerable obstacle in clinical development [26, 27].
The master transcriptional determinant HSF-1 plays a pleio-

tropic role not only in regulating the HSR, but also during
tumorigenesis, tumor cell migration, and metastasis [36–38].
Clinical evidence has shown significant associations between
HSF-1 and HER2 in HER2-positive breast cancer, while higher levels
of nuclear HSF-1 are correlated with histologic grade, larger tumor
sizes and reduced survival [39]. HSF-1 in HER2/Neu+ transgenic
mice also stimulates tumorigenesis in the mammary glands, and
metastasis via the promotion of epithelial to mesenchymal
transition (EMT) [38]. Activated HSF-1 translocates to the nucleus

to promote the transcription of HSPs during oncogenesis,
facilitating rapid tumor cell proliferation [40]. Meanwhile, HSP70
hinders the apoptosis pathway by interfering with the release of
cytochrome c, inhibiting apoptosome complex formation and
caspase activation [41].
Treatment with NCT-58 did not induce the HSR, as evidenced by

the absence of nuclear accumulation of HSF-1 and upregulation of
HSP70 expression in HER2-positive breast cancer cells. NCT-58
significantly increased apoptosis via caspase-3/caspase-7 activa-
tion, but elicited no such toxicity in non-malignant cells. Our
in vivo findings show that NCT-58 administration suppresses
tumor growth, concomitant with increased apoptosis and
simultaneous downregulation of HSF-1/HSP70/HSP90. Meanwhile,
no histological changes were seen in liver and kidney tissue
sections.
Evidence suggests that trastuzumab resistance can be attribu-

table to the existence of a subpopulation of BCSCs in HER2-
positive breast cancers [42, 43]. The CD44/hyaluronan complex
masks the cognate epitope, interfering with trastuzumab binding
to HER2, and leading to PI3K/Akt activation and trastuzumab
resistance [11, 18]. We have previously found that trastuzumab-
sensitive cell lines harbor limited numbers of CD44high/CD24low

cells at less than 1% [44], whereas trastuzumab-resistant JIMT-
1 cells harbor considerably higher numbers at more than 50%,
suggesting that the CD44high/CD24low phenotype is a marker of
trastuzumab resistance. Trastuzumab-resistant JIMT-1 cells when
treated with NCT-58 exhibited a noticeable reduction in the
CD44high/CD24low population and ALDH1 activity, as well as
suppression of mammosphere formation. HSP90 physically inter-
acts with Nanog and Oct4, protecting them from ubiquitin-
mediated proteasomal degradation, implying that HSP90 may
contribute to BCSC self-renewal [24, 45, 46]. Elevated levels of
Nanog, Oct4, and SOX2 in BCSC-enriched mammospheres were
overwhelmingly abolished after NCT-58 challenge.
Emerging evidence suggests that HSF-1 plays a pivotal role in

regulating the BCSC phenotype [32, 45]. The BCSC-enriched
population exhibited relatively higher levels of HSF-1 in both
mammospheres and ADLH1-positive cells. Highly abundant HSF-1
is believed to enhance the expression of HSPs such as HSP70 and
HSP90 via HSF-1-mediated transcription, which can promote BCSC
survival. In agreement with our observations, forced overexpres-
sion of HSF-1 increased mammosphere-forming ability as well as
CD44, Sox2 and ALDH1 expression, and conferred drug resistance
in breast cancer, while HSF-1 knockdown attenuated these
phenomena [32, 47]. Further defining the role of HSF-1 in
regulating the BCSC phenotype will likely provide important clues
into developing effective CSC-targeted therapeutic strategies.
The emergence of acquired trastuzumab resistance remains an

urgent unmet medical need. Oncogenic p95HER2 retains tyrosine
kinase activity and interacts with HER3, enhancing activation of
Akt signaling and tumor cell survival [11, 12, 48]. Akt directly
interacts with and phosphorylates HSF-1 at S326, which confers
HSF-1 activation, leading to EMT via Slug upregulation [38, 49, 50].

Fig. 3 NCT-58 induces apoptosis and inhibits tyrosine kinase activity of HER2 in trastuzumab-resistant cells. A NCT-58 (0.1–20 μM)
reduced cell viability in trastuzumab-resistant JIMT-1 and MDA-MB-453 cells (***p < 0.001, n= 4). B Morphological changes in these cells as
seen through phase-contrast microscopy in the presence or absence of NCT-58 (10 μM, 72 h). C, D NCT-58 treatment (2–10 μM, 72 h) resulted
in a significant induction of apoptosis in JIMT-1 cells, as evidenced by increased sub-G1 accumulation (C, ***p < 0.001, n= 3) and annexin V/PI-
positive cells (D, ***p < 0.001, n= 3). E Effects of NCT-58 (2–10 μM, 72 h) on expression of PARP, cleaved-PARP, cleaved-caspase-3, cleaved-
caspase-7, and survivin in JIMT-1 cells. F Influence of NCT-58 (2–10 μM, 72 h) on protein contents of HSP70 and HSP90 in JIMT-1 cells.
G Immunoblot analyses of HER2, phospho-HER2, p95HER2, phospho-p95HER2, EGFR, phospho-EGFR, HER3, phospho-HER3, Akt and phospho-
Akt (Ser473) expression in JIMT-1 cells following exposure to NCT-58 (2–10 μM, 72 h). H Effects of NCT-58 (2–10 μM, 72 h) on Ras, Raf, phospho-
Raf, Mek, phospho-Mek, Erk, and phospho-Erk protein expression in JIMT-1 cells. I Immunoblot analyses of HER2, p95HER, phospho-HER2, and
phospho-p95HER2 in both HER2- and p95HER2-overexpressing MDA-MB-231 cells. J Immunofluorescence analysis of HER2 and p95HER2. Cells
were immunostained with ECD-HER2 (green) or ICD-HER2 (green, CB11) antibody and counterstained with DAPI (blue). Vimentin (red) was
stained to demonstrate cellular features in MDA-MB-231 cells. K The levels of p95HER2, phospho-p95HER2, Akt, and phospho-Akt were
downregulated in p95HER2-overexpressing MDA-MB-231 cells after exposure to NCT-58 (2–10 μM, 72 h).
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Importantly, NCT-58 downregulates the levels of truncated
p95HER2 and Akt levels and phosphorylation in trastuzumab-
resistant HER2-positive cells, an effect also seen in p95HER2-
overexpressing MDA-MB-231 cells. It is conceivable that Akt
downregulation by NCT-58 may attenuate the transcriptional
ability of HSF-1, resulting in downregulation of HSP70/HSP90.

In conclusion, NCT-58 does not induce the HSR as targeting of
the C-terminal region is not accompanied by HSF-1-mediated
HSP70 and HSP90 upregulation that occurs when targeting the
N-terminus [27]. NCT-58 suppresses HER2-positive breast cancer
cells with simultaneous inhibition of important trastuzumab
resistance factors including HER2/HER3/Akt and truncated
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p95HER2 as well as downregulation of Ras/Raf/Mek/Erk. In Fig. 7,
we present a hypothetical model illustrating several key actions of
NCT-58 on cancer stem-like properties, HER2 signaling, and
trastuzumab resistance in HER2-positive breast cancer. Our
findings support rationale for further investigation of NCT-58 as
a new therapeutic approach for trastuzumab-resistant HER2-
positive breast cancers.

MATERIALS AND METHODS
Reagents and antibodies
The synthesis of NCT-58 has been described previously [29]. Primary
antibodies targeted Ki-67, CD31, ALDH1 and CD44 (Abcam, MA); HER2,
phospho-HER2 (Tyr1221/1222), HER3, phospho-HER3 (Tyr1289), EGFR,
phospho-EGFR, Akt, phospho-Akt (Ser473), PARP, cleaved-PARP, cleaved-
caspase-3, cleaved-caspase-7, vimentin, Nanog, Oct4, Sox2, Ras, Raf
(Ser338), phospho-Raf, Mek, phospho-Mek (Ser217/221), Erk and
phospho-Erk (Tyr202/204) (Cell Signaling, CA); CB11 (Thermo Fisher
Scientific Fremont, CA); anti-intracellular domain (ICD) HER2 clone 4B5
(Ventana Medical Systems, AZ); survivin, HSP70, HSP90, and HSF-1 (Santa
Cruz Biotechnology, CA); and GAPDH (Invitrogen, CA). Secondary
antibodies were HRP-conjugated anti-rabbit and mouse IgG (Bio-Rad
Laboratories, CA) and Alexa Fluor-488 and −594 goat anti-rabbit IgG
(Invitrogen).

Breast cancer cell culture
The human breast cancer cell lines BT474, SKBR3, MDA-MB-453
(American Type Culture Collection, ATCC), JIMT-1 (DSMZ GmbH,
Germany), and MDA-MB-231 (PerkinElmer, Inc., CT) were cultured in
DMEM, RPMI 1640 or MEM (Gibco, MD) containing 10% fetal bovine
serum (FBS) and penicillin-streptomycin (100 U/mL). The normal human
mammary epithelial cell line MCF10A (ATCC) was cultured in Mammary
Epithelial Cell Growth Medium (MEGM), including hEGF, insulin,
hydrocortisone, and bovine pituitary extract (SingleQuotsTM Kit, Lonza,
CA) with streptomycin-penicillin (100 U/mL). Cells were incubated at
37 °C in an atmosphere of 5% CO2.

Stable HER2 and p95HER2 overexpression in MDA-MB-231
cells
HER2- and p95HER2-overexpressing MDA-MB-231 cells were generated
using a lentiviral system, as previously described [51, 52]. Briefly, the HER2
or p95HER2 gene was amplified by PCR [51, 52] and then inserted into a
dual promoter lentivector (CD550A-1, System Biosciences, USA). After
transfection, puromycin (final concentration, 3 μg/mL) selection was
performed and single colonies were isolated from a dish.

Cell viability assay
Cell viability was measured using the CellTiter 96* Aqueous One Solution
Cell Proliferation Assay [MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-
methoxyphenyl)−2-(4-sulfophenyl)−2H-tetrazolium] (Promega, WI), as
previously described [53].

Cell cycle analysis and Annexin V/PI assay
Cells were harvested and fixed with 95% ethanol containing 0.5% Tween-
20 for 24 h, and incubated with propidium iodide (PI, 50 mg/mL) and
RNase (50 mg/mL) for 30min. For the Annexin V/PI assay, a FITC-
conjugated Annexin V apoptosis detection kit (BD Biosciences, Franklin
Lakes, NJ) was used according to the manufacturer’s protocol. Stained cells
were analyzed by flow cytometry using BD LSRFortessaTM X-20 Cell
Analyzer (BD Biosciences).

Aldefluor-positivity assay and CD44/CD24 staining
ALDH1 activity was determined using an Aldefluor assay kit (Stemcell
Technologies, Vancouver, BC), as previously described [43]. Diethylamino-
benzaldehyde (DEAB) was used to define the Aldefluor-positive popula-
tion. For CD44/CD24 staining, cells were stained with FITC- and
PE-conjugated anti-mouse IgG or FITC-conjugated anti-CD24 and PE-
conjugated anti-CD44 antibodies (BD Biosciences) and analyzed with a BD
LSRFortessa™ X-20 Cell Analyzer.

HSP90α (C-Terminal) inhibitor screening assay
An HSP90α (C-Terminal) Inhibitor Screening Assay Kit (BPS Bioscience, CA)
was used to assess recombinant C-terminal domain of HSP90α:PPID
binding activity, as previously described [51]. All assays were performed
with an Optiplate-384 (PerkinElmer) and measured using an AlphaScreen®
microplate reader (Varioskan LUX™, Thermo Fisher Scientific, Rockford, IL).

Western blot analysis
The procedures were performed as previously described [54]. Primary
antibody dilutions were as follows: HER2 (1:5000), phospho-HER2 (1:1000),
HER3 (1:2000), phospho-HER3 (1:2000), EGFR (1:2000), phospho-EGFR
(1:2000), Akt (1:2000), phospho-Akt (1:2000), Ras (1:3000), Raf (1:1000),
phospho-Raf (1:500), Mek (1:2000), phospho-Mek (1: 1000), Erk (1:2000),
phospho-Erk (1:2000), survivin (1:2000), PARP (1:2000), cleaved-PARP
(1:2000), cleaved-caspase-3 (1:2000), cleaved-caspase-7 (1:2000), HSF-1
(1:2000), HSP70 (1:3000), HSP90 (1:3000), ALDH1 (1:2000), Nanog (1:2000),
Oct4 (1:2000), Sox2 (1:2000) or GAPDH (1:3000), followed by incubated
with HRP-conjugated rabbit or mouse secondary antibodies
(1:3000–1:10,000). Signal intensity was detected using a Chemilumines-
cence Kit (Thermo Fisher Scientific) on X-ray film (Agfa Healthcare, Mortsel,
Belgium) and quantitated using AlphaEaseFC software (Alpha Innotech,
San Leandro, CA).

Immunocytochemistry
The procedures were performed as previously described [55]. Primary
antibodies ALDH1 (1:100), HSP90 (1:300), HSP70 (1:100), HSF-1 (1:100), HER2
(1:100), vimentin (1:200) or ICD-HER2 (1:100) in antibody diluent (Dako,
Glostrup, Denmark) were incubated overnight at 4 °C and then reacted with
fluorescence-conjugated secondary antibody (Alexa Fluor®-594 or −488).
Cells were mounted with ProLong Gold Antifade Reagent with DAPI (Life
Technologies, CA). Images were acquired using a Carl Zeiss confocal
microscope and fluorescence intensity of HSP90, HSP70, HSF-1 or HER2 was
analyzed by confocal microscopy using the intensity profiling tool.

Fig. 4 NCT-58 targets HER2-positive BCSC-like properties. A–D ALDH1 low (ALDH1-) and high (ALDH1+) populations were sorted from
BT474 cells using FACS. Cells were immunostained for ALDH1 (green, A), HER2 (green, B), HSF-1 (green, C) and HSP70 (red, D) with DAPI (blue).
Intensity was analyzed by confocal microscopy using the intensity profiling tool. The straight line (white dotted line) indicates 100 intensity
units (y-axis on the left, a range scale 0–260 unit). E Effect of NCT-58 on mammosphere formation by BT474 and JIMT-1 cells. Cells (5 × 104

cells/mL) were cultured in ultralow attachment plates in the presence or absence of NCT-58 (5 and 10 μM) for 3 and 7 days, respectively. The
number and volume of mammospheres was quantified by optical microscopy (*p < 0.05; ***p < 0.001, n= 3). F–G BT474 cells were cultured in
normal culture medium or serum-free suspension conditions in the presence or absence of NCT-58 (10 μM) for 3 days. F Changes in HSF-1,
HSP70, and HSP90 levels as determined by immunoblotting. Quantitation of these protein levels is shown in the right panels [*p < 0.05; **p <
0.01; ***p < 0.001, adherent cells (Ad.) vs mammospheres (Mammo.); #p < 0.05, DMSO control vs NCT-58 treatment in mammospheres, n= 3].
G Expression levels of ALDH1, Nanog, Oct4, and Sox2 as detected by immunoblotting. Quantitation of the expression of these proteins is
shown [***p < 0.001, Ad. vs Mammo.; #p < 0.05; ##p < 0.01, DMSO control vs NCT-58 treatment in mammospheres, n= 3]. GAPDH was used as
an internal loading control. H, I Influence of NCT-58 (2–10 µM, for 72 h) on ALDH1 activity in BT474 and JIMT-1 cells and CD44high/CD24low

stem-like phenotypes in JIMT-1 cells. Quantitative graph of percentages of Aldefluor-positivity (H, ***p < 0.001, n= 3) or CD44high/CD24low

populations (I, ***p < 0.001, n= 3) are shown, respectively. J, K Impact of NCT-58 on mammosphere formation in a JIMT-1 xenograft model.
Dissociated single cells (5 × 104 cells/mL) from xenograft tumors (200–250mm3) were plated in ultralow attachment dishes and cultured in the
presence or absence of NCT-58 (5 and 10 μM) for 8 days. The number and volume of mammospheres was quantified (**p < 0.01; ***p < 0.001,
n= 3). The results are presented as mean ± SD of at least three independent experiments and analyzed by one-way ANOVA followed by
Bonferroni’s post hoc test.
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Cell sorting and cytological centrifugation
BT474 and JIMT-1 cells were incubated for 45min at 37 °C in Aldefluor assay
buffer containing the ALDH protein substrate BODIPY-aminoacetaldehyde
(BAAA). Aldefluor-positive (ALDH1+) or -negative (ALDH1−) populations were
sorted by FACSMelody cell sorters (BD Bioscience). For immunocytochemistry,
the sorted cells (2.4 × 104) were attached to a glass slide by cytospin
centrifugation (Hanil Science; Daejeon, Korea), fixed with 4% paraformalde-
hyde, washed with PBS, and permeabilized with 0.02% Triton X-100 for
10min. The cells were incubated with the primary antibody [ALDH1 (1:100),
HER2 (1:100), HSF-1 (1:100) or HSP70 (1:100)] in antibody diluent at 4 °C
overnight and then reacted with Alexa Fluor® 488- or 594-conjugated

secondary antibodies at RT for 2 h. Cells were mounted with DAPI, and images
were acquired using a Carl Zeiss confocal microscope.

Mammosphere formation assay in vitro
BT474 (5 × 104/mL) and JIMT-1 (5 × 104/mL) cells were plated in ultralow
attachment dishes and cultured in HuMEC basal serum-free medium (Gibco),
supplemented with B27 (1:50, Invitrogen), 20 ng/mL basic fibroblast growth
factor (bFGF, Sigma), 20 ng/mL human epidermal growth factor (EGF, Sigma),
4 μg /mL heparin, 1% antibiotic-antimycotic, and 15 μg/mL gentamycin at
37 °C in an atmosphere of 5% CO2. The number and volume of the
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mammospheres were determined under an Olympus CKX53 inverted
microscope. The volumes of mammospheres were calculated using the
formula Volume= 4/3*3.14(π) * r3 (r: radius).

In vivo xenograft and mammosphere formation assays
All animal procedures were conducted in accordance with the Guide for
the Care and Use of Laboratory Animals, approved by the Korea University
Institutional Animal Care and Use Committee (IACUC, KOREA-2018-

0135). Five-week-old female BALB/c nude mice were obtained from the
Shizuoka Laboratory Animal Center (Shizuoka, Japan) and housed in a
specific pathogen-free environment. JIMT-1 cells (3 × 106) were
implanted into the right fourth mammary fat pads of 6-week-old
BALB/c nude female mice. When average tumor volumes reached
100 mm3, the animals were randomized into 2 groups (n= 6/each
group), solvent control (DMSO/Corn oil, 1:9) or NCT-58 (30 mg/kg BW)
was administered intraperitoneally every other day for 47 days. Tumor

Fig. 5 NCT-58 inhibits tumor growth in trastuzumab-resistant JIMT-1 xenografts. A–C Effect of NCT-58 on tumor growth in vivo. JIMT-1
cells (3 × 106) were injected into the mammary fat pads of BALB/c nude mice. Mice were administered intraperitoneally with NCT-58 (30mg/
kg·BW, every other day) or solvent control for 47 days (n= 6/each group). Tumor volumes were measured with a caliper at the intervals
indicated. A, B NCT-58 administration resulted in significant decreases in tumor growth (A, ***p < 0.001, n= 6) and tumor weight (B, *p < 0.05,
n= 6). C Changes in body weight of the xenografted mice after exposure to NCT-58 or control vehicle (NS; not significant, n= 6).
D Representative histological analysis of lung, liver, and kidney sections stained with hematoxylin and eosin (H&E) and analyzed by
microscope slide scanner. E Effects of NCT-58 on serum biochemical parameters of liver and kidney function. Blood biochemical analysis
indicated there was no significant change in serum ALT, AST, BUN (NS; not significant). ALT, alanine aminotransferase; AST, aspartate
aminotransferase; BUN, blood urea nitrogen. F Influence of NCT-58 on Ki-67 expression. Tumor tissue sections were immunostained for Ki-67
(red) and DAPI (blue). The graph shows the percentage of Ki-67-positive cells (***p < 0.001, n= 6). G NCT-58-induced apoptosis was
determined by TUNEL assay. Extent of apoptosis expressed as the percentage of total TUNEL-positive cells (***p < 0.001, n= 6). H Effect of
NCT-58 on tumor angiogenesis, as determined by a microvessel density (MVD) assay. Tumor tissues were immunostained with a specific
endothelial marker CD31 (red) and DAPI (blue). The number of CD31-positive microvessels in the intratumoral and peritumoral areas were
quantified, respectively (**p < 0.01; ***p < 0.001, n= 6). I, J Immunohistochemical analysis for the intracellular domain (ICD)-HER2 (green, I) and
full-length HER2 (green, J) in vivo. Quantitative graphs of signal intensities shown in the right panels (***p < 0.001, n= 6). The results are
presented as mean ± SD and data were analyzed by unpaired Student’s t-test and two-way ANOVA followed by Bonferroni’s post hoc test.

Fig. 6 NCT-58 suppresses BCSC-like properties and downregulates the expression of HSF-1, HSP70, and HSP90 in vivo. A, B Following
exposure to NCT-58, CD44 and ALDH1 expression levels were markedly downregulated in JIMT-1 xenograft tumors. The fluorescence
intensities of CD44 (A, ***p < 0.001, n= 6) and ALDH1 (B, ***p < 0.001, n= 6) were analyzed using a histogram tool. C–E Effect of NCT-58 on
induction of the HSR in vivo. C NCT-58 administration resulted in a decrease in nuclear expression of HSF-1 (green). Fluorescence intensity of
HSF-1 localized in the nuclei is represented in arbitrary units as defined by the software using the intensity profile tool. D, E NCT-58
downregulated both HSP70 and HSP90 expression. Quantitative graphs of fluorescence intensities of HSP70 (D, **p < 0.01, n= 6) and HSP90
(E, ***p < 0.001, n= 6) signal, shown in the bottom panels, respectively. Tumors were harvested within 24 h of the last administration of NCT-
58 for immunohistochemistry assessment. Data were analyzed by unpaired Student’s t-test.
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volumes were measured twice weekly after the initial treatment and
calculated using the formula V= (Length × Width2)/2.
For the in vivo mammosphere-forming assay, tumors were harvested

when volumes reached 200–250 mm3 and dissociated with type III
collagenase (2 mg/mL). The digested tissues were filtered through a
40 mm cell strainer, centrifuged at 200 × g for 5 min and washed with
medium containing 0.2% bovine serum albumin (BSA). Dissociated
single cells (5 × 104) were plated in ultralow attachment dishes and
cultured in the presence or absence of NCT-58 (5 and 10 µM) for 8 days.

Serum biochemistry profiles for biomarkers of liver and renal
injury
At sacrifice, blood samples from each animal were collected, and serum
enzyme activities of aspartate aminotransferase (AST), alanine aminotransfer-
ase (ALT), and blood urea nitrogen (BUN) levels were determined with an
assay kit following the manufacturer’s protocol (Sigma-Aldrich).

Immunohistochemistry and in situ localization of apoptosis
(TUNEL)
Immunohistochemistry analysis was performed as previously described
[44]. Tissue sections were incubated with primary antibodies [Ki-67 (1:100),
CD31 (1:100), HER2 (1:100), 4B5 (1:100), CD44 (1:100), ALDH1 (1:100), HSF-1
(1:100), HSP70 (1: 100) or HSP90 (1:300)] in antibody-diluent overnight at
4 °C, and then reacted with Alexa Fluor® 488- or 594-conjugated secondary
antibodies at RT for 2 h, followed by ProLong gold antifade reagent with
DAPI (Life Technologies). In situ TUNEL was carried out on tissue sections
using a TUNEL kit (Roche Applied Sciences, Penzberg, GER). All images
were taken with a confocal microscope. The fluorescence intensities of
HER2, ICD-HER2, CD44, ALDH1, HSF-1, HSP70, or HSP90 were analyzed
using a histogram tool in the Carl Zeiss software package.

Statistical analysis
All data were analyzed using GraphPad Prism 5.0 statistical software
(San Diego, CA). The results are presented as mean ± SD of at least three
independent experiments. Data were analyzed by student’s t-test, and
one- or two-way ANOVA as appropriate. Significance between multiple
experimental groups was determined using the Bonferroni post hoc test
and defined at p < 0.05.
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