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Lnc-PFAR facilitates autophagy and exacerbates pancreatic
fibrosis by reducing pre-miR-141 maturation in chronic
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Chronic pancreatitis (CP) is described as progressive inflammatory fibrosis of pancreas, accompanied with irreversible impaired
endocrine and exocrine insufficiency. Pancreatic stellate cells (PSCs) are widely distributed in the stroma of the pancreas and PSCs
activation has been shown as one of the leading causes for pancreatic fibrosis. Our previous study has revealed that autophagy is
dramatically activated in CP tissues, which facilitates PSCs activation and pancreatic fibrosis. Long non-coding RNAs (LncRNAs) have
been recognized as crucial regulators for fibrosis-related diseases. LncRNAs interact with RNA binding protein or construct
competitive endogenous RNA (ceRNA) hypothesis which elicited the fibrotic processes. Until now, the effects of lncRNAs on PSCs
activation and pancreatic fibrosis have not been clearly explored. In this study, a novel lncRNA named Lnc-PFAR was found highly
expressed in mouse and human CP tissues. Our data revealed that Lnc-PFAR facilitates PSCs activation and pancreatic fibrosis via
RB1CC1-induced autophagy. Lnc-PFAR reduces miR-141 expression by suppressing pre-miR-141 maturation, which eventually
upregulates the RB1CC1 and fibrosis-related indicators expression. Meanwhile, Lnc-PFAR enhanced PSCs activation and pancreatic
fibrosis through trigging autophagy. Our study interrogates a novel lncRNA-induced mechanism in promoting the development of
pancreatic fibrosis, and Lnc-PFAR is suggested to be a prospective therapeutic target in clinical scenarios.
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INTRODUCTION
Chronic pancreatitis (CP) is recognized as a pancreatic inflamma-
tory disease, which is induced by genetic, environmental, alcohol,
and other factors. Its pathological features include pancreatic
acinar atrophy, destruction, interstitial fibrosis and eventually lead
to endocrine and exocrine insufficiency of the pancreas [1–4]. The
incidence of CP is 9.62/100,000 and the mortality rate is 9/
10,000,000 [5]. Currently, no effective treatment has been shown
to halt the pancreatic fibrotic process [6]. The pancreatic stellate
cells (PSCs) are suggested as a critical component in the
exacerbation of pancreatic fibrosis [7]. In the normal pancreas,
PSCs are quietly localized in the area surrounding the acinus,
showing droplets containing retinol and a small amount of
extracellular matrix (ECM) proteins [8]. PSCs could be activated by
inflammation, alcohol, trauma and are transformed into a
myofibroblast-like phenotype, which are recognized by highly
expressed alpha-smooth muscle actin (α-SMA), the presence of
various growth factors (epidermal growth factor, vascular
endothelial growth factor), cytokines (IL-6, IL-8, TGF-β) and a large
number of ECM proteins [9]. Increased production of the ECM
proteins fibronectin, periostin, matrix metalloproteinases (MMPs),
and tissue inhibitors of matrix metalloproteinases (TIMPs) are the

most common features exhibited by the activated PSCs pheno-
type. Hence, PSCs were described as the effector cells contributing
to the stroma associated with CP [10]. The activated PSCs exhibit
higher proliferation and migration capabilities, and participate in
pancreatic fibrosis through improving energetic metabolism, cell
death, and oxidative stress [11].
Autophagy is a conservative catabolic process that is involved in

many physiological processes [12, 13]. During autophagy,
cytoplasmic constituents are dissolved by lysosomal proteases,
releasing amino acids, fatty acids, and glucose, which are the main
metabolic substrates. In addition, autophagy helps to remove
damaged organelles and cytoplasmic aggregates, thereby alle-
viate cell stress and maintain homeostasis [14, 15]. Several studies
have demonstrated that autophagy could facilitate PSCs activation
and pancreatic fibrogenesis. Sho Edno et al. reported that
autophagy is required for PSCs activation, which promotes
pancreatic cancer growth and metastasis by tumor-stromal
interactions [8]. In addition, Li et al. revealed that hypoxia reduces
stromal lumican and promotes tumor progression in pancreatic
adenocarcinoma through autophagy-mediated degradation and
reduction in protein synthesis within activated PSCs [16]. However,
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Fig. 1 Lnc-PFAR was verified as a novel lncRNA in PSCs activation. A, B The heatmap and volcano plots showed that 189 genes were
changed in activated PSCs compared with quiescent PSCs (fold change ≥ 2 or ≤ 0.5, p ≤ 0.05). C, D The expressions of Lnc-PFAR were compared
in TGF-β-treated PSCs in combination with Lnc-PFAR downregulation or upregulation. E, F The expression levels of α-SMA, Collagen I, Collagen
III, and Fibronectin were tested in PSCs in which Lnc-PFAR is downregulated or upregulated. The relative expression represents the ratio of
target to GAPDH. G, H The α-SMA expressions were explored in PSCs of quiescent, TGF-β-treated, sh-Lnc-PFAR, sh-Lnc-PFAR plus TGF-β, Lnc-
PFAR-upregulated, and Lnc-PFAR plus TGF-β groups via immunofluorescence staining (bars, 500 μm). The results are representative of three
independent experiments (*p < 0.05 and **p < 0.01).
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Fig. 2 Lnc-PFAR inhibited miR-141-5p to promote PSCs activation. A, B The differentially expressed miRNAs in normal pancreas and CP
tissues were identified from the GEO dataset (GSE24279). C The relative expression levels of miR-141 in normal pancreas and CP tissues in
GSE24279. D The expression levels of miR-141 in 16 pairs of normal pancreas and CP tissues. E, F The expression levels of miR-141-5P were
explored in PSCs of quiescent, TGF-β-treated, sh-Lnc-PFAR, sh-lnc-PFAR plus TGF-β, Lnc-PFAR, and Lnc-PFAR plus TGF-β groups. G–J The
expressions of α-SMA, Collagen I, Collagen III, and Fibronectin were examined in PSCs of quiescent, TGF-β-treated, miR-141-5P mimic-treated,
miR-141-5P mimic-treated plus TGF-β groups, miR-141-5P inhibitor-treated and miR-141-5P inhibitor-treated plus TGF-β groups. The relative
expression represents the ratio of target to GAPDH. The results are representative of three independent experiments (*p < 0.05 and **p < 0.01).
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the mechanism of autophagy promoting pancreatic fibrosis by
regulating PSCs activation still needs to be explored in depth.
Long non-coding RNAs (LncRNAs) are classified non-coding

RNA as transcripts greater than 200 nt in length. LncRNAs have
been shown to exert transcriptional, post-transcriptional, and
epigenetic regulation of proteins, and could be used as a specific
biomarker and therapeutic target for multiple diseases [17].
LncRNAs are involved in a variety of biological and pathological
processes, including cell proliferation, apoptosis, survival, and
differentiation [18, 19]. Emerging evidence has demonstrated that
lncRNAs are engaging in the fibrosis of the liver, heart, and lung,
and have been suggested to induce pancreatitis and pancreatic
tumor progression [20–22]. Our previous study has indicated that
low Linc-pint expression could be used as a biomarker for early
diagnosing pancreatic cancer and predicting the prognosis [23]. In
addition, the STX12 LncRNA axis has been shown to facilitate PSCs
activation through subtype-specific sponge interaction with miR-
148 [24]. Hence, the effects of lncRNAs on CP progression need to
be further investigated.
In this study, transcriptome sequencing was performed to

explore the differential lncRNAs between quiescent and activated
PSCs. A pancreatic fibrosis-associated lncRNA, named Lnc-PFAR,
was found to accelerate PSCs activation and pancreatic fibrosis
in vivo and in vitro. Lnc-PFAR inhibited miR-141-5P expression
level via binding to precursor miR-141 (pre-miR-141) and
restrained its maturation. The downregulated miR-141-5P ulti-
mately increased RB1CC1 expression and activated autophagy.
Our study highlights the hallmark of Lnc-PFAR in PSCs activation
and pancreatic fibrosis. It may provide a prospective biomarker for
screening CP progression and a novel therapeutic target for the
treatment.

RESULTS
Lnc-PFAR is verified as a novel lncRNA in PSCs activation
The activated PSCs play crucial roles in CP initiation and determine
the severity of pancreatic fibrosis. The microarray analysis was
used to investigate the differentially expressed lncRNAs in
quiescent and activated PSCs in our study and a total of 189
lncRNAs (155 upwards, 34 downwards) were identified. Among
them, pancreatic fibrosis-associated lncRNA (NONMMUT096607.1,
start site 3217254 and end site 3218983) named Lnc-PFAR, was
particularly prominent in PSCs activation. Lnc-PFAR has high
homology in humans and mouse, indicating that it may contribute
to human pancreatic fibrosis (Fig. 1A, B). Transforming growth
factor-β (TGF-β) has been characterized as a key mediator for PSCs
activation. To explore the effects of Lnc-PFAR in pancreatic
fibrosis, the Lnc-PFAR expression was knocked down in PSCs by
short hairpin RNA (shRNA) (Fig. S1A). The Lnc-PFAR expression
level was decreased when Lnc-PFAR was inhibited. The opposite
results were obtained in the upregulated studies (Fig. 1C, D).
Meanwhile, the expressions of α-SMA, Collagen I, Collagen III, and
Fibronectin were suppressed in Lnc-PFAR-silenced PSCs, while
increased in the Lnc-PFAR overexpressed group (Fig. 1E, F, Fig.
S1B, C). However, inhibition of Lnc-PFAR could not completely
abrogate TGF-β-induced PSCs activation. These data indicated
that Lnc-PFAR could not activate PSCs, but enhance TGF-
β-mediated PSCs activation. Furthermore, the α-SMA expression
was screened in different groups via IF staining. We found that
knockdown of Lnc-PFAR restrained α-SMA expression (Fig. 1G, H,
Fig. S1D, E). Similar results were confirmed in primary PSCs
(Fig. S2A–F). Taken together, these results suggested that Lnc-
PFAR induces pancreatic fibrosis via activating PSCs.

Lnc-PFAR mediates miR-141-5p to activate PSCs
MicroRNAs are recognized as significant indicators in fibrosis
progression. Previous studies have demonstrated that lncRNAs
participate in fibrotic processes in CP via the ceRNA mechanism [25].

To explore the effect of Lnc-PFAR in PSCs activation, differential
miRNAs in paralleled human CP (n= 22) and normal pancreas
(n= 22) tissues from the GEO dataset (GSE24279) were analyzed.
A total of 157 different miRNAs, including 82 upregulated and 75
downregulated ones, were identified (Fig. 2A, B). As a member of
the miR-200 family, miR-141 has been reported to engage in the
fibrotic diseases development by autophagic activation [26, 27].
We then compared the levels of miR-141 in normal pancreatic
tissues and CP tissues in the dataset, our results showed that miR-
141 is dramatically downregulated in CP patients (Fig. 2C, D). To
evaluate the regulatory role of Lnc-PFAR on miR-141 expression,
the Lnc-PFAR levels were regulated, and the expressions of miR-
141 were detected (Fig. 2E, F). Our results revealed that the miR-
141-5p level was significantly decreased when Lnc-PFAR was
upregulated. We hypothesized that Lnc-PFAR may promote PSCs
activation via inhibiting miR-141-5p expression. Subsequently,
the mimic or inhibitor of miR-141-5p were transfected and the
expressions of α-SMA, Collagen I, Collagen III, and Fibronectin
were tested (Fig. S3A, B). We found that downregulation of miR-
141-5p promoted PSCs activation, while upregulation of miR-141
suppressed PSCs activation (Fig. 2G–J). The above data elucidated
that Lnc-PFAR attenuates the inhibition of miR-141-5p, which may
induce PSCs activation.

Lnc-PFAR regulates miR-141-5p by stemming pre-miR-141
maturation
The conventional mechanism of lncRNAs restrains the expressions
of miRNAs via the ceRNA hypothesis [28]. In addition, lncRNAs
have been described to inhibit miRNA maturation by targeting
pre-miRNAs or primary miRNAs (pri-miRNAs). Yu et al. have
reported that CCAT2 selectively blocks the miR-145 maturation
process, which decreases colon cancer proliferation and differ-
entiation [28]. Xiao et al. have reported that lncRNA uc.173
promotes the renewal of the intestinal mucosa by destabilizing
the pri-miR-195 transcript [29]. To further establish the effect of
Lnc-PFAR on miR-141-5p maturation, the levels of pre-miR-141
and miR-141-5p were measured in PSCs when Lnc-PFAR levels
were altered. The level of pre-miR-141 was significantly improved
when Lnc-PFAR was upregulated. However, the expression of miR-
141-5p was found to be negatively correlated with pre-miR-141
(Fig. 3A, B). We speculated that Lnc-PFAR may block miR-141-5p
expression through suppressing pre-miR-141 maturation. Further-
more, an RNAs biosynthesis inhibitor, Actinomycin D was used to
suppress pre-miR-141 maturation and we found that inhibition of
Lnc-PFAR halted the maturity of pre-miR-141 (Fig. 3C–F). The pre-
miR-141 showed perfect complementarity with Lnc-PFAR at 72
nucleotides situated for the whole length of pre-miR-141 (Lnc-
PFAR position 1272–1344, pre-miR-141 position 1–72) (Fig. 3G). To
validate the possible binding sites, a pre-miRNA pull-down assay
was performed and higher levels of Lnc-PFAR were pulled down
by bio-pre-miR-141 compared with negative control (Fig. 3H).
Thus, we conclude that Lnc-PFAR binds with pre-miR-141, which
impedes the maturity of pre-miR-141. In general, Lnc-PFAR
ameliorates the miR-141-5p maturation process, which leashes
PSCs activation and pancreatic fibrosis.

miR-141-5p extenuates autophagy and suppresses PSCs
activation through binding to RB1CC1
It is well established that miRNAs induce mRNA degradation by
binding to 3′ untranslated regions (3′UTR). Based on the identified
433 differential mRNAs between activated and quiescent PSCs, the
miRNA-mRNA regulatory network was built. Our data indicated
that miR-141-5p may interact with Retinoblastoma coiled-coil
protein 1 (RB1CC1) and expedite PSCs activation (Fig. 4A). Our
previous data have demonstrated that RB1CC1 induces ULK1
dephosphorylation and enhances autophagy, which promotes
PSCs activation and pancreatic fibrosis [30]. Furthermore, the
RB1CC1 expression and autophagic level were explored. The
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results showed that both were increased when Lnc-PFAR was
upregulated (Fig. 4B, C). The transmission electron microscopy
(TEM) and mRFP-GFP-LC3 assay were used to access the
autophagosome and autophagic flux. We found that autophagy
was activated when Lnc-PFAR was upregulated (Fig. 4D–G, Fig.
S4A, B). Next, the level of RB1CC1, autophagic indicators and PSCs
activation were explored when the miR-141-5p mimic or inhibitor
were transfected. The results revealed that miR-141-5p mimic
inhibited PSCs activation by attenuating RB1CC1 expression and
autophagy, while inhibition of miR-141-5p enhanced PSCs
activation via upregulating RB1CC1-induced autophagy

(Fig. 4H–K). Furthermore, the luciferase assay was used to verify
the binding site between miR-141-5p and RB1CC1 3′UTR (Fig. 4L).
We found that the luciferase activity of the WT 3′-UTR RB1CC1 was
significantly decreased when the miR-141-5p mimic was trans-
fected (Fig. 4M, N). Above all, these results revealed that miR-141-
5p inhibits autophagy and PSCs activation through binding to
RB1CC1.

Lnc-PFAR enhances pancreatic fibrosis in vivo
The upregulated and downregulated Lnc-PFAR lentivirus were
generated to investigate the role of Lnc-PFAR in pancreatic fibrosis

Fig. 3 Lnc-PFAR restrained miR-141-5p by stemming pre-miR-141 maturation. A, B The expression levels of pre-miR-141 were explored in
PSCs of quiescent, TGF-β-treated, sh-Lnc-PFAR, sh-Lnc-PFAR plus TGF-β, Lnc-PFAR, and Lnc-PFAR plus TGF-β groups. C–F The expression levels
of pre-miR-141 were detected in PSCs of quiescent, actinomycin D-treated, sh-Lnc-PFAR, sh-Lnc-PFAR plus actinomycin D, Lnc-PFAR, and Lnc-
PFAR plus actinomycin D groups. G Lnc-PFAR binds with pre-miR-141 and inhibits its maturation. H The binding sites between Lnc-PFAR and
pre-miR-141 were identified by RNA pull down assay.
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in a mouse model (Fig. S5A). The expressions of Lnc-PFAR, miR-
141-5p, and pre-miR-141 in pancreatic tissues were detected.
Inhibition of Lnc-PFAR impaired the level of pre-miR-141 and
improved miR-141-5p expression. The opposite results were
confirmed in Lnc-PFAR-upregulated groups (Fig. 5A–F, Fig.
S5B–G). We then explored the relative expressions among Lnc-
PFAR, miR-141-5p, and pre-miR-141, and no correlation was found

in tissues or plasma samples (Fig. S6A–D). Furthermore, suppres-
sion of Lnc-PFAR reduced the fibrotic indicators, including α-SMA,
Collagen I, Collagen III, and Fibronectin (Fig. 5G, H, M, N, Fig. S7A, B).
Our data revealed that inhibition of Lnc-PFAR alleviated pancreatic
fibrosis and CP progression (Fig. 5I–L). The expressions of RB1CC1
and LC3B were impeded due to the inhibition of autophagy, and
overexpression of Lnc-PFAR ameliorated those effects (Fig. 5G, H,
M, N). Additionally, we found that the levels of Lnc-PFAR and pre-
miR-141 were elevated in CP mice and intraperitoneal injection of
sh-Lnc-PFAR lentivirus blocked pre-miR-141 expression and
enhanced the miR-141-5p expression in pancreatic tissues. The
expressions of α-SMA and other fibrosis-related indicators were
screened via qRT-PCR assay. Lnc-PFAR improved α-SMA expres-
sion in CP tissues, but no significant correlation was found
between α-SMA and Lnc-PFAR levels (Fig. S7C–F). Meanwhile, the
autophagic level was examined in mouse models and the results
suggested that Lnc-PFAR improved the formation of autophago-
some (Fig. 5O–P). In addition, the same results were obtained in
the caerulein-injection CP model (X6 injections, three times a
week, three weeks) (Fig. S8A–D). Collectively, Lnc-PFAR exacer-
bates pancreatic fibrosis via accelerating autophagy and PSCs
activation, Lnc-PFAR could be used as a therapeutic effect for
relieving pancreatic fibrosis.

Lnc-PFAR expression is correlated with pancreatic fibrosis in
CP patients
We examined the levels of Lnc-PFAR and pre-miR-141 in normal
and CP tissues (Fig. 6A, B). Our data showed that the expressions
of Lnc-PFAR and pre-miR-141 were increased while the miR-141-
5p level was decreased in CP tissues. There was no correlation
among Lnc-PFAR, miR-141-5P, and pre-miR-141 in CP tissues (Fig.
S9A, B). Similarly, the above indicators were tested in the plasma
of healthy volunteers and CP patients, and higher levels of Lnc-
PFAR, pre-miR-141, and lower miR-141-5P expression were found
in CP patients (Fig. 6C–E). The slight significant correlations
between Lnc-PFAR and miR-141-5P, Lnc-PFAR and pre-miR-141 in
CP patients’ plasma were found (Fig. 6F, G). Furthermore, FISH
assay was performed to explore the localizations and expressions
of Lnc-PFAR, miR-141, and pre-miR-141 in normal and CP tissues.
We found that Lnc-PFAR was predominantly located in the
cytoplasm and highly expressed in CP tissues than the normal
pancreas. Lnc-PFAR and pre-miR-141 were co-localized in the
cytoplasm and Lnc-PFAR and miR-141-5P were mutually exclusive
(Fig. 6H–J). CP has been shown to induce a higher incidence of
pancreatic cancer (PC). We then compared the expression of Lnc-
PFAR in CP and PC tissues. Our results indicated a lower Lnc-PFAR
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Fig. 4 miR-141-5p extenuated autophagy and suppressed PSCs
activation through binding to RB1CC1. A Construction of miRNA-
mRNA regulatory network with differentially expressed miRNAs and
mRNAs. B, C The expressions of RB1CC1, P62, and LC3II/I were tested
in quiescent, TGF-β-treated, Lnc-PFAR, and Lnc-PFAR plus TGF-β
groups. The relative expression represents the ratio of target to
GAPDH. D, E The TEM assays showed the autophagic levels in
quiescent and TGF-β-treated, sh-Lnc-PFAR, sh-Lnc-PFAR plus TGF-β
Lnc-PFAR and Lnc-PFAR plus TGF-β-treated groups (bars, 2 μm). F, G
The immunofluorescence assays were assessed to screen the
autophagic flux in eight different groups (bars, 500 μm). H–K The
expressions of RB1CC1, P62, and LC3II/I were detected in PSCs of
quiescent, TGF-β-treated, miR-141-5P mimic-treated, miR-141-5P
mimic-treated plus TGF-β groups, miR-141-5P inhibitor-treated and
miR-141-5P inhibitor-treated plus TGF-β groups. The relative
expression represents the ratio of target to GAPDH. L Schematic
diagram of the luciferase reporter plasmids of wild type-RB1CC1 3′
UTR. M, N Luciferase activity assays were performed to confirm the
interaction between miR-141-5p and RB1CC1. The results are
representative of three independent experiments (*p < 0.05 and
**p < 0.01).
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level in PC tissues than that in CP tissues (Figure S9C). Taken
together, highly expression of Lnc-PFAR could be used for
predicting the severity of pancreatic fibrosis and it could serve
as an effective biomarker for the early detection of CP.

DISCUSSION
CP is a pancreatic fibro-inflammatory syndrome in individuals with
genetic, environmental and/or other risk factors which develop
persistent pathologic responses to parenchymal injury or stress
[3]. The activation of PSCs is considered a core process in
pancreatic fibrogenesis. In our study, we propose a new LncRNA,
named Lnc-PFAR, which is differentially expressed between
quiescent and activated PSCs. Lnc-PFAR locates at 15q with a
length of 1729 nt and is highly expressed in activated PSCs. The
upregulated Lnc-PFAR exacerbates pancreatic fibrosis through
activating autophagy. Besides, the upregulation of Lnc-PFAR
promotes activated PSCs proliferation and migration (Fig.
S10A–F). Our study corroborates the hypothesis of Lnc-PFAR
suppressing pre-miR-141 maturation which accelerates PSCs
activation by triggering autophagy. To explore the colocalizations
and expressions of Lnc-PFAR, miR-141, and pre-miR-141 between
quiescent PSCs and activated PSCs groups, the FISH assay showed
that Lnc-PFAR was predominantly located in the cytoplasm and
highly expressed in activated PSCs. Additionally, Lnc-PFAR and

pre-miR-141 were co-localized in the cytoplasm, and Lnc-PFAR
and miR-141-5P were mutually exclusive in the cytoplasm
(Fig. S11A, B). In our previous study, RB1CC1 has been demon-
strated to enhance TGF-β-induced PSCs activation. Here, Lnc-PFAR
was shown to inhibit miR-141-5P expression via binding with pre-
miR-141 and to restrain its maturation. The downregulated miR-
141-5P ultimately promotes the transcription of RB1CC1 in the
downstream region. This study clarifies the vital role of Lnc-PFAR
in pancreatic fibrosis and provides novel insights for discovering
potential therapeutic targets for CP.
LncRNAs exert different types of mechanisms through the

ceRNA regulatory network, interaction with RBPs, and genes
inactivation or degradation (such as chromatin remodeling, DNA
methylation, RNA decay, and histone protein modification) [28]. In
recent years, the effects of lncRNA in stellate cells (including
pancreatic stellate cells and hepatic stellate cells) have been
gradually explored [24, 25, 31, 32]. Liu et al. demonstrated LncRNA
MIT enhances PSCs activation through regulating the miR‐216a‐
3p/COX‐2 axis [25]. Yu et al. revealed that Lnc-SNHG7 reduces miR-
378a-3p and attenuates its control on DVL2, leading to aberrant
Wnt/β-catenin activity, which contributes to HSCs activation and
liver fibrosis progression [31]. The identification of the ceRNA
hypothesis expands the theory of the dynamics and lncRNA-
disease network and provides more strategies for PSCs activation
and CP diagnosis. In this study, we propose a relatively novel

Fig. 5 Lnc-PFAR enhanced pancreatic fibrosis in vivo. A–F The expression levels of Lnc-PFAR, pre-miR-141, and miR-141-5P were explored in
pancreatic tissues of negative control, CP, CP plus sh-Lnc-PFAR injection and CP plus Lnc-PFAR injection groups. G–H The expressions of α-
SMA, Collagen I, Collagen III, Fibronectin, RB1CC1, P62, and LC3II/I were tested in the negative control, CP, sh-Lnc-PFAR, CP plus sh-Lnc-PFAR,
Lnc-PFAR, and CP plus Lnc-PFAR groups. The relative expression represents the ratio of target to GAPDH. I, J The H&E and Masson assays were
conducted to indicate CP and pancreatic fibrosis in mouse models (n= 5) (original magnification, 20×, bars, 50 μm). K, L The different
pancreatic fibrosis scores were compared among negative control, CP, sh-Lnc-PFAR, and CP plus sh-Lnc-PFAR, Lnc-PFAR, and CP plus Lnc-PFAR
groups.M, N The expressions of α-SMA, Collagen I, Collagen III, Fibronectin, RB1CC1, P62, and LC3II/I were analyzed by immunohistochemistry
(original magnification, 20×, bars, 50 μm) in different groups. O–P The TEM assays revealed the autophagic levels in different groups (bars,
2 μm).
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Fig. 6 Lnc-PFAR expression was correlated with pancreatic fibrosis in CP patients. A, B The expression levels of lnc-PFAR and pre-miR-141
were explored in human normal pancreas and CP tissues. C–E The expression levels of lnc-PFAR, pre-miR-141, and miR-141-5P were measured
in the plasma of healthy volunteers and CP patients. F, G The correlations among Lnc-PFAR, pre-miR-141, and miR-141-5P expression levels
were explored in the plasma of healthy volunteers and CP patients. H FISH assay showed that Lnc-PFAR was predominantly localized in the
cytoplasm. I FISH assay demonstrated that miR-141 and Lnc-PFAR were mutually exclusive in the cytoplasm in the normal pancreas and CP
tissues. J FISH assay indicated the co-localization between Lnc-PFAR and pre-miR-141 in normal pancreas and CP tissues(bars, 50 μm).
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mechanism that Lnc-PFAR exerts its biological effect of PSCs
activation and pancreatic fibrosis expedition by suppressing pre-
miR-141 maturation.
MiRNAs are small (21–23 nt) non-coding RNA molecules that

regulate mRNA degradation by interacting with 3′UTR and driving
the translational suppression [33]. MiR-141 is a member of the miR-
200 family and has been reported to activate autophagy in fibrotic
diseases and cancers [26, 27]. Li et al. reported that triptolide
alleviates fibrosis by restoring autophagy through the miR-141-3p/
PTEN/Akt/mTOR pathway [34]. Qian et al. indicated that miR-141-
3P blockes TGF-β1 induced EMT and pulmonary fibrosis via
targeting ZEB1 [26]. Che et al. found that melatonin abrogates
cardiac fibrosis via inhibiting MALAT1/miR-141-mediated NLRP3
inflammasome activation and TGF-β1/Smads signaling [35]. How-
ever, the effects of miR-141 in multifactorial pancreatic fibrosis are
not clear. In this study, Lnc-PFAR shows the capacity of enhancing
PSCs activation through inhibiting miR-141-5p biogenesis. Despite
of the inconsistent sequences between Lnc-PFAR and miR-141-5p,
it is impossible to verify that Lnc-PFAR restrains the expression of
miR-141-5p through the conventional ceRNA mechanism. Accu-
mulating evidence shows the participation of lncRNAs in the
splicing of miRNA precursors. Our study identifies the definitive
binding sites in pre-miR-141 which have sufficient complementar-
ity to Lnc-PFAR, and firstly demonstrates that Lnc-PFAR impairs
pre-miR-141 maturation to exacerbate CP progression.
Autophagy is a cellular pathway involved in protein and

organelle degradation, and plays an essential role in maintaining
cellular homeostasis [12, 36–38]. There are roughly three classes of
autophagy, including macroautophagy, microautophagy, and
chaperone-mediated autophagy. Macroautophagy is a major type
of autophagy, which has been extensively studied compared to
microautophagy and chaperone-mediated autophagy [15]. Herein,
we refer to macroautophagy simply as “autophagy”. Previous
studies have revealed that autophagy participates in PSCs
activation. Sho Endo et al. demonstrated that autophagy improves
PSCs activation and promotes pancreatic cancer growth and
metastasis through tumor-stromal interactions. They also found
that genetic and chemical autophagic inhibitor maintain PSCs to
be a quiescent state [8]. Yan et al. indicated that a combination of
ERK inhibitor and autophagy inhibitor could suppress PSCs
activation, cancer-stromal interaction, and metastasis [39]. Li
et al. revealed that hypoxia promotes tumor progression in
pancreatic adenocarcinoma through autophagy-mediated degra-
dation and reduction of lumican within activated PSCs [16]. Li et al.
confirmed that inhibition of autophagy suppresses PSCs activation
and increases ECM degradation by decreasing the expression of
TGF-β1 and altering the MMP/TIMP ratio [40]. Meanwhile, our
previous study highlighted that upregulated RB1CC1 exacerbates

pancreatic fibrosis through promoting autophagic activation.
Currently, our study illustrates the possible molecular mechanism
of lncRNA inducing PSCs activation and pancreatic fibrosis
through autophagy, which brings potential value and clinical
significance for the therapeutic of CP.
In conclusion, this study provides new insights into the effects

of Lnc-PFAR-induced autophagy through enhancing RB1CC1
expression in pancreatic fibrosis. Lnc-PFAR decreased the expres-
sion of miR-141 by inhibiting pre-miR-141 maturation, the
reduction of miR-141-5P released RB1CC1, and then increased
ULK1 expression. Eventually, the ULK1-induced autophagy aggra-
vated PSCs activation and pancreatic fibrosis (Fig. 7). This study
provides evidence for the involvement of Lnc-PFAR in CP and its
valuable for future investigations and clinical instruction.

MATERIALS AND METHODS
Clinical samples and plasma
Tissues of 16 normal individuals, 16 CP patients, and 10 PC patients and plasma
of 16 normal individuals and 16 CP patients were obtained from benign
pancreatic cystic neoplasm (PCN) patients and CP patients in the Department
of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical
University from January 2017 to January 2019. The information of all the
patients are listed in Supplementary Table S1. The informed consent was
obtained from patients and the study was approved by the review committee
of the First Affiliated Hospital of Harbin Medical University.

Reagents and chemicals
The TGF-β was purchased from Peperotech (Rocky Hill, USA). The cerulein,
Actinomycin D were ordered from Sigma (Sigma-Aldrich, Shanghai, China).
The pcDNA3.1-Lnc-PFAR was obtained from GenScript (Nanjing, China).
The sh-Lnc-PFAR vector and lentiviruses of sh-Lnc-PFAR were purchased
from Genechem (Shanghai, China).

Cell culture
Mice PSCs lines were purchased from Cell Bank of the Chinese Academy of
Science. PSCs were cultured in Dulbecco’s modified Eagle’s medium
(Gibco, Gaithersburg, USA), supplemented with 10% fetal bovine serum
(Gibco), 1% penicillin, and streptomycin at 37 °C with 5% CO2.

Mice
Eight weeks old male C57BL/6 mice were purchased from the Experimental
Animal Center of The Second Affiliated Hospital of Harbin Medical
University. Mice were randomly divided into eight groups (negative
control, CP, CP plus sh-negative control and CP plus sh-Lnc-PFAR, negative
control, CP, CP plus Lnc-negative control, and CP plus Lnc-PFAR). CP was
induced by ligating the pancreatic duct at the junction of the common duct
and pancreatic duct. The bile duct and concomitant artery were spared. The
eight groups of mice expect the negative control group received a single
intraperitoneal injection of cerulein (50mg/kg/body weight) 2 days after
the pancreatic duct ligation [41]. In the CP plus sh-Lnc-PFAR and CP plus
Lnc-PFAR groups, the mice also received a single intraperitoneal injection of
a lentiviral vector of sh-Lnc-PFAR or Lnc-PFAR at the second day after
ligation. All of the mice were killed at 21 days after pancreatic duct ligation
[42, 43]. This study protocol was approved by the Institutional Review Board
of The First Affiliated Hospital of Harbin Medical University.

Hematoxylin and eosin staining (H&E), masson staining, and
Immunohistochemistry (IHC)
The hematoxylin and eosin (H&E) staining and immunohistochemical
staining protocols were described previously [44, 45]. Masson staining was
performed following the manufacture’s protocol (Baso, Zhuhai, China). In the
immunohistochemical staining, paraffin-embedded tissue sections (5 μm)
were stained with anti-Fibronectin, anti-RB1CC1, anti-Collagen I, anti-Collagen
III, anti-α-SMA, and anti-LC3B, The number of positive cells was counted in
five randomly selected microscopic fields (×20, Nikon, Japan).

mRFP-GFP-LC3 assay
The mRFP-GFP-LC3 assay was performed as described previously [46, 47].
PSCs were transfected with GFP-mRFP-LC3 lentiviral vector and selected by

Fig. 7 Schematic presentation of the mechanism of Lnc-PFAR
promoting pancreatic fibrosis development. Lnc-PFAR decreased
the expression of miR-141 by inhibiting pre-miR-141 maturation, the
reduction of miR-141-5P released RB1CC1, and then increased ULK1
expression. Eventually, the ULK1-induced autophagy aggravated
PSCs activation and pancreatic fibrosis.
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puromycin. The stably transfected cells were transfected with sh-Lnc-PFAR
or Lnc-PFAR vector and were viewed under a fluorescence microscope. The
number of GFP and mRFP dots was determined by manual counting of the
fluorescent puncta in five high-power fields (original magnification, ×40,
Olympus, Japan).

Transmission electron microscope
Transmission electron microscopy was performed as described previously
[48]. The PSCs transfected with sh-Lnc-PFAR and Lnc-PFAR were fixed in
2.5% glutaraldehyde. Fresh tissues were also fixed in 2.5% glutaraldehyde,
and post-fixed in 1% osmium tetroxide buffer. Cells and tissues were
embedded in spur resin and thin sections were cut. The sectioned grids
were stained with a saturated solution of uranyl acetate and lead citrate.
Sections were examined at 80 kV using a JEOL 1200EX transmission
electron microscope (Harbin Medical University, China).

Luciferase reporter assay
To detect the interaction between RB1CC1 and miR-141-5p, the full-length
1847 bp 3′UTR of wild-RB1CC1 (WT) and same length mutant-RB1CC1
(MUT) were amplified and then cloned into pmiR-Report Luciferase vector
(GenScript, Nanjing, China). The PSCs were co-transfected 50 nM miR-141-
5P mimic or 100 nM miR-141-5p inhibitor with 500 ng of Luciferase
constructs according to the manufacturer’s protocol. The cells were
harvested 24 h after transfection, and the luciferase activity was measured
with a Dual-Luciferase Reporter Assay System (Promega, Madison, USA),
through Varioskan Flash Spectral Scanning Multimode Reader (Thermo
Fisher Scientific, Massachusetts, USA). Firefly luciferase activity was used to
normalize the transfection efficiency. The sequences were listed in
Supplementary Table S2.

RNA isolation, reverse-transcription and quantitative realtime
polymerase Chain Reaction (qRT-PCR)
RNA isolation and the PCR amplification conditions were followed as
previously described [23]. The qRT-PCR assay (SRBY Green) was performed
on Applied Biosystem 7500. The relative expression levels of LncRNA,
mRNAs, and miRNA were calculated and quantified using the 2−ΔΔCT

method. GAPDH and U6 served as the endogenous control respectively.
The primer sequences were designed by Primer 5.0 and are listed in
Supplementary Table S3.

Immunofluorescence
Immunofluorescence was performed as described previously [49]. In brief,
activated PSCs transfected with sh-Lnc-PFAR and Lnc-PFAR plasmid were
seeded on 24-well plates. The cells were fixed with 4% paraformaldehyde for
30min and were permeabilized with 0.5% Triton X-100 for 20min. After
incubation for 2 h with anti-α-SMA (Cell Signaling Technology), the cells were
washed with PBS for three times. Then, the cells were incubated with
secondary antibodies for 1 h (Beyotime, Nanjing, China), and 4′6-diamino-2-
phenylindole (DAPI, Beyotime) was added to stain the cell nuclei. The cells
were detected by a laser scanning confocal microscope (×40, Olympus, Japan).

RNA pull down assay
Biotin-labeled pre-miR-141 and control pre-miR-141 were transfected and
whole-cell lysates were collected 48 h later. The lysates were then mixed
with Streptavidin-Dynal beads and incubated for overnight [29]. The
beads-bound RNA was isolated and analyzed by the qRT-PCR assay. Input
RNA was extracted and served as a negative control.

Fluorescence in situ hybridization (FISH)
The paraffin sections were baked in an oven at 60 °C for 1 h, then dewaxed in
xylene, and then proteinase K digestion for 10min at 55 °C. The sections were
placed in different pretreatment solutions in sequence, and the sections were
finally washed with deionized water. The hybridization mixture was dropped
on the sections, incubated at 37 °C for 2 h, and the buffer was washed and
placed in different ampicillin [50]. Counter-staining with hematoxylin and
photos were taken with a laser confocal microscope (×40, Olympus, Japan).

Western blot analysis
Western blot analysis was performed as described previously [46, 51].
Whole-cell lysates with approximately 40 μg of proteins were resolved on
10 and 12% SDS-PAGE and were subjected to western blot assay using the

antibodies listed in Supplementary Materials. After appropriate secondary
antibody incubation, the bands were visualized with the Molecular Imager
System (BIO-RAD, Hercules, USA) using an enhanced chemiluminescence
method (Thermo Fisher Scientific, Massachusetts, USA). The antibodies are
listed in Supplementary Table S4.

Statistical analysis
Results are shown as the mean ± SD. Statistical analysis was performed with
Graphpad 7 software and analysis of variance (ANOVA) and a Student’s
t-test were used to evaluate statistical significance. The correlations were
analyzed using Pearson’s correlation coefficients. Differences are consid-
ered significant when *p < 0.05, **p < 0.01, ***p < 0.001 and ns p > 0.05.

DATA AVAILABILITY
Data required to support the findings of this study are present in the main text or
supplementary materials. All other data supporting the findings of this study are
available from the corresponding authors upon reasonable request.
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