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Alterations to the natural microbiome are linked to different diseases, and the presence or absence of specific microbes is directly
related to disease outcomes. We performed a comprehensive analysis with unique cohorts of the four subtypes of breast cancer
(BC) characterized by their microbial signatures, using a pan-pathogen microarray strategy. The signature (includes viruses, bacteria,
fungi, and parasites) of each tumor subtype was correlated with clinical data to identify microbes with prognostic potential. The
subtypes of BC had specific viromes and microbiomes, with ER+ and TN tumors showing the most and least diverse microbiome,
respectively. The specific microbial signatures allowed discrimination between different BC subtypes. Furthermore, we

demonstrated correlations between the presence and absence of specific microbes in BC subtypes with the clinical outcomes. This
study provides a comprehensive map of the oncobiome of BC subtypes, with insights into disease prognosis that can be critical for

precision therapeutic intervention strategies.
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INTRODUCTION

The microbiome can influence many aspects of normal healthy life
and specific changes may have clinical implications for several
diseases [1-5]. Furthermore, specific microbial signatures are
associated with different types of cancers [2, 3, 6-10]. Therefore,
we posit that pathological states, like oncogenesis, create
microenvironments amenable to the persistence of a disease-
specific microbiome. Alternatively, a pre-existing microbiome in a
microenvironment may contribute to the development of the
disease. Therefore, disease-specific microbiome may have prog-
nostic and diagnostic value. In addition, the cancer microbiome
(oncobiome, inclusive of viruses, bacteria, fungi, and parasites) and
its metabolites have a major impact on the local and distant
immune system, which can influence clinical outcomes in cancer
patients [11, 12].

There are four subtypes of breast cancer (BC) that are based on
the status of the estrogen receptor, progesterone receptor, and
human epidermal growth (Her2) expression in cancerous breast
cells [3]. The endocrine hormone receptor positive cancers include
(1) estrogen receptor positive and/or progesterone receptor
positive, and Her2 negative (designated herein as ER), and (2)
triple positive (TP) cancers that are ER positive, PR positive, and
Her2 positive [13]. These cancers are generally responsive to
treatment with hormone receptor blockers [13]. They are less
aggressive with better prognosis compared to hormone receptor
negative BCs, which include the Her2 BC (Her2+, ER-, and PR-,

designated herein as HR), and triple-negative (TN) cancer, which
are ER, PR, and Her2 negative [9, 14]. TN BC (15-20% of BC
patients) is the most aggressive of all the BCs, is non-responsive to
treatment, is highly angiogenic, highly proliferative, and has the
lowest survival rate [15].

Identifying the oncobiome of the four BC subtypes may
identify a connection between the microbiome and therapeutic
response to treatment [12, 16]. Recent studies have shown that
the status of the microbiome may improve response to cancer
therapies [11, 12]. In the present study, we used the pan-
pathogen microarray (PathoChip [17]) to screen a larger cohort
of BC and control patient samples, to validate our previous
small-scale study [3], and showed a trend or correlation
between unique microbial signature patterns in different BC
types with clinical intervention or outcomes. This could provide
both prognostic and diagnostic values for BC subtypes. Our
findings demonstrated that the oncobiome of each BC cancer
subtype is diverse and contains a variety of microbial
signatures. ER showed the most diverse oncobiome, while TN
was the least diverse. Further, each BC subtype can be
distinguished by the presence or absence of specific viruses
and other microbes, and thus the level of detection of these
microbes was predictive of patient outcomes. Our data suggest
that a thorough knowledge of the status of the tumor
oncobiome is important and provides prognostic and diagnos-
tic information toward precision patient care.
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MATERIALS AND METHODS

All experiments were performed according to relevant guidelines and
regulations, and according to all the licensing and approvals by
institutional committees at Perelman School of Medicine, University of
Pennsylvania and the University of Buffalo School of Medicine, Roswell
Park Cancer Institute IRB# BDR084317 who provided an independent
cohort of patients and clinical data to support our findings.

PathoChip design

The details of the PathoChip array have been previously described in detail
[18]. The PathoChip contains 60,000 probes for parallel DNA and RNA
detection of viruses (>4200), and known pathogenic bacteria (>320), fungi
(>360), helminths (>250), and protozoa (>130) [17]. The array contains two
types of probes: unique probes for each virus and other microorganism,
and conserved probes that target genomic regions conserved between
members of a family of viruses. The conserved probes allow detection of
detect previously uncharacterized members of the family. These bespoke
arrays are SurePrint glass slide microarrays (Agilent Technologies Inc.),
containing eight replicate arrays per slide. Each probe is a 60 nucleotide
(nt) DNA oligomer that targets genomic regions of viruses, prokaryotic, and
eukaryotic microorganisms [3, 7, 18, 19].

Sample preparation and microarray processing

Cohort of 95-105 formalin-fixed paraffin-embedded (FFPE) samples for
each BC subtypes, 20 matched control samples, and 68 non-matched
control samples from breast reduction surgeries were received as 10 um
sections. The de-identified samples we obtained as an independent cohort
for each BC subtype to validate and provide clinical data of prognostic
value. IRB approval was obtained from the Roswell Park Cancer Institute
Internal Review Board. The Biomedical Data Science office delivers HIPAA
compliant de-identified clinical data that ensures IRB compliance as
Institute Honest Brokers. Patient identifiers were stripped from all data files
and replaced with a de-identified ID. The Biomedical Data Science Office
staff is the holder of the identified information. Researchers are unable to
match patient samples and clinical data back to the identified patient
information. HIPAA compliant de-identified patient samples and clinical
data were delivered to University of Pennsylvania. Consequently, we
obtained clinical information for these samples, including age of the
patients, grade, stage of the tumor, primary site of the tumor, age at
diagnosis, recurrence type, response to treatment, survival and disease-
free time post treatment. The tumor and control tissues were prepared,
examined, and verified, by the breast pathologists at the Department of
Pathology, RPCI, Buffalo, New York. The samples were prepared and cut in
a sterile environment and the microtome sterilized between samples, to
prevent contamination between sample. Utmost care was taken during the
procurement and handling of the samples, and during PathoChip
screening to minimize contamination.

The PathoChip screen workflow was described previously [3, 6-8].
Briefly, DNA and RNA were extracted from FFPE samples; 50 ng each of
DNA and 50 ng of RNA were used for whole transcriptome amplification
using the TransPlex Whole Transcriptome Amplification Kit (Sigma-Aldrich,
St. Louis, MO). Human reference RNA and DNA were extracted from the
human B cell line, BJAB (obtained from ATCC, and cultured in the lab for
less than 6 months) and 15 ng of each were used for WTA. The cellular
DNA/RNA provided a reference to compensate for dye bias. One
microgram of amplified products from the cancer and control tissues
was labeled with Cy3, and the human reference was labeled with Cy5
(SureTag labeling kit, Agilent Technologies, Santa Clara, CA). The labeled
samples (Cy3 plus Cy5) were hybridized to the PathoChip for 40 h at 65 °C
with rotation. The slides were then washed and scanned for visualization
using an Agilent SureScan G4900DA array scanner.

Microarray data extraction and statistical analysis

The microarray data extraction and analyses have been described
previously [3]. Raw data from the images were extracted with Agilent
Feature Extraction software. We used the R-program for normalization and
data analyses [20, 21]. The microarray data are available in Gene Expression
Omnibus. We calculated scale factors using signals of green and red
channels for human probes. Scale factors are the sum of green and sum of
red signal ratios [3(g)/2(r)] of human probes. Then we used scale factors to
obtain normalized signals for all other probes. For all probes except human
probes, normalized signal is log2 transformed of green signals/scale factors
modified red signals (log2g-scale factor*log2r). On the normalized signals,
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t-test was applied to select probes present in cancer samples by
comparing cancer samples versus controls and to select probes present
in the BC samples versus the non-matched controls. The cut-off for
significant detections in cancers versus the controls was log2 fold change
>1 and adjusted p value (with multiple testing corrections) <0.05.
Prevalence was calculated by counting the number of cancer cases with
hybridization signals greater than the average signal or negative control
probes and represented as a percentage.

Analyses at the individual probe level (both for specific and conserved
probes), and at the family (for viruses) or genera (for bacteria, fungi, and
parasite) level, taking into account all the probes per family or genera,
were performed. Microbial detections were represented based on their
average hybridization signal (average of the hybridization signals of
detected probes per family or genera) and prevalence.

The cancer samples were also subjected to unsupervised hierarchical
clustering, based on the detection of microbial signatures in the samples
(average hybridization signal per viral family or microbial genus), using the
R-program (Euclidean distance, complete linkage, non-adjusted values)
[21, 22].

After obtaining the aggregated hybridization signals (average of the
hybridization signals of probes from same family or genus; for virus, we
aggregated per family; for bacteria, fungi, and parasite, we aggregated per
genus) of the oncobiome of each BC subtype, we used principal
component analysis (PCA) plot to display the four BC subtypes of BCs
(Fig. 1A). Violin plots were used to display the distinct microbial signatures,
i.e, the organisms that were detected in one BC subtype only; or the
organisms that had significantly higher aggregated hybridization signals in
one subtype compared to the other three (one-sided Wilcoxon test p value
<0.05 and logFC > 1) (Fig. 1A).

Additional topological-based data analyses were conducted with Ayasdi
software (Ayasdi, Inc.) using correlation metric, and metric PCA co-
ordinates lenses (Fig. 1B). The differences in microbial detections between
different types of BCs were determined using the two-sided t-test
(Supplementary Table S2).

Clinical analysis in each cancer subtypes

We first choose organisms that had correlation with disease outcomes.
Based on the median of hybridization signals of each organism, we divided
patients into high and low groups. We applied Kaplan—-Meier survival
analysis [23] to test if the survival rates or disease-free rates were
significantly different in the high and low groups. We applied the
Benjamini-Hochberg procedure [24] for multiple testing correction. No
organisms had adjusted p values < 0.05 (Supplementary Material S8), and
we reported the top ones with a nominal p value < 0.05 to highlight the
trend. We also ran Cox regression [25] with prognostic factors included for
testing disease outcome association. See Supplementary Table S8 for the
detailed Cox regression results. Then patients were subjected to clustering
based on the disease outcomes correlated organisms. Since the prevailing
zero measurements, we applied a robust multi-kernel clustering method—
SIMLR [21] to group patients into two clusters (the number of clusters was
determined by the “SIMLR_Estimate_Number_of Clusters” function).
Barplot and heatmap were made to display the proportions of clinical
features and hybridization signals of organisms, respectively. To gain more
statistical power, we aggregated numerical clinical features into levels. The
tumor sizes were aggregated into three levels: T1 (<20 mm), T2
(20-50 mm), and T3 (>50 mm). The diagnosis ages were aggregated into
two levels: <40, and >40, since age 40 is a critical age as women over age
40 have increased rates of BC [26]. x? test was conducted to compare if
there were significant differences in proportions of clinical features
between the two clusters. To compare the proportions of some interesting
clinical features (e.g., stage 3-4, distant metastasis, etc.), we used one-sided
Fisher's exact test. We also applied cox regression to see if clinical factors
(such as tumor size, and grade) were correlated with survival and disease-
free rates (Supplementary Table S9).

RESULTS

Microbiome characteristics in different subtypes of breast
cancers

Microarray analysis was performed to identify the oncobiome of
four different BC subtypes (shown in Figs. 1-3). The PCA of on the
oncobiomes of the four BC subtypes (Fig. 1) validated our previous
study [3]. The TN BC oncobiome was strikingly different from the
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Oncobiome diversity in different breast cancer subtypes. A The four types of breast cancers have distinct oncobiome compositions.

PCA plot using NBClust shows that TN breast cancer oncobiome is strikingly different from the other three breast cancer subtypes studied.
The unique aspects of the oncobiomes of each breast cancer subtype are represented as violin plots showing the full distribution of the data.
ER+ BC shows the most diversity in oncobiome. B Using topological data analysis, we further show the similarity in the oncobiomes of triple
positive and ER positive BCs, while both Her2+ and triple-negative breast cancer have oncobiome characteristics very different from other
BCs. C Bar graphs showing different types and phyla of oncobiome in the four breast cancer subtypes. D Venn diagrams show the viral and
microbial signatures that are shared and unique to the four breast cancer subtypes.

others. This was primarily due to (1) the detection of fewer
microbial agents in the TN samples (the least diverse); (2) a
significantly higher detection of Aggregatibacter (Fig. 1A, violin
plots); and (3) the detection of Plagiorchis and Trichostrongylus
(Fig. 1A, violin plots). These factors made a distinct cluster for the
TN BC samples in the PCA plot. Conversely, ER+ BC samples
showed the most robust oncobiome, with a greater number of
bacterial (mostly Proteobacteria), fungal, viral, and parasitic
signatures with higher unique signals (Fig. 1A, violin plot). HR
and TP BC subtypes showed intermediate oncobiome densities
with fewer bacterial (Citrobacter, Streptobacillus), fungal (Enterocy-
tozoon, Issatchenkia), and parasitic (Blastocystis, Cryptosporidium,
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Dientamoeba, Hartmannella, Isospora, Macracanthorhynchus, Meta-
gonimus) signatures uniquely detected, or had significantly higher
signals in the HR samples. The parasitic signature of Taenia was
prominently detected in TP samples.

Figure 1B used topological data analysis that suggested greater
similarity between the oncobiomes of TP and ER subtypes, while
HR and TN cancers had oncobiome characteristics very different
from the other BCs. Among the receptor negative BCs, HR differed
from TN by having greater signals for signatures of Togaviridae
and Astroviridae, and signatures of Ehrlichia, Wolbachia, Bartonella,
Legionella, and Campylobacter, whereas the TNs had higher signals
for signatures of Alloherpesviridae, Arenaviridae, and Nodaviridae

SPRINGER NATURE
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compared to the HRs (Supplementary Table S2). Among the ERs
had higher signals for signatures of Hepeviridae, Aeromonas,
Alcaligenes, Propionibacterium, Capnocytophaga, Pediococcus, Bar-
tonella, Pasteurella, Madurella, and Ancylostoma compared to the
TPs (Supplementary Table S2). The receptor positives (ER and TP)
as a whole had higher signals for signatures of Filoviridae,
Pleistophora, Azorhizobium, Paragonimus, Taenia, Corynebacterium,
Brevibacillus, Chryseobacterium, Angiostrongylus, and Leishmania
(Supplementary Table S2).

Figure 1C shows the overall percentage of signatures (viral,
bacterial, fungal, and parasite) in each BC subtype separated into
different types and phyla. In the oncobiomes of the four BC
subtypes, we found that cancer-associated viral signatures made
up 26 and 38% of the total viral signatures, with the highest
percentage in HR (Fig. 1C, virus). Enteric viruses represented an
equal proportion in each BC subtype, while respiratory viruses
made up 10-15%, and a variety of other viruses made up the
remainder of each virome (Fig. 1C and Supplementary Table S1,
virus).

The bacterial signatures of all the BC subtypes screened were
predominated by Proteobacteria (40-50%), followed by a lower
percentage of Firmicutes and small amounts of a variety of other
bacterial types (Fig. 1C, bacteria).

The fungal signatures in the oncobiome of the four BC subtypes
were predominated by the phylum Ascomycota (50-60%, Fig. 1C,
fungi); however, the TN oncobiome included a higher percentage
of Basidiomycota compared to the other BC subtypes.

The parasitic signatures in the oncobiome of the four BC
subtypes generally had a higher percentage of Nematoda,
followed by Platyhelminthes, Apicomplexa, and Protozoa (Fig.
1C, parasites). HR samples had the most diverse parasitic presence
followed by ER positive with TN having the least diversity.

Figure 1D shows Venn diagrams displaying the viral and other
microbial signatures that are shared and unique to the four BC
subtypes. Signatures of 19 viral families, 20 bacterial genera, 6
fungal genera, and 6 parasitic genera were detected in all the four
BC subtypes (Fig. 1D and Supplementary Table S10). ER and TP
cancers shared 1 viral family signature, 3 bacterial genera, 1 fungal
genus, and 2 parasitic genera. HR and TN cancers shared no viral,
bacterial, fungal, or parasite signatures. A few viruses and other
microbes were found to be unique to each of the four BC subtypes
and they are better highlighted in Fig. 2 and Supplementary Table
S10.

Together the data in Fig. 1 showed the broad diversity of viruses
and other microbes that make up the BC oncobiome. Yet within
this diversity, the oncobiome of each BC subtype had unique
characteristics that make them distinguishable.

Viral and other microbial signatures, and their prevalence in
the four breast cancer subtypes

In Figs. 2A, C and 3A, B, the bar graphs indicate the average
hybridization signal for different families of viral and other
microorganisms detected in the four BC subtypes. The red
diamonds indicate the percent prevalence of the viruses and
microorganisms in each BC subtype.

Figure 2A shows that a variety of viral families are detected at
varying hybridization intensities in each BC subtype. ER and HR
tumors had the most and the least diverse virome. The other BC
subtypes lacked specific viral families, suggesting that the
different BC subtype can be distinguished by the presence or
absence of signatures for specific viral families.

Figure 2B shows a heatmap of the total hybridization signals for
viruses represented in the four different BC subtypes. Interestingly,
TN cancer showed little to no papilloma signal except for a very
low detection of HPV 18 and even lower signals for HPV 7, 26, 49,
131, and 132. The ER subtype showed low to moderate levels of
papillomaviruses except for HPV49. The oncogenic HPV16 was
detected only in ER and HR subtypes, while oncogenic HPV 18 was
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detected at low to moderate levels in all BC subtypes. Other
oncogenic viruses specifically the adeno and hepatitis viruses
were seen in all BC subtypes, HHV8 primarily in ER and TN, Merkel
Cell Polyoma Virus and human T-lymphotropic virus (HTLV) in
both ER and HR. Interestingly, signatures related to oncogenic
viruses that are better characterized in non-human hosts were also
detected. For example, Yaba Monkey Tumor Virus and Monkeypox
Zaire were detected in three BC subtypes, Avian Carcinoma Virus
signature in HR, Mouse Mammary Tumor Virus detected in all,
Torque Teno Virus detected in all, and Parapoxvirus detected in
three subtypes except TN. These signatures may indicate human
variants of these viruses. In this regard, a signature related to HIV-1
sequences was also detected with high average hybridization
signal in all the BC subtypes. Since these patients were HIV
negative, this result suggests the probable presence of an
uncharacterized human lentivirus.

Figure 2C shows the representation and prevalence of bacterial
genera in the BC subtypes. ER subtype had the most diverse
bacterial microbiome, whereas TN subtype had a modest bacterial
microbiome. Some of the bacterial signatures were detected with
high average hybridization signal intensity, suggesting higher
levels of nucleic acids representing these bacteria (Fig. 2C). For
example, we noted higher detection of Bacillus and Chlamydia in
90% of TN samples; Chlamydia, Anaplasma, and Bifidobacterium in
80-90% of HR samples; Chlamydia and Chrysobacterium in 82-98%
of TP samples; and Borrelia, Chrysobacterium, Methylobacterium,
and Staphylococcus in 85-95% of ER samples (Fig. 2C and
Supplementary Table S1). Among the genera in the BC subtypes
those in the phylum proteobacteria dominated (approx. 55%)
followed by Firmicutes and Actinobacteria (Fig. 1C and Supple-
mentary Table S1). These include Brucella, Haemophilus, Neisseria,
Rickettsia, Salmonella, Shewanella, Shigella, Sphingomonas, Vibrio,
and Yersinia from the proteobacteria (Fig. 2C and Supplementary
Table S1). The Bacteroidetes phyla were next predominant.
However, we detected more Chlamydiae followed by the
Bacteroidetes in the TNs (Fig. 1C and Supplementary Table S1).
Tenericutes and Fusobacteria were also detected in all BC
subtypes (Fig. 1C and Supplementary Table S1).

Specific fungal and parasite signatures and their prevalence in
the four breast cancer types

Each BC subtypes had unique fungal signatures (Fig. 3A). The most
diverse fungal biome (mycobiome) was detected in ER and the
least complex in TN. Most of the fungal signatures detected in the
TN samples were yeast or skin fungi and were detected at low
levels and only in 50-75% of the samples. In contrast, a very high
average hybridization signal was detected for Arthroderma in 95%
of ER samples. In addition, high average hybridization signals were
detected for Penicillium, Rhizopus, Rhodotorula, and Cocciodes in
80-90% of the TP samples, and Arthroderma, Rhizopus, and
Rhodotorula in 80-97% of the HR samples (Fig. 3A and
Supplementary Table S1).

Figure 3B represents prevalence of parasite genera in the four
BC subtypes. The most diverse mycobiome was detected in ER+
and the least complex in TN, where all were detected at lower
average hybridization signals (Fig. 3B and Supplementary Table
S1). Among the parasites with higher detection, Thelazia,
Mansonella, Dirofilaria, Balantidium, Entamoeba, and Capillaria
were detected in greater than 90% of the ER samples; Capillaria
and Dirofilaria in the TP samples; and Thelazia and Dirofilaria in
over 93% of the HR samples (Fig. 3B and Supplementary Table S1).

Supplementary Fig. S1 shows a heatmap of the average
hybridization signal for viruses and microorganisms detected in
non-matched control tissues, matched control tissues, and the ER
positive tumor tissues. Supplementary Figs. $2-S4 show similar
heat maps for the TP, HR, and TN samples. In all the BC subtypes
analyzed, we observed that the hybridization signals for the non-
matched controls were significantly less intense than the tumor
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to show low to high detections of specific viral signatures in the four types of breast cancers.
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Fig. 4 Oncobiome signatures in triple-negative breast cancer where higher hybridization signals correlated with better disease outcome.
A The graphs show disease-free rate and/or survival relative to high or low hybridization signals for the specific microorganisms in the TN
sample set. In the cases shown, higher hybridization signal correlates with increased disease-free time and/or survival. B TN BC samples were
clustered based on high and low hybridization signals for those organisms where high hybridization signal correlated with higher disease-free
time and survival (better outcomes). The high (cluster 1) and low (cluster 2) hybridization clusters were then correlated with clinical data

shown as horizontal (a-g) and vertical (h) cluster barplot.

samples. Conversely, the hybridization signals for the matched
control samples were more similar to the tumor samples. This is
complicated by the finding that with hierarchical clustering there
were sub-signatures for each subtype (Supplementary Fig. S5).
However, this observation suggests that the tissue surrounding
the tumor may take on biome characteristics that are similar to
that of the tumor. Conversely, it suggests that a tumor-like
microbiome maybe present on the breast tissues prior to tumor
formation.

Supplementary Fig. S5 shows that each of the BC subtypes can
be grouped into two or more sub-groups based on the higher,
lower, or no detection of specific microbial signatures in their
tumor microenvironment.

Clinical correlations with the presence of specific

microorganisms in TN breast cancer microbiome

We next analyzed patient survival time or disease-free time post
treatment with the presence of viruses and other microorgan-
isms in the oncobiome. Analysis of TN patient samples showed
higher average hybridization signals of Bacillus, Mucor, Nodavir-
idae, Toxocara, and Trichophyton that significantly correlated
with longer disease-free time or survival time (Fig. 4A). Thus, we
clustered the TN samples based on high and low hybridization
signals for Bacillus, Mucor, Nodaviridae, Toxocara, and Trichophy-
ton and correlated these clusters with clinical data (Fig. 4B and
Supplementary Table S3). Note that not all samples originally

Cell Death and Disease (2021)12:831

tested had sufficient data on disease-free time and survival. We
then compared the two resulting clusters (cluster 1: high
hybridization signals; cluster 2: low hybridization signals) with
clinical data [Fig. 4Ba (stage), 4Bb (grade), 4Bc (tumor size), 4Bd
(age at diagnosis), 4Be (histology), 4Bf (Primary site of tumor),
and 4Bg (recurrence)]. Among these we found significant
differences in the two clusters related to stage, tumor size,
recurrence, and position of the tumor in the breast. Specifically,
patients in cluster 1 (high hybridization signal) had a much lower
proportion of grade 2, 3, and 4 cancers (Fig. 4Ba), significantly
smaller tumors (Fig. 4Bc), and a significantly longer disease-free
period after treatment (Fig. 4Bg) compared to patients with a low
hybridization signal (cluster 2). We also found that patients with
TN tumors in the auxiliary tail and the lower inner quadrant of
the breast were almost exclusively in cluster 1, while patients
with tumors in the lower outer quadrant of the breast were
almost exclusively in cluster 2. In Fig. 4Ch, we showed that the
general treatment of patients in the two clusters was very similar;
thus, the overall improved outcomes of patients in cluster
1 suggests that patients with higher hybridization signals for the
five viruses and other microorganisms responded better to
treatment.

Supplementary Fig. S6 shows additional microorganisms in the
tumor oncobiome where higher average hybridization signals
suggested a trend toward better disease prognosis for patients. In
sum, these data suggest that the average hybridization signals of
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this subset of organisms in TN tumors can provide significant
insights into the severity of the cancer and predictable outcomes.

Clinical correlations with the presence of specific

microorganisms in ER+ breast cancer microbiome

We applied the same analysis to viruses and microorganisms in
the ER cancer oncobiome. We detected higher average hybridiza-
tion signals for two Proteobacteria (Klebsiella and Stenotrophomo-
nas) and a parasite (Neodiplostomum) that significantly correlated
with longer disease-free times post treatment (Fig. 5A). Thus, we
clustered the ER samples based on low (cluster 1) and high (cluster
2) hybridization signals for these organisms, and correlated these
clusters with all the clinical data available (Fig. 5Aa-g and
Supplementary Table S4). We found significance differences
between the two clusters for stage, grade, and recurrence.
Specifically, the patients in cluster 2 (higher hybridization signals)
tend to have: (1) a higher number of stage 1 cancer (Fig. 5Aa) and,
correspondingly, a lower number of advanced stage 3 and 4
cancers; (2) a lower number of patients with Grade IIl cancer (Fig.
5Ab); and (3) a much lower proportion with distal recurrences post

SPRINGER NATURE

treatment (Fig. 5Ag). We also observed some differences in the
general treatment provided for patients in the two clusters (Fig.
5Ah and Supplementary Table S3). For example, fewer patients in
cluster 2 were given chemotherapy. This suggests that patients in
the two clusters had a significantly different response to
treatment.

Figure 5B shows additional analysis based on the correlation of
tumor grade with the average hybridization signal for specific
organisms. We observed higher detection of Fonsecaea, Clados-
porium, Heteroconium, Mobiluncus, and Propionibacterium in grade
2 and 3 cancers (Fig. 5B).

Supplementary Fig. S7 shows ER tumor microorganisms that
include bacterial genera Bifidobacterium, Borrelia, Paracoccidioides;
fungal genera Cunnighamella; and parasitic genera of Schistosoma,
Plasmodium, with higher average hybridization signals suggesting
a trend toward improved disease prognosis for patients with ER
BC subtype.

Figure 6A shows that higher average hybridization signals in ER
subtype for Astroviridae, Hepeviridae, Alcaligenes, Brevundimonas,
Proteus, Eikenella, Pseudomonas, Chryseobacterium, Flavobacterium,
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Ureaplasma, Echinococcus, Giardia, Trypanosoma, Brugia, Strongy-
loides, Paragonimus, and Saccharomyces correlated with reduced
survival rates. In Fig. 6B, the ER samples were clustered according to
low (cluster 1) and high (cluster 2) hybridization signals for these
organisms. We found that patients in cluster 2 tended to have: (1) a
lower proportion of grade 1 tumors (Fig. 6Bb); and (2) and a higher
proportion of distant recurrence of cancer post treatment (Fig. 6Bg).
We did not find any significant differences in the treatment regime
for the cluster 1 and 2 patients (Supplementary Table S5 and Fig.
6Bh) suggesting that cluster 2 patients may have responded better
to specific treatments. Additional examples of microorganisms where
higher detection may be associated with poor disease prognosis in
ER+ cancer are shown in Supplementary Fig. S8.

As noted for TN cancers, the average hybridization signal of a
small number of specific viruses and microorganisms in ER+
tumors can provide significant insight into the severity of the
cancer and the predictable outcomes.

Clinical correlations with the presence of specific
microorganisms in HR tumors

In HR cancers we did not find significant correlations between
higher detection of specific microorganisms and better disease
outcome, as indicated by less recurrence or greater survival
(Supplementary Fig. S7). However, Fig. 7A shows that lower average

SPRINGER NATURE

hybridization signals for Pseudoterranova, Ancylostoma, Trichuris,
and Issatchenkia statistically correlated with increased disease-free
time after treatment. In Fig. 7B, we clustered the HR samples based
on low (cluster 1) and high (cluster 2) hybridization signals for the
four organisms. HR patients in cluster 2, who had relatively higher
detection of these microorganisms (1) were mostly above 40 years
of age (Fig. 7Bd); and (2) showed a higher proportion of distant
recurrence of disease post treatment (Fig. 7Bg). There were no
significant differences in the general treatment regime between
cluster 1 and 2 (Fig. 7Bh and Supplementary Table S6) suggesting
that patients in cluster 2 may not have responded to their
treatment as well as patients in cluster 1. These data again
suggested that the average hybridization signal of a few specific
microorganisms in ER+ tumors can provide significant insights into
the severity of the cancer and the predictable outcomes. However,
a larger study may provide more statistical significance and thus
broader and stronger correlations with available clinical data.

Clinical correlations with the presence of specific
microorganisms in TP tumors

Analysis of the TP tumor data showed a number of organisms,
where high average signals correlated significantly with less
disease-free time post treatment or less survival time (Fig. 8A).
These microorganisms include bacterial genera of Orientia,

Cell Death and Disease (2021)12:831
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Klebsiella, Fusobacterium, Azorhizobium, Yersinia, Arthroderma, viral
family Anelloviridae and parasitic genera Angiostrongylus, and
Toxocara. Patients were clustered into high (cluster 1) and low
(cluster 2) levels of detection and correlated with clinical data (Fig.
8B and Supplementary Table S7). The patients who had higher
detection levels for these microorganisms (cluster 1) tended to
have a higher proportion who were never disease free post
treatment (Fig. 8Bg). However, this small number of patients in
cluster 1 that resulted in this specific observation had limited
statistical significance and so was strongly correlative. Supple-
mentary Fig. S10 gives further examples of specific microorganism
that tended to correlate with better or worse clinical outcome, but
again for this group, the statistical significance was limited. A
larger study of TP samples will increase sample size for the clusters
and therefore increase the statistical significance and stronger
correlations with clinical data.

DISCUSSIONS

We have previously studied the oncobiome of TN, ER, HR, and TP
BC, the four subtypes of BC with a small number of study cohort
[3]. In this current study, we re-examined our previous findings
using an independent cohort of patients from a distinct site and
screened over 400 BC samples, with associated clinical data. In
agreement with the previous study, we showed that each BC
subtype had a very diverse oncobiome with ER having the most
diverse and TN having the least diverse oncobiome. There are
many shared viruses and microorganisms across the oncobiomes,
but also unique ones, the presence or absence of which can
specifically distinguish TN, ER, HR, and TP cancers from each other.
Since the four BC subtypes differ in Her2 expression and
endocrine receptor signaling, it is possible that they have
developed their own subtype-specific oncobiomes. Whether or
not these oncobiomes contribute to the genesis or development
of the cancers is still unknown. It is also possible that the tumor
microenvironment provides a unique niche in which the
components of the oncobiome can persist. No matter what the
case may be, the unique oncobiomes provide biomarkers for
diagnostic and prognostic purpose.

In this study we reported nucleic acid signatures of the viruses
and other microorganisms that were found to be significantly
higher in the BCs compared to healthy, non-matched controls
(breast tissue from non-cancerous patients). The lack of
detection of a specific virus or microorganism does not imply
that the cancer is devoid of the virus or microorganism, but that
the detection level is not significantly higher than the healthy
non-matched controls. We found that matched control samples
(pathologically normal tissues adjacent to the tumor tissue) often
had microbial signatures that were significantly greater than the
healthy, non-matched controls, and often similar to the levels
seen in the tumors, most obvious in TN and ER cancers. This
finding suggests two intriguing possibilities (1) that the
oncobiome in the local microenvironment can extend to
surrounding tissues; or (2) that the oncobiome found in the
tumor formed prior to the genesis of the tumor. The latter
possibility suggests a more active role at the site for tumor
development. In this regard, we noted that the position of TN
tumors in the breast correlated with levels of detection of
specific oncobiome signatures.

The detection of nucleic acid signatures for different DNA
viruses, such as herpesviruses, papillomaviruses, and polyoma-
viruses in different BC subtypes, has been well documented
[6, 27-31]. What is more surprising is our consistent detection, in
this and previous studies [3, 6], of signatures of poxviruses and
parapoxviruses in the BC microbiome [32-35]. We have recently
shown that the viral-VEGF encoded by Parapoxviruses, to promote
proliferation of breast cancer and normal breast cells, while
altering metabolic phenotype in normal breast cells, thus
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contributing to disease progression [36]. The detection of DNA
signatures related to the Yaba Monkey Tumor Virus, a tumorigenic
poxvirus, in all but TN cancer, suggests a potential role of this
virus, or a human variant or fragments of this virus, in the
oncogenic process [37]. Also noteworthy is the detection of mouse
mammary tumor virus Env gene signatures significantly detected
in all the BC types agreeing with our previous study and studies of
others [6, 38, 39]. We cannot explain this finding but noted that
not all probes for MMTV were detected and it may be that this
represents a representation of a highly similar family member yet
unidentified. In some BC subtypes that are not HIV positive, we
noted significantly higher detection of signatures for HTLV, and
other lentiviral signatures of SHIV, HIV-1, and bovine immunode-
ficiency virus 1 that may be uncharacterized human lentiviruses.

The abundance of the gram-negative Proteobacteria phylum
detected tissues of the BC subtypes was not surprising, as it was
reported earlier [3, 40-42], and may be associated with cancer
development and/or with different responses to therapy. The
detection of the signatures for the gram-negative anaerobic
bacteria Fusobacterium in the BC subtypes was interesting as it is
known to accelerate cancer development by enhancing cellular
proliferation and protecting tumors from immune cell attack
[43-45].

We detected signatures of skin fungi, yeasts, and parasitic
signatures in all cancer types in agreement with our previous
results [3]. In addition, the cancer samples contained signatures of
previously described cancer-associated fungi such as Fonsecaea,
Trichosporon, Microsporidians such as Nosema and Pleistophora
[3, 6, 8 46-49], and some parasites such as Trypanosoma,
Plasmodium, Strongyloides, Trichinella, and Taenia [3, 6-
8, 46, 50, 51].

Hierarchical clustering of the tumor microbiome signatures
showed specific sub-signatures for each cancer, in agreement
with previous studies [3, 6, 7, 18, 19, 52]. We examined whether
the level of detection of viruses and other microorganisms
strongly correlated with better or worse outcomes. As shown in
Figs. 4-8, the levels of detection of a few viruses and
microorganisms strongly correlated with survival time or
disease-free time, and depended on the cancer subtype, tumor
grade, tumor size, position of the tumor in the breast, and
response to treatment. These data were statistically significant
for TN and ER and strongly correlative for HR and TP. Thus, our
data showed that the level of detection of some viruses and
other microorganisms in the oncobiome of each BC subtype can
provide significant prognostic and diagnostic value with insights
into intervention strategies that can precisely target patients
with a specific BC subtype.

Our study on more than 450 breast tumor samples, matched
control, and non-matched control draws a comprehensive map
showing the microbial population prevalent in each of the BC
subtypes. We have successfully established a signature onco-
biome for each BC subtype, and established a trend or correlation
between the abundance of specific microbes with survival time or
disease-free time for each subtype. Thus, our current study
provides more clarity regarding the prognostic and diagnostic
aspects of the oncobiome in BCs, which could be important for
developing future treatment strategies with targeted precision
therapies.
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