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Abstract
Macrophages (Mφ) are primary innate immune cells that exhibit diverse functions in response to different pathogens
or stimuli, and they are extensively involved in the pathology of various diseases. Extracellular vesicles (EVs) are small
vesicles released by live cells. As vital messengers, macrophage-derived EVs (Mφ-EVs) can transfer multiple types of
bioactive molecules from macrophages to recipient cells, modulating the biological function of recipient cells. In
recent years, Mφ-EVs have emerged as vital mediators not only in the pathology of multiple diseases such as
inflammatory diseases, fibrosis and cancers, but also as mediators of beneficial effects in immunoregulation, cancer
therapy, infectious defense, and tissue repair. Although many investigations have been performed to explore the
diverse functions of Mφ-EVs in disease pathology and intervention, few studies have comprehensively summarized
their detailed biological roles as currently understood. In this review, we briefly introduced an overview of
macrophage and EV biology, and primarily focusing on current findings and future perspectives with respect to the
pathological and therapeutic effects of Mφ-EVs in various diseases.

Facts

● EVs can carry and transfer various bioactive
molecules towards recipient cells and thus
participate in the cell-cell communication during
disease pathology and tissue regeneration.

● Macrophages play essential roles in the pathology of
multiple diseases, and their released EVs are also
believed to participate in these courses.

● Mφ-EVs can serve as potential therapeutic targets as

well as promising agents for the treatment of
diseases due to their similar abilities to macrophages.

Open questions

● How can we properly regulate the release or the
embedded contents of Mφ-EVs to prevent the
development of diseases?

● How can we precisely modulate Mφ-EVs to exert
diverse functions in response to different
microenvironments or disease states?

● Is there any method to generate the reprogrammed/
reengineered Mφ-EVs with improved yield and
biofunction?

Introduction
Macrophages are key innate immune cells that circulate

in the blood and reside in nearly all tissues with self-
renewal capacity and tissue-specific characteristics1.
Macrophages initially originate from highly heterogeneity
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hemopoietic progenitors to perform multiple functions
that depend on the various stimuli. Macrophages con-
stitute the first barrier against invading pathogens, which
are activated and exhibit differential phenotypes in
response to a variety of endogenous and exogenous
danger signals, mediating the homeostasis of the immune
system and multiple tissues. However, abnormal macro-
phage responses may induce immune disorders and
uncontrolled inflammation, which have been implied in
many diseases. For example, damage-associated molecular
patterns (DAMPs) released after kidney injury activate
toll-like receptors (TLRs) and nuclear factor-κB (NF-κB)
in macrophages, stimulating reactive oxygen species
(ROS) and inflammatory cytokines release that further
aggravates inflammation and renal injury2. Generally,
activated macrophages communicate with various types
of target cells to exert their immunomodulatory effects via
direct cell-to-cell contact and/or release of the secretome
including cytokines and extracellular vesicles (EVs).
EVs are a group of membrane-enclosed vesicles that are

naturally released by nearly all types of cells. EVs can be
divided into multiple subtypes, such as exosomes,
microvesicles, apoptotic bodies, exomeres, and large
oncosomes, based on their different origins and sizes. EVs
package proteins, nucleic acids, and metabolites of par-
ental cells, and are thought to exhibit similar properties to
their parent cells. Recently, EVs have been recognized as
vital information carriers that transfer their cargos from
parent cells to recipient cells, modulating the physiolo-
gical or pathological processes in recipient cells. The
functions of EVs derived from macrophages in various
disease states have been widely investigated, and
increasing evidence indicates that these EVs play key roles
in the diseases progression. Thus, a comprehensive
understanding is needed of macrophage-derived EVs
(Mφ-EVs) and their roles in the disease pathology and
treatment. In this review, we discussed the important
studies with respect to the biological and therapeutic
effects of EVs from macrophages in various diseases.

Macrophage polarization and functions
Macrophages are highly heterogeneous immune cells

that act in response to various stimuli. Depending on the
microenvironments, macrophages exhibit different phe-
notypes and can be roughly divided into two subtypes:
classically activated macrophages (CAMs, M1-like mac-
rophages) and alternatively activated macrophages
(AAMs, M2-like macrophages)3–5. With the increasing
understanding of macrophages, M2-like macrophages
have been further subdivided into the M2a, M2b, M2c,
and M2d subtypes based on their gene expression profiles.
In general, M1-like macrophages comprise the majority
population during early inflammation against danger
signals, and then they skew towards M2-like macrophages

exhibiting immunoregulatory effects to facilitate tissue
repair, regeneration, and fibrosis6. The phenotype switch
between M1-like and M2-like cells is intimately associated
with the disease development. Although the functions of
these two types of macrophages are largely distinct, they
work collectively to regulate tissue homeostasis.

M1-like macrophages
M1-like macrophages play important roles during the

early stage of pathogen invasion and inflammatory dis-
eases and are typically induced by interferon-γ (IFN-γ),
TNF-α, granulocyte monocyte colony-stimulating factor
(GM-CSF), or lipopolysaccharide (LPS) in vitro. M1-like
macrophages are characterized by several markers, such
as CD86, CD68, TNF-α, MHC class II molecules, indu-
cible nitric oxide synthase (iNOS), NOS2, and suppressor
of cytokine signaling 3 (SOCS3; Fig. 1). M1-like macro-
phages secrete high levels of proinflammatory cytokines
such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and
TNF-α, promoting the inflammatory and cytotoxic
responses7. In addition, M1-like macrophages generate
high levels of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) to fight against invading patho-
gens8. iNOS acts on L-arginine to produce nitric oxide
(NO), which mediates antibacterial and antifungal
responses9.
When foreign pathogens such as fungi, bacteria and

parasites, M1 macrophages release proinflammatory
cytokines and induce T helper 1 (Th1) cells differentia-
tion, exhibiting enormous proinflammatory response to
deal with these pathogens, which is beneficial for indivi-
duals fighting against early stage pathogens invasion.
However, excessive proinflammatory and cytotoxic
responses can cause severe tissue damage10. M1-like
macrophages are involved in many inflammatory diseases
such as rheumatoid arthritis, hepatitis, inflammatory
bowel disease, metabolic syndrome, and diabetes.

M2-like macrophages
Compared to M1-like macropahges, M2-like macro-

phages are more likely to contribute trophism, phagocy-
tosis, and induction of tissue tolerance rather than acting
as efficient killers. M2-like macrophages are typically
induced by T helper 2 (Th2) cytokines (Fig. 1). M2a
macrophages are induced by IL-4 and IL-13 via activation
of the STAT6 pathway through the common receptor IL-
4Rα, which primarily mediates tissue repair and antifungal
response11,12. Activation of STAT6 can induces the pro-
duction of arginase-1 (Arg1), which then degrades argi-
nine into polyamines and prolines, thereby promoting cell
proliferation and collagen deposition for tissue repair.
M2b macrophages are generated upon exposure to
immune complexes and IL-1R or TLR agonists and pri-
marily participate in regulating the immune response13.
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M2c macrophages are induced by IL-10, which express
the Mer receptor tyrosine kinase and exhibit strong anti-
inflammatory and phagocytic effects14. M2d macro-
phages, also called tumor-associated macrophages
(TAMs), belong to a newly identified branch of macro-
phages that are induced by TLR agonists and IL-612. M2-
like macrophages are identified by mannose receptor
(MR/CD206), Arg1, IL-10, MHC class II molecules, per-
oxisome proliferator-activated receptor (PPARγ), Fizz1
and YM1/2 family members.
In brief, M2 macrophages primarily participate in tissue

repair, immunoregulation, and fibrosis. M2 macrophages
often display lower capacity for antigen presentation and
oxidants production and higher levels of certain anti-
inflammatory factors, such as IL-10 and TGF-β, thereby
resolving deleterious inflammatory conditions15. How-
ever, hyper-activation of M2-like macrophages may
induce tissue fibrosis, which is characterized by excessive
extracellular matrix (ECM) deposition and destruction of
normal tissue structure, resulting in organ dysfunction. In
addition, M2-like macrophages also promote tumor pro-
gression and metastasis. TAMs are the most abundant
immune cell population in tumors16, primarily originating
from circulating monocytes and providing an immuno-
suppressive niche that supports tumor invasion.

Mechanistically, TAMs secrete matrix metalloproteinases
(MMPs) and induce vascularization of tumor tissue by
producing growth factors, such as vascular endothelial
growth factor (VEGF), platelet derived growth factor
(PDGF), and transforming growth factor (TGF)-β17.
Conversely, depletion or reprogramming of TAMs toward
an M1-like phenotype has shown potential for cancer
therapy18. Although TAMs are believed to be intimately
associated with the anti-inflammatory TME, the tradi-
tional view of TAMs as skewed M2-like macrophages
might be oversimplified. Since tumors are evolving tissues
and molecules within TME and vary at different stages,
the phenotypes of TAMs are dynamically altered in
response to different TMEs19,20.
Unlike in vitro conditions, macrophages usually develop

mixed phenotypes in vivo in response to disease condi-
tions, and they are difficult to separate using classical M1
or M2 surface markers. For example, it has been reported
that macrophage populations display a mixed M1/M2
phenotype in obese patients21. The dynamic balance
between M1-like and M2-like macrophages tightly con-
trols the disease outcomes, suggesting that regulation of
macrophage phenotype is a promising strategy for disease
treatment. In addition to cytokines release, increasing
evidence indicates that EVs are also critical mediators for

Fig. 1 The heterogeneity and characterizations of macrophages. Macrophages could be roughly divided into two subtypes (M1-like and M2-like,
while M2-like macrophages can be further differentiated into M2a, M2b, M2c, and M2d phenotypes.) depending on their different
microenvironmental stimuli. All of these phenotypes express different cytokines, chemokines, and receptors which give rise to their different
functions respectively. Generally, M1-like macrophages mainly induce proinflammatory responses and usually associated with Th1 response while
M2-like macrophages contribute trophism and tissue tolerance. Furthermore, M2a is mainly mediating tissue repair and remodeling and Th2
responses; M2b is commonly responsible for immunoregulation; M2c mainly functions in phagocytosis, and M2d participates in angiogenesis
in tumor.
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intercellular communication between macrophages and
target cells or tissues during physiological and patholo-
gical processes. In the following sections, we discuss the
biological properties of EVs.

Properties of extracellular vesicles
Diverse sub-populations of EVs
Depending on their different origins and sizes, EVs were

initially categorized into exosomes (Exos, ~30–200 nm),
microvesicles (MVs, ~200–1000 nm), and apoptotic
bodies (ABs, ~1–5 μm). However, with the increasing
appreciations of EVs, many other sub-populations, such
as exomeres (<50 nm) and large oncosomes (LOs,
~1–10 μm), have been recently identified22. Briefly, ABs
originate from the plasma membrane and are often pro-
duced when cells undergo apoptosis, exhibiting a broad
size range between 1 and 5 μm in diameter. Most ABs are
engulfed by phagocytes through receptor recognition by
factors such as Annexin V, C3b, and thrombospondin on
their surface, which have served as well-accepted markers
of apoptotic bodies23. Most apoptotic cells are eliminated
by phagocytes in the form of ABs, a crucial biological
process for avoiding autoimmunity24. Exomeres, first
identified in 2018, are vesicles smaller than 50 nm lacking
external membrane structures, and HSP90 has been
proposed as a marker for exomeres. Exomeres contain
abundant metabolic enzymes and signature proteins
involved in the glycolysis and mTORC1 pathways25.
However, detailed information and the biological function
of exomeres remain largely unknown26. LOs are a large
sub-populations of EVs (~1–10 μm) that are cancer cell-
specific and are derived from the plasma membrane with
high expression of ARF6 protein. Secretion of LOs is
strongly associated with tumor aggressiveness27–29.
However, it is unclear how much overlap in the markers
and functions exists between LOs and other tumor-
derived EV sub-populations.
Despite much progress in the EV field, our under-

standing of the heterogeneity and diverse function of EV
sub-populations is still in its infancy. Currently, the most
common method to distinguish EV subtypes is depen-
dent on their size30. However, due to a lack of specific
markers, identification of any pure EV sub-population is
not easy once they have been isolated in vitro. It is now
believed that EVs are not only limited to these currently
reported sub-populations22,31. More detailed and thor-
ough investigations of EV populations are required,
which will provide a better understanding of the diverse
roles of EVs in disease pathology and treatment. In the
literature related to macrophage-derived EVs, some sub-
populations, such as exomeres, ABs, and LOs, are rarely
involved. Therefore, we primarily focus on the biological
roles of macrophage-derived Exos and MVs in the fol-
lowing sections.

Regulation of EV biogenesis
EVs are a group of nano-sized membranous vesicles

released by live cells, that were initially considered to
comprise a cell waste removal mechanism32. However,
researchers have now recognized that EVs could carry
and transfer biological molecules from parent cells to
recipient cells, participating in intracellular commu-
nication during disease pathology and tissue regenera-
tion33. Based on their different origins and sizes, EVs are
further categorized into at least two categories, exo-
somes (Exos, ~30–200 nm) and microvesicles (MVs,
~200–1000 nm)34,35. Briefly, EVs derived from the
endosomal pathway are known as Exos and others
derived from the plasma membrane are identified as
MVs. Exos are primarily released by the fusion of plasma
membrane (PM) and multivesicular bodies (MVBs)36.
Internalization of PM produces early endosomes at the
beginning, followed by invagination of endosomes that
generates quantities of intraluminal vesicles (ILVs)
within the endosomal compartments, leading to the
formation of MVBs, which further fuse with the PM to
release these ILVs to extracellular spaces, which then
become Exos (Fig. 2). Although the detailed mechanism
is not fully understand, it has been reported that the
endosomal sorting complex required for transport
(ESCRT) is intimately associated with the formation of
Exos37,38. However, knockdown of ESCRT allows the
continued formation of Exos, suggesting that other
mechanisms in addition to ESCRT are also involved in
Exo biogenesis36,39,40. One of the alternative pathways
involves synthesis of the sphingolipid ceramide41, which
may have synergistic effects with ESCRT in the bio-
genesis of Exos. Another ESCRT-independent pathway
is the family of tetraspanins, such as CD63, which plays
important roles in the regulation of Exo biogenesis42–45.
Furthermore, Rab proteins, which belong to the Ras-like
small GTPase superfamily, have also been found to be
associated with Exo release46,47.
MVs are thought to primarily originate from directly

outward budding of the PM (Fig. 2). Despite their distinct
origins, the membrane-trafficking process is involved in
the formation of both MVs and Exos. Hence, they may
share some common mechanisms of biogenesis. For
example, ESCRT and Rab family have been reported to
participate in MV formation as well46,48. Ras superfamily
proteins, such as ADP-ribosylation factor 6 (ARF6), have
also been proposed as key regulators of MV biogenesis49–
51. ARF6 induces PM rearrangement, as well as alteration
of actin dynamics and cytoskeleton which are involved in
MV formation. In addition, high Ca2+ concentration
promote MV release via reorganizing of the cytoskele-
ton52. However, the specific process of MV biogenesis
remains controversial, and additional studies are required
to reveal the exact mechanism of MV biogenesis.
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Cellular uptake mechanism of EVs
EVs can encase multiple types of bioactive molecules

such as proteins, RNAs (e.g., mRNAs, miRNAs, mtRNAs,
and lncRNAs), DNAs (e.g., mtDNA), and lipids from
parent cells. Released EVs are further taken up by reci-
pient cells and regulate gene expression or signaling
pathways in these cells. Several mechanisms, such as
protein interactions, endocytosis, and direct membrane
fusion, have been implicated in the cellular uptake process
of EVs (Fig. 2). Protein interactions between EVs and
recipient cells may promote subsequent endocytosis.
After treatment with Proteinase K to degrade proteins,
EVs exhibited a dramatic decrease in cellular uptake rates,
suggesting the important roles of protein interactions in
this process53. In addition, uptake of EVs by endocytosis
seems to be the most common pathways, including
clathrin-mediated endocytosis (CME), macropinocytosis,
and phagocytosis. The cellular uptake of EVs through the
CME pathway depends extensively on cholesterol that is
enriched in lipid rafts54. Flotillins is a common marker
protein of lipid rafts that has intimate associations with
endocytosis in a CME independent pathway. Another
proposed mechanism is the direct membrane fusion of
EVs and recipient cells, and several proteins, such as Rab
and SNAREs, participate in this process55. Moreover,
acidic pH conditions, such as in tumors and the stomach,
also promote membrane fusion of EVs with target cells56.

Although several mechanisms have been proposed, it
seems that the cellular uptake of EVs involves more than
one single mechanism, and multiple pathways work
together simultaneously to modulate this process.

EV isolation and characteristic methods
Isolation of EVs is the first step that directly determines

the quality of subsequent research. Currently, several EV
isolation methods have been established, and each method
has its own advantages and disadvantages. Ultra-
centrifugation (UC) is the most common isolation method,
which obtain EVs based on differential centrifugal force57.
In brief, liquid samples go through a series of centrifugation
to remove cells, debris, apoptotic bodies, and finally collect
EVs by UC. UC is widely used in EV isolation due to its high
suitability for multifarious liquid samples and simplicity
compared to other methods. However, damage to the EVs
structure caused by UC is irreversible and may influence
subsequent tests. Contamination by aggregate proteins is
also a considerable issue57. Density gradient flotation is
often applied to improve the purity of EVs depending on
their density, which is performed through a gradually
increasing density to isolate EVs. However, both UC and
density gradient flotation are time-confusing and labor-
intensive. Other methods including ultrafiltration, size-
exclusion chromatography (SEC), immunoaffinity, and
precipitation are also applied in EV isolation. Ultrafiltration

Fig. 2 Biogenesis and cellular uptake mechanisms of EVs. There are two major subtypes of EVs known as the Exos and the MVs. Exos are released
by the fusion of plasma membrane with MVB which is generated by inward budding of endosome. While MVs are released by direct outward
budding of plasma membrane. During cellular uptake, contents within released EVs from parent cells can be transmitted into the cytoplasm of
receptor cells by membrane fusion and/or endocytosis. In this endocytosis process, clathrin-mediated endocytosis (CME), macropinocytosis, and
phagocytosis are regarded as the most common pathways.
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and SEC are both based on sizes. Although ultrafiltration is
time-saving compared to UC, low yield largely impedes its
application. EV isolation by SEC is believed to have high
purity and integrity compared to other methods. However,
elution in SEC may reduce EVs concentration and influence
EVs functions58,59. Although immunoaffinity exhibits high
purity and isolates EVs through specific antibodies that
recognize surface markers on EVs, it unsuitable for large
volume samples. Recently, several commercial isolation kits
have been established that are largely based on the pre-
cipitation of EVs in polymer solution. While the high out-
put and convenient process have aroused interest, impurity
with lipoproteins and introduced polymers during pre-
cipitation has raised some concerns60.
Recently, newer EV isolation and detection methods have

also been developed. For instance, microfluidic platforms,
including size-based separation, immunoaffinity-based
separation, and dynamic separation, are primarily based
on the size and immunoaffinity of EVs. Despite some
advantages of microfluidics, such as high purity, cost-effi-
ciency, and portable properties, shortcomings, such as
complicated photolithography fabrication and capturing
EVs with only targeted proteins, also exist. Furthermore,
nanoscale flow cytometry (nanoFACS) has been used to
analyze and sort EV sub-populations using specific anti-
bodies against EV marker proteins61,62. Due to its high-
resolution, nanoFACS obliterates noise and background
and determines the cellular source of EVs, which has made
it extremely valuable63. Asymmetrical flow field flow frac-
tionation (AF4) is another isolation method that separates
EVs based on their different sizes25,64. AF4 technology is
coupled with a multidetection system composed of
ultraviolet-visible spectroscopy (UV) and multiangle light
scattering (MALS), which separates and characterizes EVs
according to their different diffusion coefficients, since
particle size positively correlates with its diffusion coeffi-
cient. Although many novel tools have been developed,
there is still no current standard for EV isolation or analytic
methods, with each method having its own strengths and
weaknesses. Therefore, it is necessary to select an appro-
priate EV isolation method based on the purpose of study.
Characterization of EVs primarily involves morphological

and molecular identification. Transmission electron micro-
scopy (TEM) and nanoparticle tracking analysis (NTA) are
commonly employed to detect the complete spherical
structures and nano-scales of EVs respectively. Western
blotting is usually performed to detect EV protein markers,
such as TSG101, CD63, ALIX, etc. Notably, none of these
methods alone can characterize EVs, and EV characteriza-
tion requires several methods used collectively36,65.

Pathological roles of Mφ-EVs in disease
Macrophages-derived EVs (Mφ-EVs) deliver abundant

proteins, lipids, and genetic information among cells to

modify the phenotype and function of target cells.
However, contents of Mφ-EVs may vary with different
Mφ phenotypes or microenvironments. For example,
EVs from polarized and naïve macrophages display
distinct miRNA profiles66. Since macrophages usually
develop complicated and mixed phenotypes in response
to different diseases or different phases even in the same
disease in vivo, it is not easy to identify the exact subsets
(e.g., M1 or M2) of their EVs. Hence, we discuss the
roles of macrophages-associated EVs in the pathology of
different diseases in the following sections (Table 1 and
Figs. 3 and 4).

Cardiovascular diseases
Cardiovascular diseases (CVDs), such as coronary heart

disease, peripheral arterial disease, and cerebrovascular
disease, are a class of disorders of heart and blood vessels.
Macrophages have been recognized as vital players that
participated in the most stages of CVDs. For example, in
atherosclerosis, macrophages within plaques scavenge
retained lipoproteins and transform into cholesterol-laden
foam cells, which subsequently exacerbate inflammatory
responses and accelerate atherosclerosis progression67,68.
Although the detailed mechanisms remain elusively,
recent studies have realized the important roles of Mφ-
EVs in the development of CVDs. For example, EVs from
atherogenic macrophages promote plaque formation in
atherosclerosis. These EVs restrained the migration of
naïve macrophage out of plaques and reduced the growth
and tube formation of endothelial cells (ECs), increasing
plague progression69,70. Moreover, excessive lipoproteins
accumulation induces the release of Mφ-EVs enriched
with lncRNA GAS5, triggering apoptosis in ECs71. Vas-
cular smooth muscle cells (VSMCs) usually reside close to
macrophage infiltration sites during vascular lesions72.
Recently, EVs from M1-like macrophages have been
proven to activate extracellular regulated protein kinase
(ERK) and protein kinase B (Akt) pathway by transferring
integrins, which in turn stimulate extracellular matrix
(ECM) production and cell migration and adhesion in
VSMCs, aggravating atherosclerosis73. Additionally, EVs
from macrophages exposed to nicotine also induce VSMC
proliferation and migration by delivering miR-21-3p to
activate phosphatase and tension homolog (PTEN) in
these cells74.
Cardiac remodeling is a subsequent pathological con-

dition following severe CVDs. Although the detailed
mechanism is still under investigation, macrophage infil-
tration has been regarded as one of the vital factors in this
course75,76. Macrophage-derived EVs are taken up by
cardiac fibroblasts, and a macrophage-fibroblast crosstalk
has been proposed. After myocardial infarction (MI), EVs
derived from proinflammatory macrophages deliver miR-
155 into cardiac fibroblasts, inhibiting their proliferation,
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causing abnormal cardiac remodeling and increasing the
incidence of cardiac rupture77. Furthermore, EVs isolated
from macrophages under hypertension were enriched
with miR-17 and induce the expression of cytokines, such
as intercellular adhesion molecule-1 (ICAM-1) and plas-
minogen activator inhibitor-1 (PAI-1), in ECs via acti-
vating the NF-κB pathway, which ultimately promote
cardiac inflammation and pathological cardiovascular
remodeling78. During intracranial aneurysm (IA) devel-
opment, Mφ-EVs transfer miR-155-5p to promote the
proliferation and migration of smooth muscle cells by
downregulating GREM1, a member of the antagonists of
secreted bone morphogenetic protein79. Collectively,
although the relevant mechanisms are still under debate,
the considerable effects of Mφ-EVs during CVDs are
indispensable to disease development.

Metabolic diseases
Metabolic diseases, such as obesity, insulin resistance

(IR), and diabetes, belong to a type of complicated
metabolic disorders with both high morbidity and mor-
tality80,81. Macrophages-mediated inflammatory respon-
ses are recognized as an essential pathological process to
disease progression. For example, increased numbers of
adipose tissue macrophages (ATMs) have been observed
in IR individuals82 and the morbidity of obesity and IR
strongly parallels with the severity of inflammation83.
Moreover, co-culture of ATMs with pancreatic cells
demonstrated that cell–cell communication is responsible
for inflammatory milieu formation84. EVs from obese
ATMs induce glucose intolerance and IR, while these
adverse effects could be reversed by EVs from lean
ATMs85. PPARγ is a key factor for maintaining insulin
sensitivity, and EVs from proinflammatory macrophages
induce glucose intolerance and IR by disrupting PPARγ
signaling. EVs isolated from obesity mice-derived ATMs
deliver miR-155 and miR-29a to inhibit PPARγ in adi-
pocytes, myocytes, and hepatocytes, increasing levels of
fasting blood glucose, serum insulin, and index of
homeostasis model assessment of IR in lean mice85,86.
However, another study reported that EVs from LPS-
induced macrophages failed to influence glucose uptake
and fat storage in adipocytes but were able to up-regulate
inflammation and carbohydrate catabolism related genes
such as CXCL5, SOD, C3, and CD34 in adipocytes87.
Additionally, macrophages derived from mice with
knockout of Ercc1, a highly conserved endonuclease
complex required for lesion excision in nucleotide exci-
sion repair, release EVs to induce glucose transporter
type-1 (GLUT-1) expression in pancreatic cells, further
leading to hyperglycemia and inflammation in primary
pancreatic cells88. Overall, these findings collectively
verified that Mφ-EVs promote metabolic diseases
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development by modulating glucose and lipid metabolism
pathways.

Infectious diseases
The key roles of macrophages against foreign invaders

have been known for years. Investigators have recently
realized that Mφ-EVs also exert several adverse roles
during severe infections. Mycobacterium tuberculosis (M.
tb)-induced tuberculosis (TB) is characterized by a series
of severe inflammation responses along with the forma-
tion of granuloma and drug-resistance89. Several studies
suggested that EVs from M.tb infected macrophages
contribute to TB development. M.tb infected macro-
phages package mycobacterial lipids and proteins within
their EVs, and these EVs further induce the formation of
granuloma and facilitate M.tb spread90,91. Furthermore,
Mφ-EVs are also implicated in viral infections such as
human immunodeficiency virus (HIV) and hepatitis C
virus (HCV). An increasing number of EVs has been
found in HIV-infected monocyte-derived macrophages
(MDM). Despite these EVs differing in size, morphology,
and content (miRNA and proteomic profiles), they were
able to deliver viral constituents to the uninfected MDM
and thus induce infection in these cells92,93. Epidemiolo-
gical data indicate that individuals infected with HIV are
at high risk for the development of pulmonary diseases,
but the underlying mechanism whereby this occurs
remains unclear94. Interestingly, HIV-infected macro-
phages were found to release EVs plentiful in miR-130a,
which induces pulmonary smooth muscle cell prolifera-
tion and development of pulmonary arterial

hypertension92. Moreover, EVs from HIV-infected mac-
rophages are rich in miR-23a and miR-27a, which
damaged the EC integrity and caused mitochondrial
dysfunction, ultimately exacerbating pulmonary lesions93.
These findings suggest that EVs from infected macro-
phages can transfer the pathogenic constitutes or miRNAs
to aggravate pathogen spread or disease severity. How-
ever, the ability of EVs to carry pathogenic constituents
may also shed light on their application for pathogen
vaccines.

Tumor development and chemoresistance
Throughout the tumor microenvironment (TME), mul-

tiple cell type such as immune cells, vascular endothelial
cells, and fibroblasts collectively work to regulate tumor-
igenesis. Disorders of the TME increase the occurrence of
tumor recurrence, metastasis, and chemoresistance95.
TAMs are one of the major TME cells that provide an
immunosuppressive milieu for tumor progression and
secrete many growth factors that suppress the proin-
flammatory cytokine release in the TME. It is thought that
TAM-derived EVs (TAM-EVs) exhibit similar tumor-
friendly properties to their donor cells. These EVs have
shown the capacity to mediate cell-to-cell communication
between TAMs and other immune cells such as T cells. For
example, TAM-EVs enriched with miR-21-5p and miR-
29a-3p inhibit the STAT3 pathway and induce Treg/Th17
cell imbalance, generating an immunosuppressive milieu to
facilitate the progression and metastasis of epithelial ovarian
cancer96. TAM-EVs also deliver miR-501 to activate the
TGF-β pathway and promote tumor migration and invasion

Fig. 3 Summary of the current findings for various diseases associated with macrophages-derived EVs. EVs derived from macrophages
contain different types of constitutes that can affect the functions of multifarious systems in vivo. Specifically, the red arrows imply for the
pathological roles of EVs in diseases and the blue ones imply for their therapeutic roles.
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in pancreatic ductal adenocarcinoma97. Moreover, TAM-
EVs play important roles in the pathology of tumor che-
moresistance. It has been reported that EVs from TAMs
under hypoxic conditions with enriched miR-223 promote
drug resistance in epithelial ovarian cancer through acti-
vating PTEN-PI3K/AKT pathways98. However, another
study argued that EVs derived from TAMs display mole-
cular profiles associated with Th1/M1 polarization, and
they might exhibit antitumor immunity99. Taken together,
TAM-EVs have emerged as vital mediators in tumors
development and chemoresistance, and their detailed effects
in tumors still need to be investigated in future studies.

Tissue fibrosis
Tissue fibrosis is characterized as the up-regulation of

profibrotic factors (e.g., TGF-β, CTGF) and ECM com-
ponents (e.g., Fibronectin, Collagen type I) that destroys
normal histological structures, ultimately leading to organ
dysfunction100,101. Recently, Mφ-EVs have been impli-
cated in the pathology of tissue fibrosis, as their

administration restarts the profibrotic pathways after
depletion of macrophages in mice102. Asbestos exposure
is a major cause of several severe lung diseases such as
malignant mesothelioma (MM), lung fibrosis (asbestosis),
and bronchial carcinoma. Evidence has shown that EVs
from asbestos exposed macrophages induce the expres-
sion of many genes that are involved in TGF-β-meditated
cell-cycle control and chromosome instability in meso-
thelial cells, contributing to the development of lung
fibrosis103. Lung silicosis induced by silica particles is
primarily characterized by diffuse fibrosis. EVs from
macrophages exposed to silica also up-regulate α-SMA
expression in fibroblasts due to the abundant miR-125a-
5p in these EVs104. Moreover, EVs from M2-like macro-
phages are enriched with miR-328 and lncRNA-
ASLNCS5088, which subsequently activates TGF-β and
profibrotic factors (e.g., α-SMA, Collagen I) in
fibroblasts105,106.
Progressive renal fibrosis is a hallmark of diabetic

nephropathy (DN), a leading cause of end-stage renal

Fig. 4 Summary of the diverse roles of Mφ-EVs in multiple diseases. Mφ-EVs can exhibit therapeutic effects to counter pathogens and tumors
and promote tissue repair. However, EVs from dysfunctional Mφ can induce excessive inflammatory response, EMT, endothelial injury, and tumor
immunosuppression.
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disease (ESRD) and renal failure in huge number of dia-
betic patients. Although macrophage infiltration is linked
to the progression of DN, their roles in renal fibrosis
during DN are not entirely clear. Interestingly, a recent
study found that EVs from macrophages under high
glucose condition were taken up by mesangial cells,
enhancing the proliferation and excessive ECM secretion
in these cells via activating TGF-β1/Smad3 pathways107.
Mφ-EVs from diabetic conditions were abundant with
HuR, an RNA-binding protein that regulates post-tran-
scription, and induce fibrogenesis in fibroblasts108. As a
result, angiotensin II-induced CVD mice supplemented
with EVs carrying HuR displayed clear interstitial and
perivascular fibrosis108. Collectively, these findings have
revealed the significant roles of EVs in the pathology of
tissue fibrosis in multiple organs.

Therapeutic roles of Mφ-EVs in diseases
Depending on their parental cell types and the cargos

they carry, Mφ-EVs may exhibit either immunosuppres-
sive or immunostimulatory effects, thus serving as
potential tools for disease therapy. As a type of endo-
genous nanovesicles, EVs have several advantages such as
low immunogenicity, nontoxicity, and higher stability,
over other synthetic nanoparticles109. Moreover, EVs
exhibit the ability to pass through tissue barriers, such as
the BBB110, enhancing the therapeutic efficacy of incor-
porated molecules to target cells. Mφ-EVs have emerged
as a promising cell-free therapy for many biomedical
applications such as tissue repair, drug delivery, and
pathogen control (Table 2 and Figs. 3 and 4).

Tissue repair
Functional recovery of injured tissues remains a huge

clinical challenge, and Mφ-EVs have shown several ben-
eficial effects on injured cells or tissues. For example,
myocardial ischemia/reperfusion (I/R) injury is char-
acterized by irreversible injury to the myocardium and
results in heart dysfunction. Interestingly, EVs from M2-
like macrophages deliver miR-148a to mitigate I/R-
induced myocardial injury via suppressing the overloaded
Ca2+ and inflammatory cytokine production in cardio-
myocytes111. The anti-inflammatory effect of Mφ-EVs was
also investigated in the models of diabetic wound, which
is characterized by a persistent inflammatory response.
For example, the skin defect in diabetic rats was rescued
by EVs derived from anti-inflammatory macrophages112.
Mechanistically, these EVs not only reduced cytokine
(e.g., TNF-α, IL-6) secretion in ECs, but also induced EC
proliferation and migration to improve angiogenesis and
re-epithelialization during wound healing112. Further-
more, Mφ-EVs promote hair growth and protect the
intestine against radiation injury through activation of
WNT/β-catenin signaling113,114.

Mφ-EV-guided immune cell reprogramming is a pro-
mising therapeutic approach for inflammation-associated
disorders. EVs from M2b macrophages display a more
robust protective capacity compared to those from M2a
macrophages or M2c macrophages in dextran sulfate
sodium-induced colitis. The anti-inflammatory effects of
M2b-derived EVs may be ascribed to elevated CCL1,
which promotes Th2 polarization of the colon to reba-
lance the Th1 immune response, thereby attenuating the
severity of DSS-induced colitis in mice115. Mφ-EVs also
induce phenotype switching in macrophages, and sub-
cutaneous injection of M2-like macrophages-derived EVs
in a cutaneous wound induced local macrophage pheno-
type switching from M1-like towards M2-like, promoting
the cutaneous wound healing by enhancing angiogenesis,
re-epithelialization, and collagen deposition116.

Pathogen control
Macrophages are one type of primary innate immune

cells that can fight pathogen infection. The therapeutic
role of Mφ-EVs also sheds light on infectious diseases. For
instance, EVs from M.tb-infected macrophages are cap-
able of inducing the systematic inflammatory responses
with high levels of cytokines (e.g., TNF-α, IL-12) in pri-
mary macrophages and M.tb-infected mice, which was
indispensable at the early phase of pathogen control91,117.
Similarly, EVs derived from M.tb-infected macrophages
transfer M.tb RNA into naïve macrophages and activate
the intracellular RNA sensing pathway, promoting Th1
immune response with the release of IFNs118. In addition,
Mφ-EVs carry viral proteins to irritate the immune system
during infections. It has been found that EVs from M.tb-
infected macrophages carried mycobacterial proteins, and
these EV-vaccinated mice exhibited a robust Th1
response with limited Th2 response, suggesting that Mφ-
EVs may be regarded as promising cell-free agents against
TB119,120. During the early stage of fungal infection, EV
contents from Candida albicans-infected macrophages
were extensively altered and were intimately associated
with enhanced cytokine secretion in macrophages121.
Moreover, EVs from dengue virus (DENV)-infected
macrophages also transfer the non-structural protein
(NS3) encoded by DENV RNA to promote cytokine
release in ECs, activating the defense program against
dengue virus infection at the early stage122. EVs released
from toll-like receptor 3 (TLR3)-activated macrophages,
which are often blocked during infection, were found to
possess abundant miR-29 to inhibit HCV replication in
hepatocytes123. Interestingly, it seems that macrophages
may have certain mechanisms to mediate the release
pattern and synergistic effects of cytokines and EVs in
response to infections. For example, macrophages
orchestrate a fast but short-lasting antiviral state by
secreting cytokines during HCV infection, while their EVs
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induce a late but long-lasting inhibition on HCV repli-
cation in hepatocytes with sub-genomic HCV repli-
cons124. These studies suggest that Mφ-EVs may boost
the anti-infective immune response by delivering viral
materials or therapeutic molecules.

Drug delivery
EVs have lipid bilayer membrane structures, allowing

them to encapsulate and deliver various types of bioactive
molecules in vivo36,125. The nanoscale size and natural
bilipid membrane of EVs allow them to easily pass
through biological barriers (e.g., blood–brain bar-
rier)126,127. Moreover, EVs from macrophages express
CD47, a surface molecule known as the “don’t eat me”
signal to escape immunological surveillance128,129.
Therefore, application of Mφ-EVs as drug delivery vehi-
cles has received considerable attraction. EVs from M1-
like macrophages alone showed a mild antitumor
effect97,130, but they were capable of restricting tumor
growth when combined with other therapeutic agents. For
example, Mφ-EVs loaded with Paclitaxel (PTX) exhibited
a robust accumulation in Lewis lung carcinoma (LLC)
cells both in vitro and in vivo. The EV-PTX combination
significantly reduced lung metastases and prolonged life-
span in an LLC metastasis mouse model131. Although
Mφ-EVs have shown potential for cancer therapy, their
poor drug loading efficacy largely impedes further clinical
translation. Thus, optimized drug loading processes for
Mφ-EVs have also been studied. For example, the loading
efficiency of Mφ-EVs with Doxorubicin (Dox) was
improved when pH was close to the pI of Dox, and PTX
dissolved in ethanol was efficiently encapsulated into Mφ-
EVs. Accordingly, these optimized drug-loaded Mφ-EVs
displayed higher inhibitory potency on tumor growth in
orthotopic triple-negative breast cancer (TNBC) tumor
models compared to the original drug-loaded EVs or drug
alone132.
In addition, some hybrid strategies have been proposed

to enhance the therapeutic potency of Mφ-EVs. For
example, TNBC is aggressive and often returns after
treatment. To resolve this issue, Mφ-EVs were engineered
by removing their own contents and modifying addition
of c-Met onto their surface, after which Dox-loaded poly
lactic-co-glycolic acid (PLGA) nanoparticles were wrap-
ped into the empty Mφ-EVs. These engineered EVs pro-
longed the release profile of Dox in vitro, and displayed
high tumor targeting ability and excellent tumor inhibi-
tory efficiency in mice with TNBC133. Another example is
hybridizing EVs from M1-like macrophages with lipo-
somes: the resulting hybrid Mφ-EVs exhibited higher
cytotoxicity to multiple types of cancer cells, such as
osteosarcoma and breast cancer cells, when loaded with
Dox134. These studies indicate that Mφ-EVs constitute a
promising natural carrier for target drug delivery.

However, despite these efforts, obstacles are still sub-
stantively unresolved with respect to obtaining EVs with
the desires properties.

Adjuvant cancer vaccines
Cancer immunotherapy functions are primarily based

on the patient’s own immune system, and it is believed to
be an important shift in tumor therapy. Cancer vaccines
are commonly needed in combination with other thera-
pies or adjuvants to improve the magnitude, breadth,
quality, and longevity of the immune response to vac-
cines135. Although great progress has been made recent
years, some limitations still exist in many adjuvants, such
as induction of disabled immune responses. Recently, EVs
derived from the proinflammatory macrophages have
been proposed as promising adjuvants. Exogenous sup-
plementation with EVs from M1-like macrophages
skewed naïve macrophages towards a proinflammatory
state within 4 h, generating a proinflammatory micro-
environment that favored Th1 immune response. How-
ever, this dramatic effect of EVs was transient and
gradually faded130. Hence, optimum treatment time must
be taken into consideration. Cheng et al. employed a
peptide vaccine in combination with M1-like EVs in a
melanoma model. These EVs were given 4 h before the
peptide vaccine arrived at the tumor, and this combina-
tion therapy exhibited stronger antitumor effects com-
pared to traditional adjuvants such as TLR agonist130.
Mechanically, M1-like EVs might serve as an agent to
stimulate proinflammatory milieu, which makes the
immune system more sensitive to cancer vaccines, thereby
inducing a superior antitumor effect. These findings
strongly indicate that EVs from M1-like macrophages are
a promising immune adjuvant suitable for cancer
vaccines.

Conclusions and future perspectives
Notably, macrophages are key mediators in the innate

immune system, and are involved in the pathology of
many diseases. EVs are capable of exerting several func-
tions similar to their parent cells, and have received
increasing attention due to their natural portability and
extraordinary actions on target cells. Similar to their
parent cells, Mφ-EVs function extensively in the pathol-
ogy of various diseases, as well as being robust mediators
for immunotherapy, serving as therapeutics for many
diseases. Employment of Mφ-EVs has several advantages.
First, Mφ-EVs can easily escape immunological surveil-
lance due to abundant immune molecules such as CD47
on their surface, which help them escape immune
attack129. Second, the ability of Mφ-EVs to either enhance
or suppress immune activity makes them attractive can-
didates for various diseases as discussed in this review.
Third, administration of EVs as a substitute for Mφ might
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reduce some of the risks associated with whole cell
therapy such as cytokine release syndrome, also known as
a cytokine storm136. Moreover, EVs are nanoscale and
circulate readily compared to larger Mφ, and they can be
further modified and used as potential drug delivery sys-
tems due to their ability to cross biological barriers137.
However, several limitations or issues raised by Mφ-EVs

should be taken into consideration before future clinical
translation. After recognition of the pathogenicity of Mφ-
EVs in diseases, it is crucial to further investigate how to
regulate their release or their embedded contents properly
to prevent development and progression of disease.
Additionally, macrophages are able to exert immediate
and diverse responses to different microenvironments,
and this unique property seems important to their robust
therapeutic effects in multiple diseases. However, unlike
whole cells, Mφ-EVs alone are not believed to have similar
action, and thus precise modulation of Mφ-EV properties
should be conducted in response to different diseases or
conditions before intervention. Reprogramming or reen-
gineering of Mφ-EVs for disease therapy seems promising
for the future, while the poor yield and/or limited function
of Mφ-EVs using traditional methods has largely impaired
their further biomedical applications, and thus new iso-
lation or manufacture methods with higher yield/function
of EVs are urgently needed. Nevertheless, these problems
are not exclusively confined to macrophages and answers
may come from academic studies devoted to the biolo-
gical properties of EVs. Overall, the potential of
macrophage-derived EVs in immunoregulation and dis-
ease intervention is highly promising.
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