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PI3Ka-Akt1-mediated Prdm4 induction in
adipose tissue increases energy
expenditure, inhibits weight gain, and
improves insulin resistance in diet-induced
obese mice
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Abstract
Stimulation of white adipose tissue (WAT) browning is considered as a potential approach to treat obesity and
metabolic diseases. Our previous studies have shown that phytochemical butein can stimulate WAT browning
through induction of Prdm4 in adipocytes. Here, we investigated the effects of butein on diet-induced obesity and its
underlying molecular mechanism. Treatment with butein prevented weight gains and improved metabolic profiles in
diet-induced obese mice. Butein treatment groups also displayed higher body temperature, increased energy
expenditure, and enhanced expression of thermogenic genes in adipose tissue. Butein also suppressed body weight
gains and improved glucose and insulin tolerance in mice housed at thermoneutrality (30 °C). These effects were
associated with adipose-selective induction of Prdm4, suggesting the role of Prdm4 in butein-mediated anti-obese
effects. To directly assess the in vivo role of Prdm4, we generated aP2-Prdm4 transgenic mouse lines overexpressing
Prdm4 in adipose tissues. Adipose-specific transgenic expression of Prdm4 recapitulated the butein’s actions in
stimulating energy expenditure, cold tolerance, and thermogenic gene expression, resulting in prevention of obesity
and improvement of metabolism. Mechanistically, direct inhibition of PI3Kα activity followed by selective suppression
of its downstream Akt1 mirrored butein’s effect on Ucp1 expression and oxygen consumption. In addition, effects of
butein were completely abolished in Akt1 KO mouse embryonic fibroblasts. Together, these studies demonstrate the
role of butein in obesity and metabolic diseases, further highlighting that adipose PI3Kα–Akt1–Prdm4 axis is a
regulator of energy expenditure.

Introduction
Increased calorie intake with less energy expenditure

has led to an epidemic of obesity with subsequent devel-
opment of various metabolic diseases, including diabetes,
hypertension, cardiovascular diseases, and increased
cancer risk1–3. Surgical and medical strategies for
restricting appetite and increasing energy expenditure are

© The Author(s) 2018
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: J-M. Ku (medichem@gbsa.or.kr) or Kye Won Park
(kwpark@skku.edu)
1Department of Food Science and Biotechnology, Sungkyunkwan University,
Suwon 16419, Korea
2Department of Biochemistry, University of Utah School of Medicine, 15N
Medical Drive East Room 4100, Salt Lake City, UT 84112, USA
Full list of author information is available at the end of the article.
These authors contributed equally: No-Joon Song, Seo-Hyuk Chang
Edited by G. Raschellà

Official journal of the Cell Death Differentiation Association

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-1927-9617
http://orcid.org/0000-0002-1927-9617
http://orcid.org/0000-0002-1927-9617
http://orcid.org/0000-0002-1927-9617
http://orcid.org/0000-0002-1927-9617
http://orcid.org/0000-0003-0218-810X
http://orcid.org/0000-0003-0218-810X
http://orcid.org/0000-0003-0218-810X
http://orcid.org/0000-0003-0218-810X
http://orcid.org/0000-0003-0218-810X
http://orcid.org/0000-0003-2771-249X
http://orcid.org/0000-0003-2771-249X
http://orcid.org/0000-0003-2771-249X
http://orcid.org/0000-0003-2771-249X
http://orcid.org/0000-0003-2771-249X
http://creativecommons.org/licenses/by/4.0/
mailto:medichem@gbsa.or.kr
mailto:kwpark@skku.edu


continuously being developed to treat obesity and its
related diseases4. However, new molecular targets and
safe alternatives are still lacking.
Adipocytes play central roles in energy homeostasis of

vertebrates5,6. White adipose tissue (WAT) stores excess
energy and circulates adipokines, whereas brown adipose
tissue (BAT) generates heat from oxidation of stored
energy through the action of uncoupling protein 1
(Ucp1)7. Recent studies have revealed the existence of
BAT in adult humans and the association between BAT
activity and lower body mass in different populations,
bringing new attention to brown fat as a therapeutic
target for treating metabolic diseases8–12. Brown adipo-
cytes with high expression of Ucp1 have been found in
interscapular depots of rodents6. Other thermogenic cells
as clusters of adipocytes have been found in WAT. These
cells are referred to as beige adipocytes, brite (brown in
white), or brown-like adipocytes13–15. Both brown and
beige adipocytes are characterized by high mitochondrial
contents and are believed to exhibit similar functions in
energy metabolism6,13,16. However, the identification of
beige-specific cell surface markers and different origins of
these adipocytes indicate that beige cells are unique adi-
pocytes, different from classical WAT or BAT17,18.
It has been shown that WAT browning in mice can

suppress obesity and metabolic diseases. Transgenic
expression of Prdm16 or Ucp1 in fat tissues can promote
the generation of brown-like adipocytes in WAT (WAT
browning), conferring resistance to obesity with improved
glucose tolerance19–21. Stimulation of β3-adrenergic
receptor or exercise can convert WAT to brown-like
adipocytes through induction of Pgc-1α and Ucp122–24.
Subsequent studies have shown that exercise-induced
production of β-aminoisobutyric acid can promote WAT
browning in mice25. Similarly, it has been shown that
small molecules such as berberine derived from a Chinese
medicinal plant, salsalate derived from salicylic acid, and
bexarotene (a retinoid X receptor agonist) can activate
thermogenesis, resulting in increased energy expenditure
in mice26–28. These observations raise the possibility that
pharmacological induction of thermogenic adipocytes
might serve as a new therapeutic strategy to combat
obesity and its related metabolic diseases.
Previously, we have shown that phytochemical butein

can stimulate the generation of thermogenic adipocytes
through induction of Prdm429,30. PRDI-BF1 and RIZ
homology domain (Prdm) containing proteins are char-
acterized by the presence of a PR domain, shared
homology with the catalytic suppressor of variegation
3–9, Enhancer of zeste and Trithorax domain and a
variable number of Zn-finger repeats31. Prdm4 is identi-
fied as a binding protein of p75 neurotrophin receptor and
may provide a downstream transducer for the effects of
nerve growth factor32,33. Mice homozygous for a deletion

at the Prdm4 locus develop normally and adult mice are
fertile and healthy34, suggesting the functional redun-
dancy of Prdm4 during development. Here, we showed
that butein reduced body weight and improved glucose
tolerance through increasing energy expenditure and
Prdm4 induction. Adipose-specific expression of Prdm4
enhanced thermogenesis and prevented obesity and
metabolic diseases. Further mechanism studies showed
that butein induced Ucp1 and WAT browning through
targeting PI3Kα-Akt1-mediated signaling. Together, these
data highlight the potential of using butein to treat obesity
and its related diseases.

Results
Butein stimulates thermogenic gene expression in lean
mice
We have previously shown that small molecule butein

can stimulate Ucp1 expression and thermogenic pro-
gramming in white adipocytes30. To examine the in vivo
effect of butein, we intraperitoneally (i.p.) injected wild-
type lean mice with butein (15 mg/kg per day) or vehicle
control for 2 weeks and performed gene expression ana-
lysis. Expression levels of thermogenic adipocyte markers
Ucp1, Prdm16, Cox8b, and Cidea were significantly
induced in inguinal WAT (iWAT) compared with those
in the control group (Supplementary Figure S1). Con-
versely, white adipocyte-selective genes resistin (Retn) and
nicotinamide N-methyltransferase (Nmmt) along with
pan-adipocyte markers Pparγ and aP2 were repressed by
butein. Similar induction of brown adipocyte gene
expression by butein was also observed in epididymal
WAT (eWAT) and BAT (Supplementary Figure S1).
These data suggest that butein can induce Ucp1 and
thermogenic gene expression in mice.

Butein treatment prevents weight gain and improves
glucose tolerance in HFD-fed obese mice
Given the effect of butein (15 mg/kg per day) on ther-

mogenic gene expression in lean mice, we investigated the
anti-obese effect of butein in diet-induced obese mice. We
injected butein (5 mg/kg per day or 15mg/kg per day)
into mice fed with high-fat diet (HFD) for 8 weeks. Butein
treatment significantly reduced body weight gains of mice
fed with HFD compared with vehicle control injection
(Fig. 1a). Liver and eWAT from butein-treated HFD mice
(15 mg/kg per day) weighed less than those from control
mice (Fig. 1b). Histological observation and lipid analysis
further revealed reduced triglyceride accumulation in the
liver and reduced adipocyte size in adipose tissue in
butein-treated HFD mice (Figs. 1c-e). Abdominal adipose
tissue (1642mm3) in butein-treated HFD mice was sig-
nificantly lesser than that of HFD control group (2482
mm3). Butein also decreased levels of fasting serum cho-
lesterol and fatty acids (Supplementary Figure S2).
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However, serum alanine aminotransferase (ALT) or
aspartate transaminase (AST) levels were not significantly
different (Supplementary Figure S2). Insulin resistance
was improved by butein treatment based on glucose tol-
erance and insulin tolerance tests (Supplementary Fig-
ure S3). We measured energy expenditure in HFD-fed
mice treated with control or butein for 3 weeks when
body weights were not significantly different between the
groups. Metabolic analysis showed increased O2 con-
sumption and CO2 production in HFD mice treated with
butein compared with vehicle control-treated HFD mice
(Figs. 2a, b). Consistently, diurnal rectal temperature in
butein-treated group was significantly higher with greater
differences during night time than that in the control
group (Fig. 2c). Brown-like histological conversion by
butein treatment was further corroborated by increased

protein expression levels of Ucp1 in iWAT and BAT
(Figs. 2d, e). Other thermogenic genes, such as Prdm16,
Cox8b, and Cidea, were also induced by butein in iWAT.
Expression levels of pan-adipocyte and white adipocyte-
selective mRNA in iWAT were suppressed by butein
(Supplementary Figure S4). Similar trends toward brown-
like adipogenic induction were also observed in eWAT
and BAT (Supplementary Figure S4). Food intake,
respiratory exchange ratio (RER), and physical activity
were similar between the control and butein-treated
groups (Supplementary Figure S5, and Figs. 2f, g). These
data showed that increased energy expenditure could be
the primary cause of reduced obesity in mice fed HFD. In
parallel experiments, butein treatment exhibited a trend
to reduce body weight gains compared with control
treatments in low-fat diet (LFD) fed mice, but failed to
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Fig. 1 Butein prevents obesity in HFD-fed obese mice. a Body weight gain of vehicle control- or butein-treated mice. Male C57BL/6J mice were
fed with a low-fat diet (LFD, 10% fat) or high-fat diet (HFD, 60% fat) and treated with vehicle control or butein (5 mg/kg and 15mg/kg per day) for
8 weeks. Mice were weighed twice per week. b Differences in epididymal fat (eWAT) and liver weight in groups given daily intraperitoneal injection
of 5 mg/kg or 15 mg/kg butein. c Representative hematoxylin and eosin (H&E) staining for sections of liver, epididymal fat (eWAT), inguinal fat (iWAT),
and brown adipose tissue (BAT) from HFD-fed mice. Scale bar, 50 µm. d Quantification of liver triacylglycerols (TG) levels per protein contents (µg) in
HFD-fed mice (n= 5) treated with vehicle control or butein for 8 weeks. e Adipocyte sizes from butein-treated eWAT were smaller than those of
control HFD-fed mice. Data represent mean ± s.e.m. Statistically significant differences between control- and butein-treated mice were determined
by Student’s t-test. *P < 0.05; **P < 0.005; ***P < 0.0005
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reach statistical significance (Supplementary Figure S6).
Therefore, butein can be a potential tool to prevent the
prevalence of obesity and its associated metabolic
diseases.
The mouse has a higher surface area to volume ratio

than humans, resulting in a significantly greater thermal
challenge under a given ambient temperature exposure35.
To better mimic the thermal conditions experienced by
humans36, we investigated the effects of butein in HFD-
fed mice housed at 30 °C. Butein treatments significantly
prevented HFD-induced body weight gains compared
with the control group (Supplementary Figure S7).

Epididymal fat pads and liver weights were lower in
butein-treated mice. Similar to the effects in mice housed
at 23 °C, butein treatments significantly improved glucose
tolerance and insulin sensitivity in HFD-fed mice housed
at thermoneutral conditions (Supplementary Figure S7).

Adipose-specific expression of butein-responsive gene
Prdm4 prevents weight gains and fat mass in HFD-fed
obese mice
Previous data showed a critical role of Prdm4 in butein-

mediated thermogenic induction in adipocytes. To eval-
uate this finding in mice, we measured expression levels of
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Prdm4 in various tissues from mice treated with butein
for 3 weeks. Prdm4 expression was significantly increased
in iWAT and eWAT from butein-treated mice. Prdm4
expression in liver was only marginally increased in
butein-treated group. However, its expression was not
altered in other tissues (Supplementary Figure S8). These
data suggest that butein-induced Prdm4 in adipose tissue
might take part in the stimulation of energy expenditure.
Having observed selective induction of Prdm4 by butein

in adipose tissue, we hypothesized that adipose Prdm4
might play a role in thermogenesis and obesity. To test
this possibility, we created transgenic mice in which fat-
specific aP2 gene promoter could direct Prdm4 expression
in adipose tissues. It has been shown that the 5.4 kb aP2
promoter can direct transgenic expression of Prdm4 in fat
tissue37,38. Transgenic expression of Ucp1 or Prdm16 in
fat tissue can limit weight gain and decrease fat mass37,39.
Similarly, aP2-driven Prdm4 transgene was selectively
expressed in BAT and WAT without noticeable over-
expression in other tissues (Figs. 3a, b, and Supplementary
Figure S9). Prdm4 transgenic (Prdm4 Tg) mice exhibited
about 3- to 6-folds overexpression in BAT and WAT
compared with its levels in control non-transgenic litter-
mates (NonTg) (Fig. 3b). Prdm4 Tg male mice (aP2-
Prdm4 Tg#1) displayed significantly reduced body weight
when they were fed HFD (Fig. 3c). Inguinal and epididy-
mal depots were smaller in Tg mice and their adipocytes
were less hypertrophic compared with those of HFD-fed
NonTg mice (Figs. 3d-f). Similar anti-obese effects were
observed in second transgenic lines (Tg#2) (Supplemen-
tary Figure S10), further showing the protective role of
adipose Prdm4 in HFD-induced obesity.

Adipose-specific induction of Prdm4 increases energy
expenditure and cold tolerance
To directly investigate the role of adipose Prdm4 in

energy metabolism, we measured energy expenditure in
transgenic and non-transgenic mice. Metabolic analysis
showed increased O2 consumption and CO2 production
in Prdm4 Tg mice compared with those in NonTg male
HFD-fed mice (Figs. 4a, b). Consistent with enhanced
energy expenditure, Prdm4 Tg mice were able to maintain
body temperature better during acute cold exposure
compared with NonTg mice (Fig. 4c). However, food
intake, physical activity, and RER were not significantly
different between Prdm4 Tg mice and NonTg mice
(Figs. 4d-f). We also found that Tg mice exhibited
improved glucose and insulin tolerance relative to NonTg
mice (Figs. 5a, b). These phenotypic changes were asso-
ciated with increased expression of thermogenic genes in
iWAT of Prdm4 Tg mice (Figs. 5c, d). Known Ucp1-
independent thermogenic players including Pm20d1,
Ckmt1, and Gpd2 were not differently expressed in these

groups. Expression of pan-adipocyte and white adipocyte
selective genes in iWAT was suppressed in Tg mice.
Histological observation also showed reduced triglyceride
accumulation in the liver and reduced adipocyte size in
adipose tissue of Prdm4 Tg mice (Supplementary Fig-
ure S11). These effects were not gender specific as female
transgenic mice also exhibited less weight gains, improved
glucose tolerance test (GTT) and insulin tolerance test
(ITT), enhanced energy expenditure, and higher body
temperature without showing significant difference in
food intake or physical activities (Supplementary Fig-
ure S12-15). These data showed that adipose-selective
increased expression of Prdm4 could promote WAT
browning, increase energy expenditure, and prevent
obesity.

A critical role of PI3K signaling in butein-mediated
Prdm4 induction
Having determined that butein treatment or induction

of Prdm4 in adipose tissue promoted energy expenditure,
we focused on molecular mechanisms. To define mole-
cular links between butein and Prdm4 in adipocytes,
effects of butein on a kinase activity panel consisting of 51
different recombinant kinases, including phosphatidyli-
nositol-4,5-bisphopsate 3-kinases (PI3K), epidermal
growth factor receptor (EGFR), Met proto-oncogene
(MET), AMP-activated protein kinase (AMPK), and
inhibitor of kappa B kinase beta (IKKβ), were investigated.
Interestingly, butein at 20 μM preferentially inhibited
PI3Kα activity (62%). However, it exhibited only marginal
effects on other kinases (Supplementary Figure S16).
Although this does not exclude the possibility that butein
might interact with other kinases, it suggests that butein is
a relatively selective inhibitor of PI3Kα. We also examined
the role of selected kinases (PI3K, protein kinase A (PKA),
mapk signaling (MAPK), and protein kinase C (PKC)) in
butein-mediated induction of Prdm4 and Ucp1. Treat-
ment of C3H10T1/2 adipocytes with PI3K inhibitors
LY294002 and Wortmannin resulted in increased Prdm4
expression (Fig. 6a and Supplementary Figure S17). In
contrast, alteration of PKA, MAPK, or PKC signaling
failed to affect Prdm4 levels (Fig. 6a). PI3K inhibition also
increased Ucp1 mRNA expression levels (Fig. 6b). We
then measured phosphorylation levels of Akt, a down-
stream target protein of PI3K. Levels of phosphorylated
Akt (S473) were suppressed by butein in C3H10T1/2
adipocytes (Fig. 6c). Reduced levels of Akt phosphoryla-
tion were consistently detected in adipose tissue from
butein-treated mice (Figs. 6d, e). Furthermore, regulatory
effects of butein on Akt and expression of Prdm4 and
Ucp1 were also observed in human adipocytes (Supple-
mentary Figure S18), further supporting that PI3K could
be a molecular target of butein in adipocytes.
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Butein directly inhibits PI3Kα activity
PI3K is composed of four different classes (class I–IV)

that transduce essential signals of mitogenic, cell survival,
cytoskeletal remodeling, and metabolic controls. In par-
ticular, class I catalytic subunit p110α (PI3Kα) plays a role
in energy expenditure, metabolism, and obesity40–42. To
determine specific PI3K isoforms involved in the regula-
tion of Prdm4 and Ucp1 induction, we investigated the
effects of class I catalytic subunit inhibitors, including
PI3K catalytic subunit α (PI3Kα)-selective BYL719,
PI3Kβ-selective GSK2636771, PI3Kδ-selective IC-87114,
and PI3Kγ-selective inhibitor AS-252424. BYL719, but
not others, increased the expression of Prdm4 and Ucp1

expression (Fig. 6f, and Supplementary Figure S19 and
S20). HS-173, another PI3Kα-selective inhibitor, also
increased Prdm4 and Ucp1mRNA and protein expression
levels (Fig. 6g and Supplementary Figure S20). These
PI3Kα-selective inhibitors induced mitochondrial mass
and oxygen consumption rates (OCRs) (Supplementary
Figure S20), further showing a close functional link
between PI3Kα and Prdm4.
Given the specific effects of PI3Kα on Prdm4 and Ucp1

induction, we investigated whether butein could directly
inhibit activities of purified PI3Kα. Our results revealed
that butein exhibited inhibitory activities of PI3Kα, with
an IC50 value of 6.4 µM (Supplementary Figure S21).
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HFD-fed NonTg and Prdm4 Tg male mice. Data represent mean ± s.e.m. and statistically significant differences between control NonTg and Prdm4 Tg
mice were determined by Student’s t-test. *P < 0.05; **P < 0.005
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However, butein did not display inhibitory effect on
PI3Kβ, PI3Kδ, or PI3Kγ (Supplementary Figure S21).
These data showed that butein could selectively target
PI3Kα to induce Prdm4 expression in adipocytes.

Selective inhibition on Akt1 is critical for butein’s effects
on Prdm4 and Ucp1 induction
Akt family, a downstream target of PI3K, has been

implicated in insulin-mediated effects. It consists of clo-
sely related kinases Akt1-343. To further delineate mole-
cular mechanisms, we directly investigated whether
butein could affect the activity of Akt. Treatment of
C3H10T1/2 adipocytes with pan-Akt inhibitor (Akt1/2 i)
increased Prdm4 and Ucp1mRNA and protein expression
(Figs. 7a, b). In line with this, oxygen consumption was

increased significantly in cells treated with Akt1/2i com-
pared with control cells (Fig. 7c).
Akt1 is ubiquitously expressed in most tissues. Akt2 is

highly expressed in insulin-sensitive tissues, whereas Akt3
is selectively expressed in brain, kidney, and heart43. To
determine the specificity of butein on Akt family, we
assessed the effect of butein on Akt1 and Akt2. Treatment
of C3H10T1/2 adipocytes with butein decreased phos-
phorylation of Akt1 in a dose- and time-dependent
manner. However, it failed to affect phosphorylation
levels of Akt2 (Fig. 7d and Supplementary Figure S22).
Selective inhibition on Akt1 but not Akt2 was also
observed in eWAT from mice treated with butein
(Fig. 7e). Consistently, Akt1 knockdown in adipocytes
induced Prdm4 and Ucp1 protein expression and
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increased mitochondrial mass (Supplementary Fig-
ure S23). To further investigate a role of Akt1 in the
butein-mediated effects on Prdm4 and thermogenic
induction, we assessed the effect of butein in the absence
of Akt1 using knockout mouse embryonic fibroblasts
(MEF) (Figs. 7f, g). Butein induced Prdm4 expression in
wild-type MEF but this effect was significantly blunted in
Akt1 KOMEF. Similarly, butein induced the expression of
Pgc-1a and Ucp1 in wild-type MEF, but not in Akt1 KO
MEF (Figs. 7f, g). Taken together, these data demonstrate
the necessity of Akt1 in butein-induced Prdm4 and
thermogenic gene expression, further highlighting the
importance of PI3Kα–Akt1–Prdm4 cascades in the
butein-mediated WAT browning (Fig. 7h).

Discussion
Induction of brown-like adipocytes within WAT can

protect rodents against the development of diet-induced
obesity and its related metabolic diseases19,25,44. Increase
of BAT-like activity in WAT in human upon cold

acclimation can also increase energy expenditure and
reduce body fat mass8,12,45. These observations led to the
notion that activation of BAT might be considered as a
new strategy for counteracting obesity and its associated
metabolic derangements. In this study, we showed that
butein directly inhibited PI3Kα. PI3Kα-selective inhibitors
induced Prdm4 and Ucp1 expression in adipocytes. These
findings are consistent with prior studies showing that
PI3K signaling can affect energy expenditure and meta-
bolism. Pten transgenic mice and PI3K synthetic inhibi-
tors can increase energy expenditure and protect mice
against obesity and metabolic disorders46,47. However, it
has been shown that knockin mutation or adipose-specific
deletion of PI3Kα can decrease mitochondrial associated
respiration, lower energy balance, and promote metabolic
dysfunction40,41. Given with PI3K is a nodal point that
incorporates various signaling pathways including insulin
signaling, PI3K inhibition during development may fur-
ther complicate actions in obesity and insulin resistance.
Indeed, PI3K signaling seems to regulate embryonic
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adipogenesis and adult obesogenic adipogenesis through
different mechanisms48. Human clinical trials with small
group of cancer patients treated with potent PI3K p110α
inhibitors exhibited manageable hyperglycemia in 7 out of
25 cancer patients49. A recent study has suggested that
pharmacological inhibition of PI3Kα (BYL719) can induce
weight loss and increase energy expenditure in genetically
induced obese mice42. Such complicated and discrepant
effects of PI3K signaling in metabolism might be partly due
to developmental actions, partial loss, different isoforms in
various adipose depots, presence of compensatory/redun-
dant mechanisms, and feeding with different experimental
diets that may provide distinct metabolic effects41,50. It is

thus plausible that selective inhibition of PI3Kα in adult
adipose may serve as a strategy to reduce obesity and
increase energy expenditure in obesogenic conditions.
Overlapping and unique functions among Akt family

have been reported43. Akt1 null (Akt1-/-) mice were
protected from HFD-induced obesity and insulin resis-
tance through enhanced energy expenditure. Tissue-
specific deletion of Akt1 in muscle, brain, and liver does
not recapitulate the phenotype of Akt1 whole body
knockout mice, indicating that Akt1 in another tissue (s)
such as adipose tissue may regulate energy expenditure51.
In line with this, other studies have shown that BAT-
specific conditional deletion of Akt1 significantly reduces
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body mass and adiposity accompanied with increased
Ucp1 expression52. Further, DJ-1 a dominant Pten-
negative regulator has been shown to decrease Ucp1
expression and energy expenditure through acting on
Akt1 (but not Akt2) activation52. Consistent with these
observations, our results on Akt1 and Akt2 phosphor-
ylation levels by butein and necessity of Akt1 for effects of
butein indicate that selective inhibition of Akt1 in adipose
tissue can stimulate WAT browning. Unlike Akt1, abla-
tion of Akt2 results in impaired glucose tolerance and

glucose uptake, whereas Akt3 deletion causes smaller
brain size with normal glucose homeostasis43. Together,
we speculate that the adipose-selective inhibition of Akt1
is a novel strategy to induce energy expenditure against
obesity and its associated metabolic diseases.
Butein treatments in current studies are well-tolerated

without showing any notable toxicity. However, a more
detailed study of toxicity should be performed because it
exerts various biological activities including anti-inflam-
matory, anticancer, anti-obese, anti-diabetic, and
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neuroprotective effects possibly through multiple mole-
cular targets53. Future experiments of adipose tissue-
specific delivery of butein in obese mice are needed to
provide safe and effective strategies against obesity and
consequent metabolic diseases. Together, our studies
showed that chronic inhibition on PI3Kα-Akt1 and its
mediated Prdm4 signaling in adipose tissue is a newly
identified axis involved in the induction of Ucp1 and
thermogenic genes.
In conclusion, treatment with the small molecule butein

and adipose-specific induction of Prdm4 prevented obe-
sity and metabolic diseases in HFD-fed mice. We also
presented evidence that butein directly inhibited PI3Kα
activity and its downstream Akt1 was necessary for
butein-mediated induction of thermogenic gene expres-
sion. These data suggest that the small molecule butein
and its target (PI3Kα–Akt1–Prdm4 pathway) in adipo-
cytes might be useful for developing treatments for obe-
sity and related metabolic diseases.

Materials and methods
Cell culture
C3H10T1/2 cells were purchased from the American

Type Culture Collection (Manassas, VA, USA) and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)
(Hyclone, Logan, UT, USA) supplemented with 10% fetal
bovine serum (FBS, Hyclone, Logan, UT, USA). Confluent
C3H10T1/2 cells were induced to adipocytes using adi-
pogenic medium containing DMEM, 10% FBS, 1 µM
dexamethasone (Sigma, St. Louis, MO, USA), IBMX (0.5
mM, Sigma), 1 µM troglitazone (Sigma), and 5 µg/ml
insulin (Sigma). The medium was changed every 2 days
with fresh media containing DMEM, FBS, insulin, and
troglitazone for 8 days. Properly maintained C3H10T1/2
cells showed >80% of differentiation at day 8. Differ-
entiation degree was checked by Oil red O staining fol-
lowed by microscopic analysis to make sure homogenous
differentiation. Cells did not reach the proper rate of
differentiation were not used. Human mesenchymal stem
cells were purchased from the Lonza (Allendale, NJ, USA)
and maintained in DMEM (Hyclone, Logan, UT, USA)
supplemented with 10% FBS (Hyclone, Logan, UT, USA).
Confluent mesenchymal stem cells were induced to adi-
pocytes by 1 µM dexamethasone (Sigma, St. Louis, MO,
USA), 0.5mM 3-isobutyl-1-methylxanthine (Sigma), 1 µM
troglitazone (Sigma), and 5 µg/ml insulin (Sigma).
For chemical inhibitor treatments, C3H10T1/2 adipo-

cytes were treated with 20 µM of PKA inhibitor H89
(Sigma), PKC inhibitor Go6983 (Sigma), MAPK kinase
inhibitor U0126 (Sigma), PI3K inhibitor Ly294002
(Sigma), or PI3K inhibitor Wortmannin (Sigma). PI3K
p110α-selective inhibitors BYL719 and HS-173, β-
selective inhibitor GSK2636771, δ-selective inhibitor IC-
87114, and γ-selective inhibitor AS-252424 were

purchased from Selleckchem (Houston, TX, USA). For
PI3K inhibition, PI3K ADP-Glo kinase assay kits (PI3Kα,
PI3Kβ, PI3Kδ, and PI3Kγ) were purchased from Promega
(Madison, WI, USA) and PI3K ADP-Glo kinase activities
were measured according to the manufacturer’s instruc-
tions. Prdm4 knockdown was performed as previously
described30. The PI3Kα siRNA sequences for si1 and si2
were 5ʹ-GAAUGAUAGUGACUUUAGAUU-3ʹ and 5ʹ-
GAAUAUCAGGGCAAGUAUAUU-3ʹ, respectively.
For mitochondrial staining, differentiated C3H10T1/2

adipocytes were treated with BYL719 (100 µM), HS-173
(20 µM), Akt1/2 i (20 µM) or transfected with Akt1 siRNA
and stained cells with cytopainter for 1 h followed by
fixation. Staining was observed by fluorescence micro-
scopy as previously described30. OCR was determined
using a Seahorse Bioscience XF24 analyzer. C3H10T1/2
cells were differentiated into adipocytes for 6 days and
treated with BYL719 (100 µM), HS-173 (20 µM), Akt1/2 i
(20 µM). Then, adipocytes were incubated in pre-warmed
unbuffered DMEM (sodium bicarbonate free, pH 7.4) for
1 h. Mitochondrial capacities were profiled by treating
compounds of oligomycin (2 μg/ml), carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (2 μM), Rotenone
(1 μM), and antimycin A (1 μM).

Expression analysis
To measure mRNA expression levels of genes, total

RNA was isolated from adipocytes using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) following the manu-
facturer’s instructions. Briefly, adipose tissues were
homogenized in TRIzol and the lipid layer was removed.
Total RNAs were purified using RNA purification Kit
(Qiagen, Germantown, MD, USA). Then, complementary
DNA was reversely transcribed using RTase M-MLV
(2640A, Takara, Otsu, Japan). PCR amplification was
performed in a thermal cycler (Takara). Gene-specific
primer sets were described previously29. Expression was
normalized to the level of ribosomal protein 36B4. We
also verified the relative expression levels by normalizing
other housekeeping genes such as Tbp and actin.
For western blotting, adipocytes or adipose tissues from

mice treated with butein were harvested and lysed in
RIPA buffer (1 % NP-40, 50 mM Tris-HCl, pH 7.4, 150
mM NaCl, and 10mM NaF) containing a protease inhi-
bitor cocktail (Roche Diagnostics, Manheim, Germany).
Western blot analyses were performed as described pre-
viously54. Homogenates of adipose tissues (100 mg) in
RIPA buffer (200 μl) were centrifuged at 14,000 rpm for
10min at 4 °C and supernatants were collected. Protein
lysates were subjected to sodium dodecyl sulfate poly-
acrylamide gel electrophoresis and transferred to poly-
vinylidene difluoride membranes (Bio-Rad Laboratories,
Hercules, CA, USA). These membranes were probed with
primary antibodies against Prdm4 (ab156867, Abcam,
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Cambridge, MA, USA), Ucp1 (ab10983, Abcam), Akt
(4685s, Cell Signaling, Danvers, MA, USA), p-Akt (4060s,
Cell Signaling), Akt1 (75692s, Cell Signaling) p-Akt1
(9018s, Cell Signaling), Akt2 (5239s, Cell Signaling), p-
Akt2 (8599s, Cell Signaling), or actin (sc-47778 horse-
radish peroxidase (HRP), Santa Cruz Biotech, Santa Cruz,
CA, USA) followed by incubation with HRP-conjugated
secondary antibodies (AbFrontier). An enhanced chemi-
luminescent western blotting detection reagent (GE
Health Care, MA, USA) was used to detect protein
expression.

Animal studies
All animal studies were carried out in accordance with

the guidelines of the Animal Research Committee of
Sungkyunkwan University or Animal Research Commit-
tee of University of Utah. Seven weeks old male C57BL/6J
mice were purchased from Central Lab Animal Inc.
(Seoul, Korea) and housed in rooms with the ambient
temperature (23 °C). For butein treatment in obese mice,
mice (n= 5) in one group were fed a LFD (D12450J,
Research Diets Inc., New Brunswick, NJ, USA). Mice in
the other three groups (n= 7 per group) were fed a HFD
(D12492, Research Diets Inc.). Two groups of mice were i.
p. injected with butein either at 5 mg/kg per day (HFD+
butein 5 mg/kg, n= 7) or at 15 mg/kg per day (HFD+
butein 15mg/kg, n= 7). The other group was admini-
strated vehicle as a control (HFD, n= 7) for 8 weeks. After
treatments of butein (15 mg/kg) for 8 weeks, the mice
were imaged using Micro-CT (Skyscan model 1076;
Skyscan, Kontich, Belgium) under anesthesia. The reso-
lution of the micro-CT was 35 μm. Seven weeks old male
C57BL/6J mice, housed at 30 °C, were subjected to high‐
fat diet and injected with control (HFD, n= 7) or butein
at 15 mg/kg per day (n= 7). The body weight and food
intake were measured twice per week.
Whole-body energy metabolism was measured using

Columbus Instruments Oxymax Lab Animal Monitoring
System. C57BL/6J mice on a HFD (Research Diets Inc.)
were treated with butein (15 mg/kg) via i.p. injection for
3 weeks and energy expenditure was evaluated. Mice were
placed in metabolic cages and were acclimated in the
metabolic chambers for 1 day before the measuring
energy expenditure, O2 consumption, and CO2

production.
Transgenic mice were generated from University of

Utah transgenic core facility. Briefly, aP2-Prdm4 trans-
genic plasmid was linearized with Kpn I and purified
using a DNA purification kit (Qiagen). Transgenic foun-
ders were produced by nuclear injection of the linearized
DNA into C57Bl6 X DBA mice. Tail DNA was harvested
from pups and founders were identified by PCR using
primers specific for transgene. The primer sequences were
5′-GGGGAAGTTCAATGCATTAGC-3′ and 5′-GTGAT

GTGTGGGCTACCTG-3′ or 5′-ATTGCCAGGGAGA
ACCAAAGT-3′ and 5′-AAGCCCAGGTGACTTCCT-3′.
Founders were crossed with C57Bl6 mice to generate
mixed progeny and were used in the experiments.
Determination of energy expenditure by Columbus
Instruments Oxymax Lab Animal Monitoring System and
body composition by NMR were performed at the meta-
bolic phenotyping core of the University of Utah. Trans-
genic experimentation was performed according to
guidelines established by the NIH and protocol were
approved by the Animal Care and Use Committee of the
University of Utah.
To perform glucose tolerance tests, mice were fasted for

6–16 h and tail-vein blood samples were collected after i.
p. injection of glucose (1 g/kg). Blood glucose levels were
then determined. For insulin tolerance tests, mice were
injected i.p. with insulin (Humulin R, Eli Lilly) (0.5 U/kg)
and their glucose levels were determined.

Statistical analysis
Data are presented as mean ± standard error of the

mean (s.e.m) or standard deviation (s.d). Statistical tests
included two-way analysis of variance (ANOVA) and
unpaired t-test. Statistical analysis was performed using
GraphPad Prism (GraphPad Software, Inc., La Jolla, CA,
USA). Statistical significance was defined at P < 0.05.
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