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MNT suppresses T cell apoptosis via BIM and is critical for
T lymphomagenesis
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The importance of c-MYC in regulating lymphopoiesis and promoting lymphomagenesis is well-established. Far less appreciated is
the vital supporting role of MYC’s relative MNT. Using Rag1Cre-mediated Mnt deletion in lymphoid progenitor cells, we show here
that, during normal T cell development, MNT loss enhances apoptosis, at least in part by elevating expression of the pro-apoptotic
BH3-only protein BIM. Moreover, using T lymphoma-prone VavP-MYC transgenic mice, we show that Mnt deletion reduces the pool
of pre-malignant MYC-driven T lymphoid cells and abrogates thymic T lymphomagenesis. In addition, we establish that Mnt
deletion prevents T lymphoma development in γ-irradiated mice, most likely by enhancing apoptosis of T lymphoid cells
repopulating the depleted thymus. Taken together with our recent demonstration that MNT is vital for the survival of MYC-driven
pre-malignant and malignant B lymphoid cells, these results suggest that MNT represents an important new drug target for both T
and B lymphoid malignancies.
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INTRODUCTION
The transcription factor c-MYC (hereafter MYC) controls expression
of numerous genes involved in the proliferation, growth,
metabolism and DNA damage responses of normal cells in adult
tissues [1, 2] and its deregulated over-expression is a major driver
of human cancer [3, 4]. However, stressed cells expressing
elevated MYC are prone to apoptosis [5–7], which serves as a
critical restraint on neoplastic transformation. Hence, genetic
defects that impede apoptosis boost MYC’s oncogenic potential,
as first revealed by the seminal demonstration that anti-apoptotic
BCL-2 synergises with MYC in lymphomagenesis [8, 9].
To activate transcription, MYC heterodimerises with MAX,

another ubiquitously expressed basic Helix-Loop-Helix Leucine
Zipper (bHLHLZ) protein, and together they bind E-box motifs
(CACGTG) in target genes [1]. However, MAX also binds several
MYC-related transcriptional repressors containing bHLHLZ
domains [1, 10]. MNT, an important member of this MXD (MAX
Dimerization) family of c-MYC antagonists [11–13] is essential for
embryonic development [14] and widely expressed in mammalian
tissues.
We recently established that MNT is critical for lymphomagen-

esis in Eμ-Myc transgenic mice [15], which model human Burkitt’s
lymphoma [16], and showed that MNT aids MYC by suppressing
apoptosis in both pre-malignant and fully malignant B
lymphoid cells.
Many human T cell neoplasms are associated with poor

prognosis and new therapeutic approaches are sorely needed
[17, 18]. Here, building on earlier studies [19–21], we investigate
how MNT loss, mediated by a Rag1Cre transgene in lymphoid
progenitor cells [22], impacts normal T cell development and T
lymphomagenesis. We confirm that MNT loss promotes T cell

apoptosis and provide new genetic and biochemical evidence
regarding the underlying mechanism. We establish, for the first
time, that MNT loss reduces the competitive fitness of T (and B)
lymphopoiesis. We show that MNT loss enhances apoptosis of
developing T lymphoid cells and abrogates T lymphoma devel-
opment in vavP-MYC transgenic mice and γ-irradiated C57BL/6
mice. Our studies encourage investigation of MNT as an important
new therapeutic target.

MATERIALS AND METHODS
Mice
Mice used were Mntfl/fl [23], Rag1Cre [22], MYC10hom [24] and Bim−/−del339
[25], all on a C57BL/6 background. Note that homozygous Mnt deletion,
initially reported as perinatal lethal [14], is fatal at ~E10 in C57BL/6 mice
bred in our facility [15]. Details of breeding, genotyping, immunopheno-
type analysis, OP9-DL1 co-culture, CFSE labelling and CRISPR/Cas9 genome
editing are provided in Supplementary Materials and Methods and figure
legends.

Competitive bone marrow reconstitution assays
C57BL/6 mice (Ly5.1+) (3 per test) were lethally irradiated (2 × 5.5 Gy) and
reconstituted with 106 bone marrow cells from Ly5.1+ C57BL/6 mice
(competitor cells) and 106 Ly5.2+ bone marrow cells harvested from either
Mnt+/+ Rag1Cre (3 F and 1M) or Mntfl/fl Rag1Cre (2 F, 3 M) mice (test cells).
Ly5.1+ competitor and Ly5.2+ test cells of the same sex were injected into
Ly5.1+ recipient mice of the same sex. Twelve weeks after transplantation,
the relative proportions of test cell-derived lymphoid and myeloid cells
(Ly5.2+) and competitor cell derived lymphoid and myeloid cells (Ly5.1+)
of the indicated cell subsets in the thymus, spleen and bone marrow were
determined by flow cytometry, using Ly5.1 and Ly5.2 antibodies to
distinguish the two types of competing cells (see Supplementary Fig. 1).
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Fig. 1 Bone marrow reconstitution experiments reveal competitive disadvantage of MNT-deficient lymphopoiesis. A Protocol for
competitive reconstitution. C57BL/6 mice (Ly5.1+) (3–4 per test) were lethally irradiated (2 × 5.5 Gy) and injected with a 1:1 mixture of bone
marrow cells (106 cells per genotype) from Ly5.1+ C57BL/6 mice (competitor cells) and either Mnt+/+Rag1Cre or Mntfl/flRag1Cre mice (Ly5.2+

test cells). B–D Relative proportions of reconstituted test cells (Ly5.2+) and competitor cells (Ly5.1+) of the indicated cell types in the thymus
(B), spleen (C) and bone marrow (D), 12 weeks post-transplantation. Analysis was performed by flow cytometry (see Supplementary Fig. S1).
Data shown are from four independent reconstitution experiments; genotypes are WT (Ly5.1+, black), Mnt+/+Rag1Cre (Ly5.2+, brown) and
Mntfl/flRag1Cre (Ly5.2+, gold). Dots indicate individual reconstituted mice; bars show mean ± SEM; statistical significance is shown only for
Mnt+/+Rag1Cre versus Mntfl/flRag1Cre cells; ****P ≤ 0.0001, ns not significant.
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Radiation induction of T lymphomas [26]
33 day-old C57BL/6 mice (WT, Mnt+/+ Rag1Cre and Mntfl/fl Rag1Cre) were
exposed weekly, 4 times, to 1.5 Gy γ-irradiation from a 60Co source
(Theratron Phoenix, Theratronics) and monitored until 350 days old. Sick
mice (evidenced by breathing difficulties, enlarged thymus and/or
enlarged spleen) were euthanised, autopsied and tumours characterised
by immunophenotyping and immunoblot expression analysis.

Statistical analysis
Statistical comparisons were made using unpaired two-tailed Student’s
t-test with Prism v8.0 software (GraphPad, San Diego, CA, USA). Data
are shown as means ± SEM with P ≤ 0.05 considered statistically
significant. Mouse survival analysis was carried out using GraphPad
Prism (Version 8.0) and significance determined using log-rank
(Mantel–Cox) test.
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RESULTS
MNT loss in lymphoid cells reduces competitive fitness
To avoid embryonic lethality conferred by MNT loss [15], we
deployed the Rag1Cre transgene, which is expressed only in early
lymphoid progenitors [22]. This strategy enabled us to compare

MNT-deficient vs normal lymphopoiesis in adult mice, using
competitive bone marrow reconstitution. Lethally irradiated
C57BL/6-Ly5.1+ mice were injected with a 50:50 mixture of
Ly5.1+ WT cells and test Ly5.2+ Mntfl/flRag1Cre or Mnt+/+Rag1Cre
bone marrow cells (Fig. 1A). Analysis by flow cytometry after
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12 weeks (Supplementary Fig. S1) revealed that the bone marrow
cells from Mntfl/flRag1Cre mice had competed poorly against
WT cells in regenerating lymphoid populations compared to those
from Mnt+/+Rag1Cre mice. Thymi displayed a significantly lower
proportion of Ly5.2+ Mntfl/flRag1Cre cells (gold bars) than Ly5.2+

Mnt+/+Rag1Cre cells (brown bars) in all major thymic sub-
populations (Fig. 1B). Similarly, the spleen of reconstituted mice
contained significantly fewer Mntfl/flRag1Cre than Mnt+/+Rag1Cre
CD4+ or CD8+ T cells (Fig. 1C). Comparable outcomes were noted
for B lineage cells (CD19+) in the spleen and bone marrow (Fig. 1C,
D). In contrast, as anticipated, Ly5.2+ Mnt+/+Rag1Cre and Ly5.2+

Mntfl/flRag1Cre myeloid cells (Mac1+), were present in comparable
numbers in the spleen and bone marrow in competitively
reconstituted mice. We conclude that MNT loss puts both T and
B lymphopoiesis at a significant competitive disadvantage.

Impact of MNT loss on T lymphopoiesis
We have previously investigated the impact of MNT loss in B
lymphopoiesis [15]. To investigate how MNT loss affects T
lymphopoiesis, we analysed the thymus and spleen in 6–7 wk-
old Mntfl/flRag1Cre, Mnt+/+Rag1Cre and WT mice. Mnt deletion
mediated via the Rag1Cre transgene was very efficient, as shown
by PCR and Western blot analysis (Fig. 2A).
Thymic weight and cellularity were reduced to ~65% of normal

in Mntfl/flRag1Cre mice, primarily due to fewer DP T cells
(P ≤ 0.001), although DN and SP CD4+ populations were also
significantly reduced (Fig. 2B). DN4 (CD25-CD44-) cells were more
affected than DN2 (CD25+CD44+) or DN3 (CD25+CD44-) cells
(Fig. 2C and Supplementary Fig. S2A). This deficit was not due to a
failure of Τcrβ gene rearrangement because intracellular TCRβ
protein was readily detectable in Mntfl/flRag1Cre DN4 cells
(Supplementary Fig. S2B).
Spleen cellularity was also reduced in young Mntfl/flRag1Cre mice

(Fig. 2D), primarily due to decreased B lymphoid cells (~37%;
p < 0.0001), as reported previously [15]. In addition, T cells were
reduced, particularly CD4+ T cells (~60%; p < 0.001), but the relative
proportions of naïve, memory and effector T cells were equivalent
between WT and Mnt-deficient T cells (Supplementary Fig. S2C, D).
Myeloid (Mac1+) cellularity was unaffected (Fig. 2D), as expected
from the lack of Rag1Cre expression in myeloid cells [22].

MNT loss increases T cell apoptosis
The T cell deficit in Mntfl/flRag1Cre mice seemed likely to reflect
increased apoptosis and/or reduced MYC levels. All four major
thymic sub-populations in Mntfl/flRag1Cre mice displayed a
significantly increased proportion of annexin V-positive cells
compared to their WT or Mnt+/+Rag1Cre control counterparts
(Fig. 3A, Supplementary Fig. S3) and there was a similar trend for
CD4+ and CD8+ T cells in the spleen (Fig. 3E). However, MNT loss
did not alter endogenous MYC protein levels in any of these cell

populations, as shown by flow cytometric and immunoblot
analysis (Fig. 3B–D).
Enhanced apoptosis probably also explains the reduced DN4

population in Mntfl/flRag1Cre mice (Fig. 2C). When sorted DN3 and
DN4 cells were cultured on OP9-DL1 stromal cells with IL-7,
conditions which are permissive for T lymphoid cell proliferation
and differentiation (Fig. 4A), MYC levels and proliferation were
unaffected (Supplementary Fig. S4A, B). However, the Mnt KO DN4
cells produced considerably fewer viable cells, of all differentiation
stages, than Mnt WT DN4 cells (Fig. 4B, C), while the DN3 cell
cultures showed no major differences. Thus, MNT loss apparently
renders DN4 cells, but not DN3 cells, more vulnerable to apoptosis
during culture.
MNT loss increased apoptosis of splenic CD4+ T cells activated

in vitro by PMA and ionomycin. The proportion of annexin-V-
positive cells was ~2-fold higher in the Mnt KO than the Mnt+/+

CD4+ T cell population and there were fewer viable cells (Fig. 4D,
Supplementary Fig. S4C). In contrast, MNT loss had little
consequence for CD8+ T cells under these conditions.
Taken together, these observations suggest that increased

apoptosis is the major determinant of the T cell deficit in Mntfl/
flRag1Cre mice.

BIM is a critical mediator of apoptosis in MNT-null T cells
Cellular stress causes cell death via the mitochondrial apoptosis
pathway, which is regulated by opposing factions of the BCL-2
family [27, 28] and extensive genetic studies have identified BIM
(BCL2L11), a pro-apoptotic BH3-only protein, as a key trigger of
lymphocyte death [29–32]. We therefore hypothesised that BIM
contributed to the enhanced apoptosis of MNT-deficient T cells.
Notably, western blot analysis and intracellular flow cytometry

revealed increased BIM protein inMnt KO DP thymocytes compared
to WT DP thymocytes but no significant change in anti-apoptotic
MCL-1, an important regulator of T cell survival [33] (Fig. 5A, B). A
modest increase in Bim transcription in MNT-deficient T cells
(Fig. 5C) may partly account for the increased BIM protein.
BIM protein was also notably higher in mitogen-activated Mnt

KO CD4+ splenic T cells, but not in activated CD8+ T cells (see
Fig. 4E, F), paralleling their apoptosis susceptibility under these
conditions (Fig. 4D). These results suggest that MNT suppresses
Bim expression in T lymphoid cells, as we previously proposed for
B lymphoid cells [15].
To directly test the importance of BIM in the apoptosis of MNT-

deficient T cells, we bred Bim+/− Mntfl/flRag1Cre mice (Bim is
functionally haplo-insufficient [34]). Indeed, apoptosis in thymocyte
populations from Bim+/− Mntfl/flRag1Cre mice (rust bars) was
significantly less than in those from Mntfl/fl Rag1Cre mice (gold
bars), and comparable to that in WT mice (black bars) (Fig. 5D).
Notably, the cellularity of the major thymic sub-populations was
restored (Fig. 5E), as was that of the DN4 sub-population (Fig. 5F).
Splenic T cell cellularity was also restored to normal in the Bim+/−

Fig. 5 Elevated BIM promotes apoptosis inMnt KO T cells. A, B BIM protein is elevated in Mnt KO DP thymocytes. DP T cells were sorted from
thymi of 3 WT and 5 Mntfl/fl Rag1Cre mice and BIM levels were quantified by immunoblot and intracellular FACS analysis. A Left panel shows
one of two western blots and right panel quantifies BIM and MCL-1 levels for both blots relative to ACTIN (protein loading control) and
normalised to that in WT cells. B Left panel shows a typical FACS profile, comparing BIM level in DP thymocytes from Mntfl/flRag1Cre (gold), WT
(black) and, as a negative control, Bim−/− mice (grey). Right panels show % BIM-positive cells and Mean Fluorescence Intensity (MFI) for BIM in
three independent experiments ± SEM. C Bim transcription is elevated in Mnt KO DP thymocytes. Quantitative RT-PCR of Bim transcripts in
Mntfl/fl Rag1Cre (gold) compared to WT (black) DP thymocytes. Values were calculated relative to Gapdh control. D Bim heterozygosity reduces
apoptosis of the major thymic T cell sub-populations in Mntfl/flRag1Cre mice. E Bim heterozygosity restores cellularity of major thymic T cell
sub-populations in Mntfl/flRag1Cre mice. F Bim heterozygosity increases the cellularity of DN2, DN3 and DN4 progenitor cell populations in the
thymus of Mntfl/flRag1Cre mice. G Bim heterozygosity increases CD4+ and CD8+ T cells in the spleen of Mntfl/fl Rag1Cre mice. H Bim
heterozygosity prevents increased apoptosis in activated CD4+ and CD8+ splenic T cells caused by MNT loss. Splenic CD4+ and CD8+ T cells
from mice of the indicated genotypes were cultured in PMA+ ionomycin for 72 h. Apoptosis was quantified by flow cytometry after staining
cells with Annexin-V-FITC. Genotypes analysed include WT (black), Mntfl/flRag1Cre (gold), Bim+/−Mntfl/fl Rag1Cre (rust) and Bim+/− (grey). Dots
indicate individual mice; bars show mean ± SEM; *P ≤ 0.05, **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001; ns not significant. Data include mice in Fig. 2
plus additional mice.
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Mntfl/flRag1Cre mice (Fig. 5G). Furthermore, loss of one Bim allele
prevented the enhanced apoptosis of Mntfl/flRag1Cre CD4+ splenic
T cells stimulated in vitro by PMA+ ionomycin (Fig. 5H). In
summary, MNT loss upregulates BIM, thereby enhancing the
vulnerability of T cells to apoptosis during normal T lymphopoiesis.

MNT also constrains BIM levels in other cell types. Thus, using
CRISPR/Cas9, we found that human MNT KO HEK 293 T and HeLa
cells, andMnt KO Bax−/−Bak−/−mouse embryonic fibroblasts (MEFs)
express more BIM protein than their parental cells (Supplementary
Fig. S5). Since apoptosis is blocked in Bax−/−Bak−/− MEFs, MNT

H.V. Nguyen et al.

1025

Cell Death & Differentiation (2023) 30:1018 – 1032



regulation of BIM levels must occur upstream of mitochondrial
permeability changes. Of note, the mechanism is reversible, because
when the MEFs (Mnt+/+ orMnt−/−) cells were infected withMntERT2
retrovirus and treated with 4-OHT to activate the exogenous
MNTERT2 protein [35], BIM levels were again reduced (Supplemen-
tary Fig. S5I).

Mnt deletion prevents T lymphoma development in MYC10hom

transgenic mice
To examine the impact of MNT loss on MYC-driven T lymphoma-
genesis, we utilised our MYC10hom mice [24, 36], which are
homozygous for a transgene expressing human MYC cDNA via the
pan-haemopoietic VavP transgenic vector [37]. In these mice,
expression of transgenic MYC protein in T lymphoid cells is
significantly higher than in B lymphoid and myeloid cells, and
thymic T lymphoma is the major cause of morbidity, although
these mice can also develop disseminated histiocytic myeloid
(monocyte/macrophage) (Mac1+F4/80+Gr1-) tumours affecting
the spleen and other organs [36].
Mntfl/flMYC10hom/Rag1Cre mice survived significantly longer

than the control Mnt+/+MYC10hom and Mnt+/+MYC10hom/Rag1Cre
mice (median of 158 d compared to 136 d and 148 d; p ≤ 0.001,
p ≤ 0.01, respectively) (Fig. 6A) and autopsy of euthanised sick
mice revealed a major difference in pathology. Whereas the
control mice presented with massively enlarged thymi and/or
splenomegaly, Mntfl/flMYC10hom/Rag1Cre mice presented with
splenomegaly but not thymic enlargement (Fig. 6B).
Importantly, Rag1Cre-mediated Mnt deletion specifically pre-

vented T lymphoma development in MYC10hom mice (Fig. 6C).
None of the 26 mice in the Mntfl/fl MYC10hom/Rag1Cre cohort
developed thymic T lymphomas (Supplementary Table S3) and,
where analysed, their thymic T cells had polyclonal rather than
monoclonal TCR gene rearrangement, consistent with not being
transformed (eg # 1313 and #1316 in Fig. 6D). In contrast, 12/26
Mnt+/+MYC10hom and 7/24 Mnt+/+MYC10hom/Rag1Cre control
mice developed massive thymi (up to 1440mg) and 14/15 of
those immunophenotyped were CD4+CD8+ T lymphomas (the
other being a CD19+ B lymphoma) (Supplementary Fig. S6A–C
and Tables S1, S2). Seven of these thymic T lymphomas analysed
by PCR showed 1 or 2 dominant Tcrβ gene rearrangements,
indicative of mono- or bi- clonality (Fig. 6D, E). Curiously, the T
lymphomas were also Mac-1-positive (Supplementary Fig. S6A, B),
which may be due to high MYC expression, because activated
CD8+ T cells express Mac1 [38].
The grossly enlarged spleens arising in either Mnt+/+ or Mnt KO

MYC10hom mice contained a high proportion of transplantable
Mac-1+ myeloid cells (Fig. 6F, Supplementary Table S4). Histolo-
gical review revealed invasion of many other tissues by these
tumour cells, as described previously [36]. Although the splenic
CD4+ T cells in these mice were clearly activated (CD44+CD62L-)
(Supplementary Fig. S6D), they were not transplantable (Supple-
mentary Table S4).

In summary, lymphoid cell-specific Mnt deletion prevented the
development of MYC-driven thymic T lymphomas in MYC10hom

transgenic mice but not their myelomonocytic tumours. Whether
the MYC-driven myeloid tumorigenesis requires MNT is not
addressed by these studies as Rag1Cre is expressed only in
lymphoid progenitors [39].

MNT loss impairs T cell development in MYC10hom transgenic
mice
To clarify why T lymphomagenesis was abrogated in
Mntfl/flMYC10hom/Rag1Cre mice, we analysed healthy young ie
premalignant (8 wk-old) mice. PCR and western blot analysis of DP
thymocytes confirmed efficient Mnt deletion (not shown). Of note,
thymic cellularity was reduced ~50% in Mntfl/flMYC10hom/Rag1Cre
mice (green) compared to control Mnt+/+MYC10hom mice (blue)
(p ≤ 0.001), and all thymocyte sub-populations were reduced
around two-fold (Fig. 7A).
As reported previously [36], the level of MYC protein in

thymocytes of MYC10hom transgenic mice greatly exceeds
endogenous MYC levels (compare first 2 tracks in Fig. 7D).
Concomitantly, MNT levels are also elevated 3-fold (Fig. 7D,
Supplementary Fig. S7A).
MNT loss did not affect MYC protein level or cell size in pre-

malignant MYC10hom T cells (Supplementary Fig. S7B–D). However,
the proportion of annexin-V-positive cells was significantly higher
in Mnt KO MYC10hom than Mnt+/+ MYC10hom thymocyte sub-
populations (compare green to blue bars), which in turn tended to
be higher than comparable WT sub-populations (compare blue to
black bars; Fig. 7B). Furthermore, when cultured in vitro, Mnt KO
MYC10hom DP thymocytes died faster than their Mnt+/+MYC10hom

or WT counterparts (Fig. 7C). Thus, an overt consequence of MNT
loss was increased apoptosis.
The increased apoptosis paralleled elevated BIM protein levels

(Fig. 7D, E) and increased Bim transcription (Fig. 7F) in thymic DP
T cells. Anti-apoptotic MCL-1 protein levels were higher in
MYC10hom than WT DP thymocytes, but not affected by MNT loss
(Fig. 7D). BCL-XL levels were comparable in cells from all three
genotypes (Supplementary Fig. S7A). The tumour suppressor p53,
which can activate apoptosis via transcriptional induction of pro-
apoptotic BH3-only proteins PUMA and NOXA [40], was not
detectable, by either western blot or qRT-PCR analyses (not
shown).
MNT loss also resulted in a deficit of CD4+ and CD8+ T cells in

the spleen of pre-malignant MYC10hom mice (Fig. 7G, green bars),
and annexin V staining (Fig. 7H) indicated greater predisposition
to apoptosis. Pertinently, the high MYC levels did not further
increase in the absence of MNT (Supplementary Fig. S8A, B).
Staining for CD44 and CD62L indicated that, as expected, the MYC
transgenic splenic T cells were enlarged and highly activated
(Supplementary Fig. S8C, D).
MNT loss also greatly reduced CD19+ B lymphoid cells in the

spleen and bone marrow of the young MYC10hom mice, as

Fig. 6 Lymphoid-specific MNT loss prevents thymic lymphoma development in Mntfl/flMYC10hom/Rag1Cre mice. A Kaplan–Meier survival
curves showing significantly delayed morbidity for Mntfl/flMYC10hom/Rag1Cre mice (green curve; median survival 165 d; n= 27: 16 F, 11 M)
compared to control Mnt+/+MYC10hom (blue curve; median survival 134 d; n= 26: 17 F, 9 M) and Mnt+/+MYC10hom/Rag1Cre (red curve; median
survival 148 d; n= 24: 12 F, 12 M) mice. B MNT loss prevents thymus but not spleen enlargement. Sick mice were euthanised and the weights
of spleens and thymi measured. Bars show mean thymus and spleen weights ± SEM, and dots indicate values for individual euthanised mice.
C MNT loss prevents T lymphoma development. Proportion of T (black) and B (grey) thymic lymphomas and myeloid tumours (white) in
euthanised Mnt+/+MYC10hom, Mnt+/+MYC10hom/Rag1Cre and Mntfl/flMYC10hom/Rag1Cre mice. (See text and Tables 1–3). D Polyclonality of thymic
T cells in Mntfl/flMYC10hom/Rag1Cre mice. PCR analysis of Tcrβ gene rearrangements was performed on DNA isolated from DP thymic cells from
Mntfl/flMYC10hom/Rag1Cre mice # 1313, #1316 (green) and, as a control, a clonal T lymphoma Mnt+/+MYC10hom/Rag1Cre mouse #1466 (red).
Lower 4 panels show PCR genotype analysis. E Clonality of thymic T lymphomas from Mnt+/+MYC10hom mice. DNA was isolated from
individual T lymphomas (blue) and genomic PCR analysis performed for indicated Tcrβ gene rearrangements, MYC10 transgene and, as a
loading control, Thy1. F Enlarged spleens from both Mnt+/+ and Mntfl/fl MYC10hom/Rag1Cre mice have elevated proportion of Mac1+ myeloid
cells. Mouse genotypes analysed included WT (black), Mnt+/+MYC10hom/Rag1Cre (red) and Mntfl/flMYC10hom/Rag1Cre mice (green). Dots indicate
individual mice; bars show mean % cellularity ± SEM; *P ≤ 0.05, **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001; ns not significant.
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reported previously for Mntfl/fl Eμ-Myc/Rag1Cre mice [15], but
myeloid cells (Mac1+, Gr1+, Mac1+Gr1+) were unaffected (Fig. 7G,
Supplementary Fig. S9C). Indeed, myeloid cell numbers were still
normal at this age in both MYC10hom genotypes, despite the

disseminated myeloid disease that inevitably develops as these
mice age.
We conclude that abrogation of thymic T lymphoma develop-

ment in Mnt KO MYC10hom mice is largely due to the increased
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apoptosis of the highly proliferative pre-malignant thymic T cells,
driven by elevated BIM levels.

MNT loss prevents γ-radiation-induced T lymphoma
development
To investigate the MNT-dependency of T lymphomagenesis in the
absence of a Myc transgene, we performed serial total body γ-
irradiation of C57BL/6 mice. In this well-studied model [26, 41], γ-
irradiation decimates leukocytes and the thymus is repeatedly
regenerated from bone marrow-derived haemopoietic stem/
progenitor cells, some of which have sustained γ-irradiation-
induced oncogenic mutation.
As expected, almost all γ-irradiated WT mice andMnt+/+/Rag1Cre

controls developed thymic T lymphomas (median survival 172 and
204 d respectively). These usually presented in the thymus and
often also in the spleen, and had either a CD4+CD8+, CD8+ or
mixed surface marker expression profile (Fig. 8A–C, Supplementary
Table S5). Western blot analysis (Fig. 8D) showed that, with one
exception, MYC protein was lower in γ-irradiation-induced T
lymphomas than in MYC10hom transgenic T lymphomas, but
nevertheless still far higher than in a normal thymus. NOTCH1
and p53/p19Arf pathway mutations were frequent, as reported
previously [42], and all lymphomas expressed MNT and BIM.
Remarkably, however, none of the γ-irradiated Mntfl/fl/Rag1Cre

mice developed lymphomas (Fig. 8A). To understand why, we
analysed thymi recovering from the first γ-irradiation dose
(Fig. 8E–G). All major T cell populations were greatly reduced on
d2 compared to unirradiated controls but had largely recovered
by d21, irrespective of genotype (Fig. 8E). However, the Mnt KO
T cells exhibited greater levels of apoptosis compared to controls
(Fig. 8F) and intracellular staining revealed significantly elevated
BIM (Fig. 8G). We infer that MNT loss ‘enhances BIM-induced
apoptosis of cells repopulating the thymus, including any clones
expanding from stem cells carrying irradiation-induced oncogenic
mutations. Consequently, lymphoma development is prevented.

DISCUSSION
Using Rag1Cre-mediated deletion of Mnt in immature lymphoid
progenitor cells in otherwise normal young mice, and competitive
bone marrow reconstitution of lethally irradiated mice, we have
shown that MNT-deficient lymphoid cells are more vulnerable to
apoptosis during their development than those expressing MNT
([15], this paper). MNT loss elevated apoptosis and reduced
cellularity in the thymus, bone marrow and spleen. In the T
lineage, the phenotype affected all major sub-populations and
was apparent as early as the DN4 pro-T cell stage, during which

pre-TCR and Notch-1 signalling elevates c-MYC expression [43, 44].
In the B lineage, pro-B, pre-B and B cells were all affected [15].
The T cell phenotype of Mntfl/fl Rag1Cre mice was milder than that

reported previously for Mntfl/fl LckCre mice [19], which had severe T
cell loss, progressive inflammatory disease and late onset T
lymphoma. The phenotypic differences may be due to continuous
(Lck promoter-driven) vs transient (Rag1 promoter-driven) CRE
expression. Continuous CRE exposure greatly perturbs T cell
development [45], presumably due to accumulated DNA breaks,
and this phenotype may be exacerbated by concomitant loss of MNT.
We showed that MNT loss in T cells provoked upregulation of

BIM protein, a major initiator of apoptosis [29–32], and that the
enhanced apoptosis and T cell deficit were largely prevented by
loss of a single Bim allele. Both BIM protein and Bim mRNA levels
were elevated in T cells of Mntfl/fl Rag1Cre mice. MNT may directly
suppress Bim transcription, as MNT binding sites in the Bim locus
have been identified in mouse B cells (see CUT&RUN data
GSE132967 reported by Mathsyaraja et al. [46]). Indirect mechan-
isms may also be involved, but these do not appear to involve
either ERK phosphorylation [47] or down-regulation of microR17-
92 [48, 49] (data not shown).
Our data analysing MNT KO HEK 293 T, HeLa and MEF cell lines

(Figure S5) suggest that MNT can also dampen BIM expression in
non-lymphoid cell types. Importantly, since expression of exogen-
ous MNT in Mnt KO cells reduced the elevated BIM levels, the
mechanism is reversible. Furthermore, since the MEFs used in this
experiment lacked the apoptosis effectors BAX and BAK, MNT-
mediated modulation of BIM levels must occur upstream of
mitochondrial outer membrane permeability (MOMP) changes.
To gauge how MNT affects T lymphomagenesis, we first used

VavP-MYC10hom transgenic mice [24, 36], which are prone to both
thymic T lymphomas and disseminated myeloid tumours. Strik-
ingly, lymphoid-specific Mnt loss abrogated T lymphoma devel-
opment in the MYC10hom transgenic mice. None of the Mntfl/fl

MYC10hom/Rag1Cre cohort (n= 26) developed thymic lymphomas
and morbidity was solely due to myeloid tumours.
To explore why T lymphomas failed to develop, we compared

phenotypes of young mice, prior to any sign of emerging
malignancy. MNT loss halved T cell numbers in both the thymus
and spleen, and the Mnt KO MYC10hom T cells were significantly
more susceptible to apoptosis than Mnt+/+MYC10hom T cells at all
major stages of development. Indeed, their apoptosis is likely
greater than suggested by annexin-V labelling, as apoptotic cells
are rapidly engulfed by phagocytes in vivo [50]. These results
showing the MNT-dependence of VavP-MYC transgene-driven T
lymphomagenesis confirm and extend those reported by Hurlin’s
group for transgenic mice engineered for T cell-specific (Lck-Cre-

Fig. 7 MNT loss impairs T cell development in pre-malignantMYC10hom transgenic mice. A–E Thymus: A Reduction in cellularity of all major
thymic T cell sub-populations in 8 wk-old premalignant Mntfl/flMYC10hom/Rag1Cre mice (green; n= 10: 3 F, 7 M) vs premalignant Mnt+/

+MYC10hom (blue; n= 13: 8 F, 5 M) transgenic mice and control WT (black; n= 13: 7 F, 6 M) mice. Cell number was determined by flow
cytometry after immunostaining. B, C Elevated apoptosis of thymic T cells in premalignant MYC10hom transgenic mice was further enhanced
by MNT loss. B Quantification of AnnexinV-positive cells in the four major thymic T cell sub-populations from WT (black; n= 8: 3 F, 5 M),
Mnt+/+MYC10hom (blue; n= 9: 6 F, 3 M) and Mntfl/flMYC10hom/Rag1Cre (green; n= 9: 3 F, 6 M) mice. C MNT loss enhances death of premalignant
MYC10hom DP thymic T cells in vitro. Sorted DP T cells were cultured at 37 oC in OptiMEM medium + 10% FCS and viability determined by PI
staining at 0, 20, 32 and 48 h. Values are expressed relative to viability at t= 0 h. D–F MNT loss is associated with elevated BIM expression.
D Left panel. Typical Western blot showing elevated BIM levels in sorted DP thymic T cells from 2 independent Mntfl/flMYC10hom/Rag1Cre mice
vs control Mnt+/+MYC10hom or WT mice. Right panel shows quantification of BIM and MCL-1 protein in 2 independent western blots,
normalised to ACTIN (protein loading control) first and then normalised to expression in WT cells (see Supplementary Fig. S7A for MNT, MYC
and BCL-XL quantification). E Elevated intracellular BIM staining in DP thymic T cells from Mntfl/flMYC10hom/Rag1Cre vs control Mnt+/+MYC10hom

mice. Upper panel shows a typical FACS analysis of intracellular BIM expression and lower panel presents BIM Mean Fluorescence Intensity
(MFI) ± SEM for DP thymic T cells from 2 independent WT and 3 independent Mnt+/+MYC10hom and Mntfl/flMYC10hom/Rag1Cre mice. DP thymic
T cells from Bim−/− mice served as a negative control. F Elevated Bim transcripts in DP thymic T cells from Mntfl/flMYC10hom/Rag1Cre vs control
Mnt+/+MYC10hom mice revealed by quantitative RT-PCR. Values were calculated relative to GapdhmRNA used as a loading control. G, H Spleen:
G Marked reduction of T and B lymphoid but not myeloid cells in spleens of 8 wk-old premalignant MNT-null MYC10hom transgenic mice.
H Elevated apoptosis of splenic CD4+ and CD8+ T cells in MNT-null MYC10hom transgenic mice, quantified by Annexin-V staining. Dots indicate
individual mice. Mice used for G, H were those analysed in A and B above. Bars show mean ± SEM; *P ≤ 0.05, **P ≤ 0.01; ***P ≤ 0.001,
****P ≤ 0.0001, ns not significant.
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dependent) expression of a stable mutant MYCT58A protein from
within the ROSA 26 locus [20, 51].
Importantly, we also showed that the MNT-dependency of T

lymphomagenesis extends beyond a Myc transgenic setting.
Irradiation-induction of T lymphomas, where NOTCH 1 and p53

mutations are principal oncogenic drivers [42], was totally
prevented by Rag1Cre-mediated Mnt deletion.
Quantification of major apoptosis regulators revealed that pro-

apoptotic BIM protein was elevated in Mnt KO as compared to
Mnt+/+ DP thymocytes in healthy young MYC10hom transgenic
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mice. Similarly, apoptosis and BIM protein levels were elevated in
DP thymocytes of regenerating thymi from irradiated Mntfl/fl

Rag1Cre versus irradiated Mnt+/+ Rag1Cre or WT C57BL/6 mice.
We infer that BIM upregulation after Mnt deletion is a major factor
triggering apoptosis of proliferating T cell populations. Our data
suggest that the mechanism is reversible and takes place
upstream of BAX/BAK activation and MOMP. Further investiga-
tions of mechanism are planned, using RNA-Seq and CUT&TAG.
As a MYC antagonist, MNT was originally considered a tumour

suppressor and this was supported by an early study showing that
mice with mammary-specific Mnt deletion developed mammary
adenocarcinoma [23]. The tumour suppressor role received further
support when deletions involving the MNT gene locus (usually
monoallelic) were noted in ~10% of cancers in The Human Cancer
Genome Atlas [4], including certain cases of chronic lymphocytic
leukaemia [52], a B cell malignancy, and Sezary syndrome, a
cutaneous T-cell lymphoma/leukaemia [53]. However, MNT is
localised on human chromosome 17p13.3 [12], near the potent
tumour suppressor gene TP53 (17p13.1), making it difficult to
ascribe any impact of large deletions solely, if at all, to MNT
deletion.
While MNT might act as a tumour suppressor in certain settings,

genetic studies from ourselves and others ([15, 20, 21] and this
paper), using four independent mouse models, demonstrate
unequivocally that MNT facilitates MYC-driven lymphomagenesis,
rather than acting as a tumour suppressor, and that it does so by
limiting apoptosis. Importantly, we have shown that MNT
suppresses apoptosis by dampening expression of BIM, one of
the most important apoptosis triggers for B and T lymphoid cells
[54]. Like MYC, MNT binds to E boxes near many genes [1, 46].
Therefore, in addition to suppressing apoptosis, MNT may have
other roles in facilitating MYC-driven oncogenesis.
MYC is a major driver for many (perhaps most) lymphoid and

myeloid tumours and indeed a variety of solid tumours [3, 4].
However, the protracted search for a clinically effective MYC
inhibitor has not yet succeeded [55, 56]. The realisation that MNT
suppresses MYC-driven apoptosis opens an entirely new ther-
apeutic approach: inhibition of MNT to amplify MYC’s capacity to
drive apoptosis.
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