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Cancer cells’ ability to inhibit apoptosis is key to malignant transformation and limits response to therapy. Here, we performed
multiplexed immunofluorescence analysis on tissue microarrays with 373 cores from 168 patients, segmentation of 2.4 million
individual cells, and quantification of 18 cell lineage and apoptosis proteins. We identified an enrichment for BCL2 in immune, and
BAK, SMAC, and XIAP in cancer cells. Ordinary differential equation-based modeling of apoptosis sensitivity at single-cell resolution
was conducted and an atlas of inter- and intra-tumor heterogeneity in apoptosis susceptibility generated. Systems modeling at
single-cell resolution identified an enhanced sensitivity of cancer cells to mitochondrial permeabilization and executioner caspase
activation compared to immune and stromal cells, but showed significant inter- and intra-tumor heterogeneity.
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INTRODUCTION
Alterations in apoptosis signaling is key step in tumorigenesis [1]
and previous quantitative studies in solid tumor tissues found
significant, but often complex differences in levels of individual
anti- or pro-apoptotic proteins between different patients [2–5].
Predictions of individual patient’s apoptosis susceptibility are
complicated by the signaling redundancies in key apoptosis
pathways, as exemplified in the mitochondrial apoptosis pathway
[6–8]. BH3-peptide profiling has been successfully applied to
predict outcome and responses to cancer therapeutics in solid
cancers; however, this technique requires fresh tissue [9]. Other
groups, including our own, have used gene expression or protein
level (western blotting and reverse protein phase array) data of
apoptosis-regulating genes from fresh-frozen or formalin-fixed
tissues as input into deterministic signaling network models to
estimate the intrinsic apoptosis sensitivity of individual tumors.
The ordinary differential equation-based models DR_MOMP [2]
and APOPTO-CELL [10, 11] calculate a cell’s sensitivity to induce
apoptosis as a two-step process with little feed-back from one to
the other process [12]. DR_MOMP models the BCL2 signaling
network triggered upon activation of BH3-only proteins, and
APOPTO-CELL models the activation of caspase-3 downstream of
mitochondrial outer membrane permeabilization (MOMP). Both
models have been validated experimentally in colon and other
cancer cells [2–5, 13–16].

Notwithstanding the successful application of these techniques
in predicting chemotherapy responses and clinical outcome in
cancer patients, these “bulk” techniques require a tissue homo-
genate to be analyzed and come with loss of important spatial
information including the precise cell-of-origin of the signals. It is
feasible that some tumors are more resistant to therapy than
others by harboring resistant sub-populations, which is in line with
evidence indicating the role of tumor heterogeneity in determin-
ing clinical outcome and responses to therapy [17, 18]. Such
resistant cell populations could give rise to more aggressive
tumors on recurrence. Similarly, chemo- or radiation therapy not
only affects tumor cells, but also cells in the tumor microenviron-
ment such as immune cells; therefore, a higher apoptosis
sensitivity of anti-tumor immune cells compared to cancer
epithelial cells may be detrimental to patients.
To describe the extent of inter-individual and intra-tumor

heterogeneity in apoptosis signaling, herein we employed an
innovative multiplexed immunofluorescence imaging technique
(Cell DIVE™), which is comprised of a repeated stain-image-dye-
inactivation sequence using direct antibody-fluorophore conju-
gates, as well as a small number of primary antibodies from
distinct species with secondary antibody detection [19], followed
by single-cell segmentation in a colorectal tumor tissue cohort.
This enabled us to calculate each individual cell’s apoptosis
sensitivity through single-cell systems modeling, and
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quantitatively describe inter- and intra-tumor heterogeneity of the
mitochondrial apoptosis pathway among different cell types that
constitute a colorectal tumor.

RESULTS
To explore the levels of key proteins of the mitochondrial
apoptosis pathways in colorectal cancer (CRC) tissue at the
single-cell level, we performed Cell DIVE™ multiplexing of nine
pro- and anti-apoptotic proteins in regions of resected primary
tumors in 355 tumor cores derived from 168 stage III CRC patients
(Fig. 1A). Apoptosis signaling protein selected for analysis included
BCL2, BCL(X)L, MCL1, BAK, and BAX that regulate the process of
MOMP, as well as PRO-CASPASE 9, PRO-CASPASE 3, XIAP, and
SMAC (DIABLO) that control the process of executioner caspase
activation downstream of MOMP. These nine proteins were used
as input variables for our deterministic models DR_MOMP [2] and
APOPTO-CELL [10, 11] to calculate the apoptosis sensitivity
markers “sensitivity for MOMP” and “caspase activity.” Additional
proteins selected for this study included cell identity markers
(CD3, CD4, CD8, CD45, FOXP3, PCK26, and cytokeratin AE1), as well
as proteins used for cell segmentation analysis (Na+/K+-ATPase,
cytokeratin AE1, PCK26, and S6).
Cells were classified into different cell types based on cell

identity markers for cancer/epithelial cells (positive for cytokeratin
AE1 or PCK26), immune cells (positive for CD3, CD4, CD8, or CD45),
and other stromal cells negative for any of these markers. For
more extensive cell classification, a Random Forest model was
trained with 15,184 manual annotated cells (0.6% of total cells)
and CD3, CD4, CD8, CD45, and FOXP3 levels, and applied on 99.9%
of all cells to further differentiate immune cells into cytotoxic,
regulatory, helper T, and other immune cells (Fig. 1B). The model
classified 65.7% as (epithelial like) cancer cells (type II error 3.0% in
training set), 23.6% other stromal cells (type II error 8.1%), and
10.7% as immune cells (type II error 3.0%), of which 2.0% were
helper (type II error 28.8%), 1.4% regulatory (type II error 7.4%),
1.3% cytotoxic (type II error 28.0%), and 6.0% other T or immune
cells (type II error 18.8%). The cell type composition in CRC core
tissues varied significantly, with some cores showing predomi-
nantly cancerous/epithelial cells in the absence of immune cell
infiltration, and others showing very high levels (up to 55%) of
immune cells (Fig. 1C, D). A bootstrap analysis with randomly
sampled pairings found cell type composition in tumors of
patients with paired-cores, despite high heterogeneity, more
similar to each other compared to random pairings (Supplemen-
tary Fig. 1), suggesting that cell type composition was a biological
feature of individual tumors.

Tumor cell atlas shows heterogeneous and cell type-specific
enrichment of key proteins of the mitochondrial apoptosis
pathway
We next calculated molar protein profiles for key proteins
controlling apoptosis (Fig. 2A, B) and used as input for the
deterministic systems models, DR_MOMP (Fig. 2C) and APOPTO-
CELL (Fig. 2D). Analysis of five key BCL2 proteins that control the
process of MOMP demonstrated a significant enrichment in anti-
apoptotic BCL2 in immune cells when compared to cancerous
epithelial cells or other stromal cells, while anti-apoptotic BCL(X)L
and MCL1, although statistically enriched in cancer epithelial cells,
were more homogenously distributed between the three cell
types (Fig. 2C). Mean levels of MCL1 were in general lower
compared to BCL2 and BCL(X)L, confirming previous studies [2]. Of
note, pro-apoptotic BAK showed a strong enrichment in cancer
cells (Fig. 2C). BAX, although statistically enriched in cancer cells,
was more homogenously distributed between the three cell types
(Fig. 2C).
Proteins controlling executioner caspase activation downstream

of MOMP also showed a heterogeneous distribution between cell

types, with XIAP, SMAC, PRO-CASPASE 3, and PRO-CASPASE 9, all
at higher levels in cancer cells when compared to immune cells
(Fig. 2D). Stromal cells showed the lowest levels of these proteins,
suggesting that the apoptotic machinery downstream of MOMP is
suppressed in non-transformed cells when compared to cancer
epithelial cells.
Investigating apoptosis proteins within immune cells, we found

higher levels of BAK, XIAP, SMAC, PRO-CASPASE 3, and PRO-
CASPASE 9 and lower levels of BCL2 in cytotoxic T cells when
compared to helper or regulatory T cells (Fig. 3A–D). These
findings suggest that cytotoxic T cells may represent T cells most
sensitive to the activation of mitochondrial apoptosis.
Utilizing transcriptional data derived from flow-sorted immune

(n= 6), epithelial (n= 6), and fibroblast (n= 6) populations
isolated from CRC primary tumor tissue (GSE3939625; Supple-
mentary Table 3), we likewise identified elevated levels of bcl2
mRNA levels in leukocytes compared to cancer (epithelial) cells
(analysis of variance [ANOVA] p= 0.006, Tukey post-hoc p=
0.005). We also identified higher levels of bax and mcl1 mRNA
levels in leukocytes compared to cancer cells, and in other stromal
cells (fibroblasts) compared to cancer cells (ANOVA p ≤ 0.01, Tukey
post-hoc p < 0.01; Supplementary Fig. 2). We did not find any
significant differences in mRNA levels of bak1, bcl2l1 (BCL(X)L), and
caspases. While these data “validated” the enrichment of Bcl-2 in
immune cells, they also suggested that mRNA levels may not
accurately reflect protein level data when investigating individual
cell populations.
Calculating the cores’ quartile coefficients of dispersion (COD;

Supplementary Fig. 3), a measure of the spread of the protein
levels, we found that immune cells had a greater COD for BCL2
and BAK compared to cancer and stroma cells. Stroma cells
showed the highest, and cancer epithelial cells the lowest, COD for
MCL1, APAF1, and PRO-CASPASE 3. Cancer cells showed greater
CODs of SMAC compared to immune and stroma cells.
Single-cell correlation analysis (Fig. 3E, F) of 1,556,581 cancer

cells demonstrated high, positive median Spearman’s correlation
coefficients (ρ > 0.5) between BAK and BAX levels. Levels between
BAK (and BAX) and PRO-CASPASE 3 (and PRO-CASPASE 9), BCL(X)L
and BCL2, PRO-CASPASE 3 and BCL2, BCL2 and MCL1, BCL2 and
XIAP, SMAC and BCL(X)L, PRO-CASPASE 3 and PRO-CAPSASE 9,
and PRO-CASPASE 3 and XIAP had high positive median
correlation coefficients in cancer and stromal, but not immune
cells. Spearman’s correlation coefficient between BCL(X)L and
MCL1 and XIAP, and SMAC and XIAP levels was >0.5 in all cells.
Generally, correlations between individual proteins were similar
between leukocytes and stromal cells and frequently differed from
those in cancer cells, validating at the single-cell level that
transformed cells deviate from a physiological regulation of
apoptosis.

Single-cell systems modeling of apoptosis sensitivity shows
inter-individual differences in apoptosis sensitivity and an
enhanced ability of tumor cells to undergo Caspase-3-
dependent mitochondrial apoptosis
Using quantitative Bcl-2 protein profiles of BAK, BAX, BCL2, BCL(X)
L, and MCL1 as model input for DR_MOMP, we were able to
calculate the sensitivity of individual tumor cells to the process of
mitochondrial apoptosis initiation (Fig. 4A, B). We found significant
differences in % cells with low sensitivity for MOMP in this
otherwise homogeneous cohort of stage III CRC patients (Fig. 4B).
Between patient-matched cores, we found a mean difference of
18.8% ± SD 14.1% and a mean SD of 14.0% cells with low
sensitivity for MOMP. When stratifying DR_MOMP calculations for
individual cell types, we found that, on average, significantly fewer
cancer cells and stromal cells exhibited low sensitivity for MOMP
when compared to immune cells (Fig. 4C, upper). Among immune
cells, regulatory T cells were found to have largest population of
single cells with low sensitivity for MOMP (Fig. 4C lower). In line
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Fig. 1 Overall workflow for image processing, data generation and analysis. A Simplified workflow of the Cell DIVE™ platform and data
analysis. In total, we quantified 18 proteins in a total of 2.4 million cells in 373 tissue microarray (TMA) cores from 168 patients (12 stage II,
132 stage III, 9 stage IV). On average, we found 6492 (SD 1228) cells per core; totaling on average 14,414 (SD 4196) cells per patient (1–3 cores;
F). B Random forest was used to differentiate cells using DAPI, and epithelial and CD markers. C The majority of cores consisted of epithelial
like cancer and stroma cells, D with less than 20% of cells being immune cells in the majority of cores (ANOVA, Tukey post-hoc).
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Fig. 2 Difference in apoptosis protein levels between cancer, immune and stroma cells. A Graphical illustration of the modeled BCL2
pathway (DR_MOMP) upstream of MOMP and the modeled caspase pathway (APOPTO-CELL) downstream of MOMP B with four examples of
the pre-batch-corrected protein staining, cell type classification, and calculated batch-corrected cell protein concentrations. Protein analysis of
apoptosis proteins relevant for C the DR_MOMP model upstream of MOMP and D the APOPTO-CELL model downstream of MOMP in 373
cores. To determine the difference between protein quantification based on cell masks and quantification using the whole image, we first
determined the median protein concentration of each core, stratified for cancer (red), immune (blue), and stroma (gray) cells (ANOVA, Tukey
post-hoc). x marks panels with cropped high value outliers.
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with our analysis on protein level (Fig. 3), cytotoxic T cells were
overall significantly more susceptible to apoptosis stimuli com-
pared to other immune cells
When investigating the sensitivity of individual tumor cells to

undergo caspase 3 activation (once the process of MOMP is
activated) using the APOPTO-CELL systems model downstream of
MOMP, we similarly found significant differences between individual
patients (Fig. 4E) and cores (Fig. 4F). Between patient-matched cores
we found a mean difference of 18.8% ± SD 15.7% and a mean SD of
13.8% cells with low predicted caspase activity. Importantly, when
investigating individual cell types, we found that cancer cells were
predicted to show a higher caspase activity compared to immune
cells and stromal cells, with latter showing the greatest fraction of
cells with low predicted caspase activity (Fig. 4G).
The activation of mitochondrial (or intrinsic) apoptosis is

considered to be a two-step process, with little feedback from one
to the other process. Assessing apoptosis sensitivity up- and
downstream of MOMP showed that cancer cells are sensitive for
both apoptosis pathways in the majority of tumors and that only a
small fraction of cores showed low sensitivity in both pathways at
the same time (Fig. 5A). In contrast, immune and stroma cells had a
higher fraction of cells that showed low sensitivity in both pathways,
and a lower fraction of cells that showed high sensitivity in both,
compared to cancer cells (Fig. 5A, B). Of the cancer cells that show
low sensitivity in one and high sensitivity in the other pathway, we
found that a majority of cancer cells showed a low MOMP sensitivity
and a predicted high caspase activity (Fig. 5A, C). In contrast, the
majority of immune cells showed a predicted high caspase activity
but a low sensitivity for MOMP, and the majority of stroma cells
showed a high sensitivity for MOMP but a predicted low caspase
activity (Fig. 5A, C). Collectively, the data suggested that the majority
of cancer cells showed a high sensitivity for at least one of the two
apoptosis pathways, and that cancer cells were overall more likely to
respond to both signaling pathways when compared to immune or
stromal cells.

Analysis of intra-tumoral heterogeneity
While investigating apoptosis sensitivity at the single-cell level
using our systems models, we also noticed that certain patients
showed a significant intra-tumor heterogeneity among cancer
cells, while other patients showed a more homogenous distribu-
tion in model predictions (Fig. 4B, F). To assess intra-tumoral
heterogeneity, we assessed the Shannon Entropy (Fig. 6A, B, E–G)
and Moran’s I (Fig. 6C, D, H–J) of the apoptosis model output and
measured protein levels. A low entropy, close to zero, suggests
homogenous model predictions among all cells, which could
either indicate systemic sensitivity or systemic resistance and are
in contrast to heterogeneous cell states that display a high
entropy (Fig. 6A). Moran’s I measures spatial autocorrelation, an
estimate for spatial separation of cell states across cores. Moran’s I
of 1 indicates a perfect spatial separation (e.g., left versus right
separation), while values between 0 and –1 indicate random or
perfect dispersion (checkerboard pattern), respectively (Fig. 6C).
While the difference was small, cancer cells and immune cells

had significantly lower entropy compared to stroma cells for
DR_MOMP (Fig. 6E). We found similar results for the predictions of
APOPTO-CELL, but with the difference between cancer and
immune cells much more distinct (Fig. 6F), which is in line with
the overall calculated high caspase activity among cancer cells
(Fig. 5A, C). We did not find any statistically significant difference
in Moran’s I between the different apoptosis models (Fig. 6H, I).
Although minor, cores’ Moran’s I of immune cells were lower
compared to cancer cells (ANOVA and Tukey post-hoc, Fig. 6H)
and cancer cells with different predictions for APOPTO-CELL were
significantly more randomly dispersed compared to stromal cells
(ANOVA and Tukey post-hoc; Fig. 6I).
Studying the entropy of protein levels using binned protein

levels (normalized bin size= 0.1 SD) in cancer cells (Fig. 6G), we
found significant lower entropy in BCL2, BCL(X)L, and PRO-
CASPASE 3 compared to other proteins in these cells. Compared
to immune and stroma cells, cancer cells showed higher entropy

Fig. 3 Single-cell analysis of apoptosis protein levels in immune cells. Global immune single-cell protein analysis of apoptosis proteins
relevant for A–C the DR_MOMP model upstream of MOMP and D the APOPTO-CELL model downstream of MOMP (ANOVA, Tukey post-hoc) in
373 cores. B Virtual IHC staining with BCL2 (red), CD3 (green), and CD45 (blue) shows that BCL2 level vary largely between immune cells. E–G
Calculated median spearman correlation coefficient between proteins, stratified for E cancer, F immune, and G stroma cells. A more detailed
correlation plot, including inter quantile ranges, is provided as Supplementary Fig. 4.
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in levels of BAK, BAX, PRO-CASPASE 9, SMAC, and XIAP (ANOVA
p < 0.05, Tukey post-hoc p < 0.05; Supplementary Fig. 5).
Calculating Moran’s I for cells’ protein levels, we found that the

majority of cancer cells have a score less than 0.2 suggesting

a tendency toward a low correlation between protein level and
the distance between cells (Fig. 6J). Among the proteins relevant
for DR_MOMP, BAX and BCL2 showed the higher Moran’s I
compared to BAX, BCL(X)L, and MCL1. Among proteins used in the

Fig. 4 Cancer cells show a higher capability to activate caspase signaling compared to immune and stromal cells. Results of the cell-by-
cell analysis using the apoptosis models DR_MOMP [2] and APOPTO-CELL [10, 11] in 373 cores. We first analyzed A–D DR_MOMP and
subsequently E–H APOPTO-CELL. A, E First we determined model predictions of required stress to induce MOMP (DR_MOMP) and % substrate
cleavage upon MOMP (APOPTO-CELL) based on aggregated mean protein level for each patient, using the pool of all cells of multiple cores.
Subsequently, we calculated the cores’ cell fractions with B high/low sensitivity for MOMP (DR_MOMP) and F high/low substrate cleavage
(APOPTO-CELL) using individual cell protein levels. We compared cores’ fractions with high/low C sensitivity for MOMP and G caspase activity
stratified for cancer (red), immune (blue), and stroma (gray) cells (ANOVA, Tukey post-hoc).The panels D and H show examples of individual
cores with high/low D sensitivity for MOMP and H caspase activity. In A, B and E, F, cores were sorted from high apoptosis sensitivity (left) to
low apoptosis sensitivity (right), respectively.
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APOPTO-CELL model, SMAC had the lowest Moran’s I compared to
PRO-CASPASE 3, 9, and XIAP.
Of note, since immune cells are more mobile than epithelial or

stroma cells, we would assume to find the lowest Moran’s I in
these cells. However, this was only the case for BAK, BCL2, PRO-
CASPASE 3, and GLUT1 (Supplementary Fig. 6). While numerically
different, overall Moran’s I was similar for BAX, BCL(X)L, MCL1,
SMAC, and CA9 if stratified for cell types. We observed the
greatest difference between cells of different types for BAK, BCL2,
GLUT1, HLA-I, and KI67 (Supplementary Fig. 6).
We also performed a Cox proportional hazard regression

analysis to explore whether intra-tumoral heterogeneity in
Caspase-3 activating proteins or APOPTO-CELL model output
may influence disease-free survival (DFS) of patients. A total of
36 stage III patients were analyzed for which three cores each
were available (n= 108 cores). Mean protein levels and model
calculations in combination with scores for Entropy or Moran’s I

were included in the analysis and tested for interaction (adjusted
for patients’ age and sex; Supplementary Fig. 7 and Supplemen-
tary Table 4). In agreement with previous reports [3, 4, 20],
individual mean protein levels were not consistently prognostic,
while a predicted high caspase activity (high APOPTO-CELL model
output) was associated with increased DFS when adjusted for
either Shannon Entropy or Moran’s I (HR 0.6; 95% CI 0.5–0.8; p <
0.001). Shannon Entropy or Moran’s I of individual proteins or
APOPTO-CELL model output was not prognostic. However, we
found a significant interaction (HR 0.1; 95% CI 0.01–0.5; p < 0.01)
between a high Moran’s I and the mean PRO-CASPASE 3 level with
a HR 2.9 (95% CI 0.4–21.5, p= 0.3).

DISCUSSION
The present study constitutes the first report describing the
quantitative and spatial distribution of key mitochondrial

Fig. 5 Cancer cells are sensitive for both apoptosis pathways. We determined cores’ cells that A exclusively showed high sensitivity for
MOMP (left), high caspase activity, high responses in both apoptosis pathways, and low responses in both apoptosis pathways (right; ANOVA,
Tukey post-hoc). B, C Ternary plot of individual core’s cell fraction for exclusively pathway responses or sensitivity in both pathways. Overall,
cancer cells show high sensitivity for the DR_MOMP modeled BCL2 pathway upstream of MOMP with about half showing also high caspase
activity modeled by APOPTO-CELL. Stroma cells showed exclusively high sensitivity for the apoptosis pathway upstream for MOMP, while
immune cells showed exclusively high sensitivity for MOMP.
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apoptosis proteins at single-cell resolution in intact cancer tissue.
Using multiplexed immunofluorescence imaging we provide
information on 2.4 million apoptosis protein profiles in six
different cell types and deliver the first atlas of apoptosis signaling

proteins in a large cohort of patients (168 CRC patients). We
furthermore conducted a systems-based analysis of each indivi-
dual cell’s apoptosis sensitivity. Our dynamic systems modeling
estimated that cancer cells were generally more sensitive to
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apoptosis signaling than immune or stromal cells, however, with
significant heterogeneity between patients.
A surprising observation was that, based on model predictions,

the enhanced ability of cancer cells to activate apoptosis resulted
from an enhanced ability to overcome both apoptosis barriers,
MOMP and caspase-3 activation downstream of MOMP. This is
interesting in the context that apoptosis resistance has been
proposed as a key hallmark of many cancer cells [1]. Immune cells
lacked sensitivity for MOMP due to their relatively high expression
of BCL2. Stromal cells showed less sensitivity to caspase-3
activation (Fig. 6A, C). Enhanced “priming” of cancer cells to
undergo MOMP compared to non-transformed cells has pre-
viously been demonstrated by BH3 profiling by Letai et al. [9, 21].
Interestingly, we also found that cytotoxic (CD8+) T cells were
overall significantly more susceptible to apoptosis stimuli com-
pared to other immune cells. This may be clinically relevant as
tumor infiltration by cytotoxic T cells has been found to be
positively correlated with survival in CRC [22]. Similarly, a low
density of cytotoxic T Cells in tumor tissue after chemotherapy
was associated with poor response in patients with rectal cancer
[23]. Therefore, increased risk of apoptosis of cytotoxic T cells may
abrogate benefits of chemo- or radiotherapy.
Interestingly, we found a strong enrichment of BCL-2 protein

levels in immune cells when compared to cancer and other
stromal cells. This finding may have implications regarding the
possible use of BCL2 antagonists for the treatment of CRC, and
BCL2 mRNA or protein levels as stratification tool for such therapy.
Medema et al. also demonstrated an enrichment of BCL-2 in
immune cells, and a limited window of BCL-2 reliance in CRC cells
during disease progression [24]. Their study also demonstrated
that expression of BCL(X)L, but not BCL2 or MCL1, correlated with
outcome in chemotherapy-treated CRC patients. Furthermore, we
found that MCL1 levels were enriched in epithelial cancer and
immune cells, with significantly lower levels in stroma tissue. As
MCL1 antagonists are also being currently developed as apoptosis
sensitizers for MCL1-dependent cells, effects of MCL1 antagonists
on immune cells may also need to be considered. Another
interesting aspect of our study was the strong enrichment of BAK
in cancer cells. Recently, agents have been developed that
activate BAX and BAK directly [25], including molecules that do
not interact with the BH3-binding pocket of anti-apoptotic
proteins or pro-apoptotic BAK and induces cell death in a BAX-
dependent fashion [26, 27]. Our results suggest that BAK in
particular may represent an excellent target in CRC.
We also investigated intra-tumor heterogeneity in apoptosis

signaling. While we did observe significant inter-individual and
intra-tumoral heterogeneity in apoptosis sensitivity, our entropy
and spatial image analyses of the mitochondrial apoptosis pathway
did not suggest that cancer cells showed a set difference in cell-to-
cell or spatial heterogeneity when compared to immune or other
stromal cells. This suggests that such heterogeneity represents an
intrinsic, non-genomic property not increased by the process of
malignant transformation. This observation is supported by earlier
studies in cell lines that demonstrated the importance of non-

genomic heterogeneity in apoptosis signaling due to fluctuations
in protein levels over the lifetime of a cell [28, 29]. Our exploratory
analysis indicated that variables describing heterogeneity within
some measured proteins may contribute to clinical responses of
cancer patients (Supplementary Fig. 7). However, further in-depth
analyses of intra-tumoral heterogeneity in larger patient cohorts
with an extended list of heterogeneity measures in tumor cores
and margins are required.
While we considered the levels of nine apoptosis markers, we did

not take into account their protein state (such as BCL2 phosphor-
ylation status [30]) or their intracellular localization. For example, the
localization of BAX at mitochondria or in the cytosol was reported to
be clinically relevant in acute myeloid leukemia [31] and hepato-
cellular carcinoma [32]. Similarly, we currently do not account for
variations in levels of pro-apoptotic BH3 proteins or possible
variation of cells in producing BH3 proteins in response to genotoxic
or environmental stimuli. Another limitation was that tumor core
regions were analyzed, while tumor margins in the invasive zone
were not investigated. However, other studies have pointed to the
importance of core regions in tumor progression due to silencing/
methylation as a consequence of tissue hypoxia [33].
In conclusion, our study provides the first map of apoptosis

sensitivity at individual protein and systems level in intact CRC
tissue. We holistically describe both patient-to-patient and intra-
tumor heterogeneity in apoptosis signaling in stroma, immune,
and cancer cells that have important implications for the future
use of apoptosis sensitizers in the treatment of CRC.

MATERIALS AND METHODS
Materials
Sources of antibodies, cell lines, and software are all listed in
Supplementary Table 1.

Colorectal cancer cohort
Formalin-fixed, paraffin-embedded primary tumor tissue sections were
obtained from 170 chemotherapy-naïve, resected stage III CRC patients.
Tumor samples were collected from three centers: Beaumont Hospital
(RCSI, Ireland), Queen’s University Belfast (UK), and Paris Descartes
University (France). A summary of the clinical characteristics of the cohort
is provided in Supplementary Table 2. Data of 46 cores of 36 patients were
dropped after quality assessment of the stained tissue (see below).

Cell lines
Three technical replicates (cores) of pellets of formalin-fixed HeLa, Jurkat,
MCF7, SKMEL, HCT-116 SMACKO, and HCT-116 XIAPKO cells in which
quantities of mitochondrial apoptosis proteins were previously determined
[2, 10, 34] were included in the construction of the tissue microarray (TMA)
in parallel to the patients’ cores, and served as quality control and internal
standards for protein quantification. Three of 18 cores of two cell lines
were removed after quality control. Cells were grown to 80% confluence.
Media was replaced 12–24 h before fixation. To fix cells, cells were gently
washed in sterile 1XPBS solution. Cell monolayers were covered with 5 mL
10% neutral-buffered formalin (NBF) for 2–5min. Cells were scraped into
NBF, and collected into labeled 50mL tubes, and stored at 4 °C for at least

Fig. 6 Heterogeneity analysis calculating cells’ (A, B, E–G) entropy and (C, D, H–J) Moran’s I for apoptosis model predictions as well
protein levels. A Entropy (information theory) is a measurement for the bias to one state, with low entropy marking captaincy for a one state
and high entropy marking uncertainty for one or multiple states. C Moran’s I is a measurement of spatial autocorrelation with Moran’s I
approaching 0 and <0 indicating spatial dispersion and Moran’s I approaching 1 marking spatial clustering. Only cores with cell population
≥100 were considered. Panels B and D show examples of low and high entropy and Moran’s Is. We determined the binary Shannon entropy
for E low/high sensitivity for MOMP (DR_MOMP) and F low/high caspase activity (APOPTO-CELL; ANOVA, Tukey post-hoc), finding surprisingly
significant lower entropy in cancer cells (red) compared to immune (blue) and stroma cells (gray). G Subsequently, we calculated the Shannon
Entropy for the proteins using bins for protein level with a bin width of z-score= 0.1 SD for each protein, respectively. The calculated Shannon
Entropy for stroma and Immune cells can be found in Supplementary Fig. 5. Next, we determined cores’Moran’s I for low/high H sensitivity for
MOMP, I caspase activity, and J respective protein levels (in cancer cells). Calculated Moran’s I for Stroma and Immune cells can be found in
Supplementary Fig. 6. J While Moran’s I around 0 shows no spatial autocorrelation, values around 0.2 or greater indicate presence of local
spatial autocorrelation within the cores.
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3–4 h. For further processing, cells were centrifuged at 1200 rpm for 5min
and washed in 1% low melt agarose solution XBPS before re-suspension in
0.5 mL 80% ethanol and centrifugation at 12,000 rpm twice for 5 min.
Subsequently, 80% of ethanol was aspirated and cell pellets were molded
into caps and frozen, prior to TMA construction.

Antibody validation and conjugation
Commercially acquired antibodies underwent multi-step process of
validation and conjugation (as previously described by Gerdes et al.
[19]). Briefly, at least two to three clones for each target were stained in
parallel using a multi-tissue array (MTU 481, Pantomics, CA) and staining
performance visually compared. At least one antibody clone was down-
selected for conjugation with either Cy3 or Cy5 bis-NHS-ester dyes.
Epitopes were also tested for sensitivity to the dye-inactivation solution
(basic hydrogen peroxide) by exposing multi-tissue arrays to 0, 1, and 10
rounds the solution and stained with the antibody of interest and
compared. Approximately 10% of epitopes have been shown to have
decreased signal following exposure to the inactivation solution and those
antibodies are placed early in the multiplexing sequence [19].

Immunofluorescence imaging of patient TMAs
Multiplexed immunofluorescence iterative staining of the CRC TMAs was
performed as previously described [19] using the Cell DIVE™ technology
(Cytiva, Issaquah, WA; formerly GE Healthcare). This involves iterative
staining and imaging of the same tissue section with 60+ antibodies and is
achieved by mild dye oxidation between successive staining and imaging
rounds. In total, there were 13 staining rounds using the antibodies
described above and DAPI was imaged in each round. The Leica Bond
(Leica Biosystems) was used for antibody staining and the IN Cell 2200 was
used for imaging. Staining and image recording was repeated twice for S6
due to staining failure. Exposure times were set to fixed values for all
images of a given marker.

Image pre-processing and quality control
Immunofluorescent images were processed and cells were segmented and
quantified as described previously [19, 35]. A total of 48 positions showing
major cell loss during staining rounds were excluded from all analysis, as
well as cells within the images’ margins of 15 pixel on the x-axis and 10
pixel on the y-axes were dropped from all data analysis. A total of 74
positions showing major or minor cell loss during staining rounds were
excluded from training datasets for post-processing such as batch
correction or cell classification. For QC analysis, we extended the method
presented in Bello and we generated automated QC scores [36] (0–1) for
every cell in each imaging round by correlating baseline DAPI images with
all corresponding DAPI images from other multiplexing rounds. Cells
included in the analysis had a median QC score of 0.95, with 53% having a
QC score greater than 0.8. The average QC score was 0.57. In comparison,
83% of cells removed during quality control had a QC score less than 0.1
with an average QC score of 0.15. Following quantification, slides were
normalized for batch effects and exposure time for each channel/marker
analyzed.

Post pre-processing and batch correction
To correct for a possible batch effects between slides, cells’ mean intensity
were first normalized using upper-quantile normalization, grouped by
protein marker and slide. Secondly, quantiles of the normalized intensities
were plotted against their rankits, and an affine transformation matrices to
rotate the function to the main diagonal were calculated in regulator and
helper T cells. Obtained transformation matrices were applied on the
intensities, and pixel intensity values were restored using linear regression
and upper-quantile normalized values. Solely for the batch correction, cells
within 5% of the images’ margins were excluded for the calculation of the
reference values. The batch correction was quality controlled with cell lines
spotted in parallel to tissue samples on three of five slides.

Immune cell classification
To differentiate cell types, we used CD3, CD4, CD8, CD45, FOXP3, PCK26,
and Cytokeratin AE1 markers. We manually annotated 4839 AE1- or PCK27-
positive cells as (epithelial) cancer cells. Of 3121 CD3-positive cells [37], 788
CD4-positive cells were annotated as helper T cells [37], 991 CD8-positive
cells were annotated as cytotoxic T cells [37], and 1360 FOXP3-positive
cells were annotated as regulatory T cells [38]. A total of 3369 CD3-

negative cells that were either CD4, CD45, or CD8 positive were annotated
as other leukocytes. In total, 3837 cells lacking any marker (but were DAPI)
positive were annotated as stroma-rich cells (other stromal cells). Using the
manual annotations, we constructed a random forest of 2000 trees (R
package randomForest, version 4.6-14) and employed it to classify all cells.
Regulator and helper T cells annotation were used for separate slide
depended models used to define the reference population for the batch
correction using affine transformation matrices.

Protein profiling and apoptosis sensitivity modeling
Protein levels of BAK, BAX, BCL2, BCL(X)L, and MCL1 were normalized to
the mean protein levels in HeLa cells spotted in parallel to patients’ core on
three of five slides. Protein’s molar concentrations were calculated using
previously established HeLa concentrations and used as input for
DR_MOMP as previously described [2]. DR_MOMP [2] was translated from
its MATLAB implementation to C++ and R using deSolve (1.28), doParallel
(1.0.15), and Rcpp (1.0.5). For each core the maximum % level of pores was
calculated after simulating an approximated mean stress dose (200 nM;
estimated from Fig. 4B 191 nM) of the patient population as threshold
[2, 4, 39]. Cells were considered to have low sensitivity for MOMP if the %
level of pores was <10% [2]. We found a Pearson correlation coefficient of
−0.82 (95% CI −0.83 to −0.82; p < 0.001) between the % level of pores and
the (previously) used stress dose required for MOMP [2] (log-transformed)
calculated for 10,000 randomly chosen cancer cells.
APOPTO-CELL [10] was executed in MATLAB with the Statistics and

Parallel toolboxes (version 2014b, The MathWorks, Inc., Natick, MA, USA).
Molar protein concentrations for the APOPTO-CELL input proteins PRO-
CASPASE 3, PRO-CASPASE 9, SMAC, and XIAP were estimated by aligning
signal intensities [a.U.] to profiles [µM] determined in a reference clinically
relevant CRC cohort [20] with an established pipeline [3] and protein molar
concentrations of a reference CRC cohort [20]. Previous research [16, 20]
has shown APAF1 to be the limiting factor in apoptosome formation in the
CRC settings [16, 20] and was set to 0.123 µM as described previosuly
[3, 16].
For both models, we performed two sets of simulations: (1) per-core and

(2) per-cell. For the per-core simulations, we aggregated (by median) the
batch-corrected protein intensities across all cells for each core per patient
prior to conversion to molar concentrations, resulting in one simulation per
core and thus two to three simulations per patient. For the per-cell
simulations, we performed a simulation for each cell, totaling ~3.5 million
simulations for 168 patients included in the study.

Statistical analysis
All statistical tests were performed in R (3.6.3) and p values <0.05 were
considered statistically significant. All data are presented as mean ± SEM.
All statistical tests were performed in R. If not otherwise mentioned, two-
tailed t tests were performed for pairwise comparison, while ANOVAs with
Tukey honest significance post-hoc tests were performed in cases of the
comparison of three or more populations. The quartile COD were
calculated using (Q3 –Q1) / (Q3+Q1) with Qn be the respective quartiles.
Shannon Entropy was calculated either using log2 for binary populations or
the natural logarithm, with 10−10 added to all values. Moran’s I was
calculated using the R package ape (5.4-1) without outliers and only on
populations >100 cells. Distances >2000 px were set to 2000 px. Consensus
clustering was performed using ConsensusClusterPlus (1.48.0) with a seed
of 42, 100,000 repetitions, Spearman and Ward’s method as parameters.
For the bootstrap analysis, slides were 100,000 times randomly paired
using a seed of 42. A Cox proportional hazard regression analysis was
performed in all stage III patients for which three cores were available (n=
36 patients). Models included mean protein levels or APOPTO-CELL
readouts, Shannon entropy, or Moran’s I score, and calculated their
interaction using all available cores (n= 108). Models were adjusted for
age and gender. For the interaction term only, p < 0.1 was considered to be
statistically significant.

DATA AVAILABILITY
Imaging data, cell masks, and generated single-cell measurements of 20 markers are
available from the lead contact. Further information and request for code or
resources should be directed to and will be fulfilled by the lead contact.
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