
ARTICLE

The target atlas for antibody-drug conjugates across solid
cancers
Jiacheng Fang 1,2, Lei Guo1✉, Yanhao Zhang3, Qing Guo4, Ming Wang5✉ and Xiaoxiao Wang2✉

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2023

Antibody-Drug Conjugates (ADCs) represent a rapidly advancing category of oncology therapeutics, spanning the targeted therapy
for both hematologic malignancies and solid cancers. A crucial aspect of ADC research involves the identification of optimal surface
antigens that can effectively differentiate target cells from most mammalian cell types. Herein, we have devised an algorithm and
compiled an extensive dataset annotating cell membrane proteins. This dataset is derived from comprehensive transcriptomic,
proteomic, and genomic data encompassing 19 types of solid cancer as well as normal tissues. The aim is to uncover potential
therapeutic surface antigens for precise ADC targeting. The resulting target landscape comprises 165 combinations of targets and
indications, along with 75 candidates of cell surface proteins. Notably, 35 of these candidates possess characteristics suitable for
ADC targeting, and have not been previously reported in ADC research and development. Additionally, we have identified a total of
159 ADCs from a pool of 760 clinical trials. Of these, 72 ADCs are presently undergoing interventional evaluation for a variety of
solid cancer types, targeting 36 unique antigens. We conducted an analysis of their expression in normal tissues using this
comprehensive annotation dataset, revealing a diverse range of profiles for the current ADC targets. Moreover, we emphasize that
the biological impacts of target antigens have the potential to enhance their clinical effectiveness. We propose a comprehensive
assessment of the drugability of target antigens, considering multiple facets. This study represents a thorough exploration of pan-
cancer ADC targets over the past two decades, underscoring the potential of a comprehensive solid cancer target atlas to broaden
the scope of ADC therapies.
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INTRODUCTION
Cancer ranks as the primary or secondary cause of premature
death (occurring between ages 30–69) in 134 out of 183 countries.
In an additional 45 countries, it holds the position of the third or
fourth leading cause [1]. The section of Cancer Surveillance (CSU)
of International Agency for Research on Cancer (IARC) projects
that in 2020, there will be a total of 19.3 million new cancer cases
and 10.0 million cancer-related deaths worldwide, encompassing
both sexes and all age groups (https://gco.iarc.fr/today/home).
Out of these cases and deaths, 18.0 million (93.37%) and 9.3
million (92.85%) respectively will be attributed to solid tumors. An
extensive assessment of oncology reveals that a majority of cancer
drugs authorized by the European Medicines Agency between
2009–13 were introduced to the market without achieving a
significant enhancement in the overall quality or quantity of
patients’ lives [2]. This underscores the critical necessity for
advancing the therapeutic effectiveness of drugs targeting solid
tumors.
ADCs are specialized compounds composed of recombinant

monoclonal antibodies (mAbs) chemically linked to potent
cytotoxic agents, often referred to as payloads or warheads. They
are engineered to utilize the highly specific targeting abilities of

mAbs to deliver and release these potent chemotherapeutic
agents to tumor cells, as well as the neighboring stromal cells and
cancer stem cells [3, 4]. Currently, fifteen ADCs have received
marketing approval, and there are 760 clinical studies registered in
ClinicalTrials.gov (Supplementary Tables 1, 2). Of these, more than
400 trials are actively underway at various stages, with 227 trials
focused on different types of solid tumors (Supplementary Table
2). The first ADC, gemtuzumab ozogamicin, gained regulatory
approval from the US Food and Drug Administration (FDA) in
2000. However, in the subsequent ten years, no ADCs received
global approval. In the past three years, from 2019 to 2022, a total
of ten ADCs have been approved, with seven of them authorized
for the treatment of solid cancers (Supplementary Table 1).
Trastuzumab deruxtecan (DS-8201), a monotherapy targeting
HER2, has demonstrated significant effectiveness in pretreated
patients with HER2-positive metastatic breast cancer, achieving a
confirmed overall response rate of 60.9% and a disease-control
rate of 97.3% [5]. ADCs have emerged as a prominent area for
drug innovation and development.
An optimal ADC should encompass three essential compo-

nents [6]: 1) a mAb with high specificity for an antigen, whether
homogeneous or heterogeneous, that is overexpressed in
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tumors; 2) a linker that maintains stability in the bloodstream
but can readily cleave at target sites; 3) a warhead with high
sensitivity for specific indications. The antibody, linker, and
payload can be fine-tuned using various approaches. For
instance, site-specific conjugation technology can enhance
the safety and efficacy of ADCs, with or without antibody
engineering [7–11]. Off-target payload exposure can be
minimized by bolstering the stability of conjugation and linker
[12–14]. The efficiency of ADC uptake and processing can be
augmented through the use of bispecific or biparatopic
antibodies [15, 16]. Exploring payloads with novel anti-tumor
mechanisms addresses the challenge of drug resistance posed
by the warhead component [3, 17]. However, the intrinsic
attributes of ADC target proteins, apart from these three,
generally remain constant. Their gene copy number variation,
endocytosis rate, trafficking route, absolute protein levels, and
differential expression patterns cannot be optimized. Moreover,
since most antigens are tumor-associated rather than tumor-
specific, on-target off-tumor toxicity becomes inevitable. For
example, BR96-doxorubicin treatment induced hemorrhagic
gastritis in patients due to the unforeseen presence of Lewis(y)
antigen on gastric mucosal cells [18]. Treatment with CD44v6-
directed Bivatuzumab mertansine and BAY794620 targeting
CA9 antigen resulted in fatal epidermal necrolysis and gastro-
intestinal toxicity, respectively, due to the expression of targets
in corresponding tissues [17, 19]. Therefore, selecting a
promising ADC target must meet numerous criteria to enable
effective tumor eradication while preventing intolerable
damage to normal tissues.
Crucially, an optimal ADC target antigen should exhibit exception-

ally high density in target cells across a significant proportion of
patients, regardless of the pathologic stage. It should also demon-
strate limited expression in normal tissues, particularly in vital tissues,
hematopoietic stem cells (HSCs), and multipotential progenitors
(MPPs). Additionally, it is worth noting that elevated levels of a target
antigen on various types of blood cells could influence drug exposure,
potentially impeding the aggregation of ADCs at the target site. Once
these criteria and considerations are met, each candidate should
demonstrate a substantial ratio of differential expression in tumors
compared to both adjacent normal tissue and other normal tissues.
Beyond protein expression profiles, the confirmed biological functions
of the target antigen in tumorigenesis are known to be additional
factors that can significantly impact the efficacy of ADCs [20]. Thus, it
is imperative to thoroughly assess the druggability of candidates
based on comprehensive antigen annotation sources, as well as
specialized analytical tools tailored to identify potential ADC target
antigens.
The objective of this study is to establish a strategy for ADC target

discovery by integrating data from transcriptome, proteome, and
genome of both solid tumor and normal cell populations, and
compiling a comprehensive dataset of cell surface antigen annota-
tions to identify potential therapeutic targets. Concurrently, we also
provide an overview of the ADC interventional studies documented in
ClinicalTrials.gov, so as to furnish the academic and pharmaceutical
sectors with an all-encompassing ADC target atlas spanning various
types of solid cancers.

METHODS
Clinical trials search strategy
To identify the most comprehensive target atlas from clinical trials,
ClinicalTrials.gov and PubMed were searched on 31 December 2022 with
the following search terms ‘antibody-drug conjugate’, ‘cancer’, ‘tumour’,
and ‘oncology’ in various combinations. Just interventional studies were
included, and the early phase I trials were grouped with phase I trials. In
addition, abstracts and posters from ASCO 2022, ECCO 2022 and ESMO
2022 congresses were included for ADC searching with the terms
‘antibody-drug conjugate’ or ‘ADC’.

Data acquisition of the normal tissue transcriptome and
proteome
Expression profiles for human tissue proteins based on IHC were retrieved
from the Human Protein Atlas (HPA) under the entry of ‘Normal tissue data’
(https://www.proteinatlas.org/about/download, normal_tissue.tsv.zip). Pro-
teomic sequencing data based on LC-MS/MS was retrieved from the
Human Proteome Map (HPM) (http://www.humanproteomemap.org/,
HPM_normal protein_level_expression_matrix_Kim_et_al_052914 - LC-
MSMS.xlsx). Consensus transcript expression profiling integrated from
the HPA, GTEx and FANTOM5 was retrieved from the HPA under the entry
of ‘RNA consensus tissue gene data’ (https://www.proteinatlas.org/about/
download, rna_tissue_consensus.tsv.zip).

Retrieval and compilation of protein subcellular location data
Subcellular localization of proteins was retrieved from the HPA under the
entry of ‘Subcellular location data’ (https://www.proteinatlas.org/about/
download, subcellular_location.tsv.zip), and the knowledge channel of
COMPARTMENTS (https://compartments.jensenlab.org/Downloads,
human_compartment_knowledge_full.tsv). The membrane protein anno-
tation dataset (includes 6176 entries) was compiled by extracting all cell
surface membrane protein information first through the R language
(version 4.0.3), and then merging the above information.

Rearrangement and mapping of the human tissues
Since the human tissue nomenclature differs among source repositories,
each data set was mapped to a set of consensus tissue labels. In cases
when mapping multiple tissues in one repository to a single tissue label in
another source, the maximum expression value was selected. For example,
the caudate, cerebellum, cerebral cortex, choroid plexus, dorsal raphe,
hippocampus, hypothalamus, pituitary gland, and substantia nigra were
collapsed into a single tissue category, “brain”. The cervix, uterine,
endometrium, ovary, fallopian tube, vagina, epididymis, seminal vesicle,
testis, and prostate were collapsed into internal genitalia. In addition, the
adult adrenal, adult colon, adult esophagus, adult frontal cortex, adult
gallbladder, adult heart, adult kidney, adult liver, adult lung, adult ovary,
adult pancreas, adult prostate, adult rectum, adult retina, adult testis, and
adult urinary bladder in the HPM were mapped to the adrenal gland, colon,
esophagus, brain, gallbladder, heart muscle, kidney, liver, lung, internal
genitalia, pancreas, internal genitalia, rectum, eye, internal genitalia, and
urinary bladder, respectively. To maintain consistency, fetal tissues were
also discarded, resulting in 32 unique tissue categories.

Normal tissue expression and binning
In the interest of facilitating target screening, the expression values were
classified into five categories, including ‘High’, ‘Medium’, ‘Low’, ‘Not Detected’,
and ‘Not Available’. To accomplish the binning, we first perform log10
conversion on HPM dataset, and then temporarily correct it for the purpose
of abundance distribution estimation. In order to best fit the normal curves to
the observed distributions, we applied the Broyden-Fletcher-Goldfarb-
Shanno algorithm [21], and subsequently obtained the peak maximum
and standard deviation measure. Expression values in the range of one
standard deviation above the peak maximum were recorded as ‘Medium’,
and expression values above this threshold were recorded as ‘High’. Similarly,
expression values in the range of one standard deviation below the peak
maximum were recorded as ‘Low’, and for those falling below one standard
deviation were recorded as ‘Not Detected’. Proteins without expression
values were recorded to be of ‘Not Available’ abundance. The natural format
of the expression profile of human tissue proteins obtained from IHC is the
five aforementioned categories, so there is no adjustment. While for the RNA
consensus expression profiling integrated from the HPA, GTEx and
FANTOM5, the consensus normalized expression (NX) values between 20
and 40 were recorded as ‘Medium’, and the NX values above this threshold
were recorded as ‘High’. Similarly, the NX values in the range of 1–20 were
recorded as ‘Low’, and for those falling below 1 were recorded as ‘Not
Detected’. The NX values in other cases were recorded as ‘Not Available’.

Differential expression analysis of genes between tumour and
its adjacent normal tissue
We gathered the uniformly processed TCGA and GTEx RNA-sequencing
data from the RNAseqDB (https://github.com/mskcc/RNAseqDB). All
together there were 9,109 high-quality samples covering 14 normal
tissues and 19 types of solid cancer. The DESeq2 package [22] was used to
identify HUGO genes that are differentially expressed between tumours
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and their adjacent normal tissues. By setting a threshold of Benjamini-
Hochberg adjusted p-values of 0.01 and log2FoldChange of 1.0, those
HUGO genes that were significantly upregulated in the tumours were
retained.

Differential expression analysis of genes between tumour and
other normal tissues
The read count data of RNA-sequencing gathered from the RNAseqDB was
first transformed to TPM (transcripts per million) format that can be directly
used to compare gene expression. To transform read counts into TPM
format, we need to normalize for gene length, and then normalize for gene
depth, in that order. For the gene length normalizing step, we fist
calculated gene length from GTF files (GDC.h38 GENCODE v22 GTF (used in
RNA-Seq alignment and by HTSeq)) by counting the longest transcript of
each gene (sum of exons) or the sum of all exons, then divided each count
by the length of its respective gene. For the gene depth normalizing step,
we performed in the order as follows: 1) sum all counts within each sample
column; 2) divide each column sum by the desired depth (1,000,000) to
yield scaling factors; 3) divide each sample count within a column by its
respective scaling factor.
The TPM values of each gene in its paired indication and normal tissues

were used as input data for differential expression analysis. The non-
parametric Mann–Whitney U test analysis was applied to calculate the
differential expression ratios. The differential expression patterns of target
genes between their paired indication and normal tissues were visualized
via the OmicCircos package [23].

Tumour tissue transcriptome, genome, and phenotype
compilation
To integrate transcriptome and genome and phenotype information of the
gene set of interest. We downloaded the phenotype data of TCGA patients
with various solid cancers from UCSC Xena (https://xenabrowser.net/
datapages/), and then extracted and organized the information about
gender, neoplasm histologic grade, pathologic stage, and TNM staging.
The non-silent mutations (SNP and INDEL) for each gene in individual
cancer type were determined through mining the MC3 (“Multi-Center
Mutation Calling in Multiple Cancers”) TCGA MAF (mutation annotation
format) file. The gene-level transcription estimates (in log2(x+ 1)
transformed RSEM normalized count format) were transformed to TPM
format that can be directly used to compare gene expression. Thereafter,
we compilated a comprehensive dataset via integrating the aforemen-
tioned tumour tissue transcriptome and genome information and the
organized phenotype data. The heterogeneous expression pattern analysis
was performed using the ggstatsplot package in batch mode (https://
github.com/IndrajeetPatil/ggstatsplot).

Annotation of functionally relevant mutation
OncoKB (https://www.oncokb.org/) contains annotation information about
the impact and therapeutic significance of 5616 specific alterations in 682
cancer genes. It combines multiple resources, including FDA, NCCN
(National Comprehensive Cancer Network) and other guidelines, Clinical-
Trials.gov and scientific literatures. We utilized the annotation information
about oncogenic and clinically actionable alterations from the OncoKB and
discarded somatic mutations that were labeled as likely oncogenic or
predicted oncogenic, resulting in the set of driver mutations, which were
not contaminated by passenger mutations. The collected information was
applied to analyze the therapeutic significance of potential target genes
that altered in a large proportion of patients.

Predicting overexpression rates of target antigens
We applied the method called functional genomic mRNA profiling to
predict overexpression rates of target antigens [24]. Typically, principal
component analysis (PCA) was used to analyze the mRNA transcriptome
and n eigenvalues and n corresponding eigenvalues (transcriptional
components) were subsequently obtained. We identified these subsets
of transcriptional components that describe non-genetic regulatory factors
(physiological and experimental factors) and used them as covariates to in
multiple linear regression to correct the original gene expression data (the
so-called functional genomic mRNA profiles that capture the effects of
genomic alterations on gene expression levels). The overexpression
percentages of each target antigens in samples per cancer type were
determined based on the threshold that was defined in the set of

functional genomic mRNA profiles of normal tissues by calculating the
97.5th percentile for the functional genomic mRNA signal.

Gene set enrichment score analysis
We first downloaded the pan-cancer phenotype data and expression
matrix from XENA (https://xenabrowser.net/datapages/?dataset=GDC-
PANCAN.basic_phenotype.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&
removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443, GDC-
PANCAN.basic_phenotype.tsv) and the TCGA PanCanAtlas (https://
gdc.cancer.gov/about-data/publications/pancanatlas, EBPlusPlusAdjust-
PANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv), respectively. We then
extracted the paired samples and their corresponding expression matrix
according to the rules of TCGA sample barcode (https://docs.gdc.cancer.
gov/Encyclopedia/pages/TCGA_Barcode/). After which the enrichment
score of gene set of interest was calculated based on the ssGSEA [25],
and the z-score was transformed to evaluate the expression similarities and
differences of gene set in TCGA pan-cancer.

Statistical analysis
All statistical analyses described above within the context of individual
analyses in the Methods section were carried out using R statistical
environment. The non-parametric Mann–Whitney U test and non-
parametric Kruskal–Wallis one-way ANOVA were carried out for the
analyses of two groups and more than two groups, respectively.

RESULTS
Assembling a comprehensive dataset and designing an
algorithm to identify ADC targets
We assembled a comprehensive annotation dataset and designed an
algorithm to discover surface molecules differentially expressed
between tumour tissues and normal tissues. We used RNA-
sequencing data to discover differentially expressed therapeutic
targets, while the best-in-class RNA-seq data processing pipelines
were shown to produce consistent expression estimates for just 88%
of protein-coding gene [26]. A pipeline was successfully developed to
unify RNA-sequencing data of TCGA and GTEx by minimizing
differences between matching tissues from TCGA and normal tissues
from GTEx, and by processing data sets uniformly without the inter-
project normalization step [27]. We performed differential analysis for
20,242 HUGO genes across 19 solid cancer types based on the
sequencing data processed from this pipeline. By setting a threshold
of Benjamini-Hochberg adjusted p-values of 0.01 and log2FoldChange
of 1.0, we kept those HUGO genes significantly overexpressed in
tumour cell populations. To search for potential extracellular
membrane proteins from the overexpression lists, we compiled a
membrane protein annotation dataset (6176 entries) from three
databases (i.e., Uniprots, HPA, and Compartments) that contain
protein subcellular location information, and then merged it with the
above overexpression lists. To exclude molecules highly expressed in
normal tissues, we used the mRNA expression dataset integrated
from the GTEx, HPA, and FANTOM5, and supplemented the dataset
with proteome data from the HPA and HPM. We excluded molecules
exhibiting high expression in the vital tissues (i.e., heart, liver, spleen,
lung, kidney), as well as molecules exhibiting high expression in more
than three normal tissues except for the blood, bone marrow, brain,
and placenta. Thereafter, we used the publicly available resource
BloodSpot [28] and found those surface molecules that are
restrictedly expressed in the bone marrow Lin- CD34+ CD38- CD90+

CD45RA- HSCs and Lin- CD34+ CD38- CD90- 45RA- MPPs. The next
quality control step further leaved us with 90 potentially therapeutic
surface membrane proteins and their 243 target-indication combina-
tions (Supplementary Table 3).
Clinical responses are more frequently observed in patients with

tumours displaying high levels of target antigens. To refine our
selection, we analyzed target antigen expression patterns in both
tumour and normal tissues using publicly available gene
expression data. This step resulted in the identification of 87
candidates and their corresponding 225 target-indication
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combinations. To address heterogeneity in gene expression within
the patient population, we leveraged comprehensive oncology
repositories with paired genomic and transcriptomic data. This
enabled the exclusion of target antigens exhibiting significant
decreases in gene expression among patients bearing specific
gene mutations, resulting in 84 candidates and 213 target-
indication combinations. Additionally, we assessed tumour
heterogeneity by predicting protein overexpression rates across
22 different tumour subtypes, guiding our selection for subse-
quent immunohistochemistry validation. Utilizing this algorithm,
we ultimately pinpointed 75 molecules with characteristics
conducive to ADC targeting, encompassing 165 target-indication
combinations (Supplementary Table 4). In the final stage, we
conducted a thorough evaluation based on twelve criteria across
four dimensions: expression profiling (including differential
expression, absolute levels in tumour, expression homogeneity,
normal tissue expression, and expression in hematopoietic stem
cells and multipotential progenitors), internalization (including
endocytosis and trafficking route), complexity of target antibody
discovery (including single/multiple transmembrane, extracellular
domain size, and extracellular domain homology), and biological
functions (encompassing genetic basis and cancer stem cell
features).

Identified ADCs and their target antigens in clinical trials
A total of 159 ADCs were identified from 760 clinical trials in
ClinicalTrials.gov, 406 of which are actively undergoing evaluation
in various stages across hematologic malignancies and solid
cancers (Supplementary Table 2). Specifically focusing on solid
cancer types, 72 ADCs targeting 36 antigens identified from 227
interventional studies are currently under evaluation (Fig. 1a).
Meanwhile, 118 trials for 51 ADCs are completed, 46 trials
regarding 31 ADCs are terminated, and statuses of 6 trials on 5
ADCs are unknown (Supplementary Table 2). The overwhelming
majority of ADC trials for solid cancers was initiated in 2008 or
later. Notably, BRCA stands out as the only indication with new
clinical trials initiated every year since 2006 (Fig. 1b). Among the
various solid cancer types, BRCA had the highest number of
evaluated ADCs and trials (nADC = 28, nstudy= 139), followed by
pan-cancer (nADC = 73, nstudy= 113), NSCLC and SCLC (nADC = 21,
nstudy= 43), BLCA (nADC = 7, nstudy= 18), OV (nADC = 12,
nstudy= 18), STAD (nADC = 11, nstudy= 18), and PRAD (nADC = 9,
nstudy= 18) (Fig. 1b and Supplementary Table 2). However, in the
case of LIHC, the lone trial assessing the safety and tolerability of
the GPC3-directed ADC in patients was initiated in 2016 and
subsequently terminated without publicly disclosed results.
Similarly, the investigation of ADC for CESC exclusively revolves
around the TF target (also known as F3). Additionally, there are no
clinical trials focused on ESCA and THCA, despite them being
common cancer types accounting for 3.1% and 3.0% of total
cancer cases, respectively (https://gco.iarc.fr/today/home).
Iver the past two decades, a total of 397 clinical trials have been

conducted for solid cancers across various stages, with 163 in
Phase I, followed by 127 in Phase II, 65 in Phase I-II, 37 in Phase III,
4 in Phase II-III, and 1 in Phase IV. These trials have involved 67
unique antigens, 32 of which have been studied in two or more
trials (Fig. 1c). Among these, twenty-one ADCs are directed against
HER2, followed by TROP2 (n= 5), MSLN (n= 4), and FOLR1 (n= 3),
each of which has attracted at least three different ADCs (Fig. 1c).
HER2 is the only target that has been the focus of at least 20
clinical studies in each of Phase I, II, and III. Moreover, HER2,
TROP2, MSLN, FOLR1, and DLL3 are the five antigens targeted by
at least one ADC in more than ten trials (Fig. 1c). Currently, ten
ADCs are undergoing Phase III trials, including the registered
trastuzumab emtansine (T-DM1, HER2-directed), enfortumab
vedotin-ejfv (ASG-22CE, NECTIN4-directed), trastuzumab deruxte-
can (DS-8201a, HER2-directed), sacituzumab govitecan (IMMU-132,
TROP2-directed), and six other ADCs. Among these, two target

CEACAM5 and FOLR1 for NSCLC and OV, respectively. Further-
more, twenty ADCs are being evaluated in Phase II trials, while two
ADCs are in Phase II/III trials. Nine ADCs that reached Phase II did
not progress to Phase III, and 27 ADCs that reached Phase I did not
advance to Phase II. As for the ADCs currently in Phase II or Phase
II/III trials, their target antigens, such as F3 (TF), ROR1, FOLR1, CD56
(NCAM1), ENPP3, MET, CD166 (ALCAM), HER3 (ERBB3), MSLN, and
SLC39A6 (LIV1), have not yet been introduced to the ADC market
(Fig. 1a). According to the expression dataset, the target antigens
of drugs on the market (i.e., HER2, EGFR, NECTIN4, TROP2) used to
treat solid cancers show limited expression in normal tissues.
However, target antigens currently under investigation in clinical
trials exhibit relatively high expression in normal tissues. For
instance, CD166 (ALCAM) and CD56 (NCAM1) show high expres-
sion in the kidney, liver, lung, and heart (Fig. 1a). Overall, the target
antigens in drugs that have been approved or are under active
trials demonstrate high expression in various solid cancers,
particularly in LUAD. In contrast, their expression is significantly
lower in LIHC (Fig. 1d). This suggests that most ADCs are
developed to target LUAD, while LIHC lacks suitable target
antigens. This distinction may be attributed to the fact that LIHC
exhibits relatively unique genome-wide global expression profiles
with almost no overlap with other cancer types [29].

Differential gene expression patterns between tumour and
normal tissues
Out of the 90 target antigen candidates identified through our
algorithm, it was observed that CELSR1, GPR87, OR51E1, SLC2A12,
and VANGL1 do not exhibit medium to high expression in the 32
specified tissues of interest. Additionally, there are 26 targets with
medium to high expression in one tissue, 18 in two tissues, and 14 in
three tissues (Fig. 2). CD276, ERBB2, ERBB3, CMTM4, and GPNMB
exhibit medium or medium-high expression in more than nine
normal tissues, but CD276, ERBB2, and ERBB3 are not highly
expressed in any tissues except for the brain. Among the 243
target-indication combinations, MUC17-STAD is the combination that
has the highest differential ratio (log2 transformed) of MUC17
expression level in gastric tumour tissue to that of normal gastric
tissue, reaching 9.8, followed by VTCN1-UCEC, DSC3-LUSC, GPR87-
LUSC, GJB6-LUSC, and GPC3-LIHC, with ratios that reach 9.1, 8.1, 8.1,
8.1, and 7.8, respectively. Similarly, the differential expression ratio of
MUC17-ESCA is also as high as 12.3, but the absolute gene expression
level of MUC17 in ESCA is too low for this pair to be a target-
indication combination. It’s important to note that while the
differences in ERBB2 expression levels between 19 solid cancer
tissues and their adjacent normal tissues may not be highly
pronounced, it is still the target with the highest accumulation of
ADCs. We will delve deeper into this issue in the subsequent
discussion. TACSTD2 (TROP2) accounts for the second largest number
of ADC, while the first approved indication for TROP2-directed
sacituzumab govitecan is BRCA, the pair with the lowest differential
expression ratio. For several other indications such as BLCA, NSCLC,
PRAD, and UCEC with relatively high differential expression ratios, five
Phase II trials and two Phase III trials were launched in the past three
years 2018–20 (Supplementary Table 2).
In addition to the analysis of differential expression relative

to adjacent tissue, we also calculated the differential expres-
sion ratios of target gene expression level in the paired
indication to that of other normal tissues (Fig. 3). Our findings
reveal that the esophagus is the least conducive environment,
as in 14.5% of the target-indication combinations, the absolute
gene expression levels of targets in their paired indications are
lower than their expression levels in the normal esophagus. On
the other hand, the liver, gallbladder, and pancreas are the
three most favorable tissues, as in none of the target-indication
combinations is the target gene expression level lower than
that in these three normal tissues. While the differential
expression ratios for ERBB2 may not be particularly striking,
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its expression level in each paired indication is at least double
that of each normal tissue. For TACSTD2, it exhibits significant
differential expression between numerous tumor tissues and
their paired normal tissues, often more than fivefold. However,
its performance is relatively subpar in the esophagus and
salivary gland. CD276 is associated with many target-indication
combinations, yet its expression level in each paired indication

is less than double and sometimes even lower than its
expression level in the adrenal gland, breast, cervix, prostate,
and uterus. Furthermore, TNFRSF21 and TPBG show higher
expression in the urinary bladder than in their paired
indications, and DLK1 expression level in LIHC is lower than
its expression level in the normal adrenal gland, bone marrow,
ovary, and testis tissues.

Fig. 1 Expression profile and differential expression profile of ADC targets and overview of the clinical development pipelines and
current ADC targets. a Differential gene expression profile of target antigens in active clinical trials and approved ADCs among 19 types of
solid cancer (left panel). log2FC is the effect size estimate between tumour and adjacent normal tissue produced from DESeq2. The black box
in the left panel encircles the paired indications of targets. Protein expression of a given target set by normal tissue groups (right panel).
b Year of clinical study initiation for ADCs among various solid cancers. The dotted trend line fitting the total number of studies per year.
c Targets of clinical-stage ADCs ranked by the total number of ADCs directed to. The histogram in the box represents the clinical stage
distribution of ADCs directed to the top five targets. d Gene expression enrichment scores of targets in active clinical trials and approved
ADCs in pan-cancer.
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Fig. 2 Expression profile and differential expression profile of selected target antigens screened from the algorithm. Differential gene
expression profile of ADC target candidates in 19 types of solid cancer (left panel), and log2FC is the effect size estimate between tumour and
adjacent normal tissue produced from DESeq2. The black box in the left panel encircles the paired indications of targets. Protein expression
profile of ADC target candidates by the rearranged 32 normal tissue groups is shown in the right panel.
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Heterogeneous gene expression patterns in solid cancers
Homogeneous gene expression in clinical indications is a crucial
characteristic for antigens to be considered as potential
therapeutic targets. Through a comprehensive analysis of
paired genome and transcriptome data, we identified that
among 13 types of solid cancer, there are 146 target-indication
combinations where 65 mutated genes exhibit a significant
relationship with the gene expression level of 51 targets (Fig. 4a
and Supplementary Table 5). Among them, TP53 mutations
exhibit the strongest correlation with target gene expression.
Specifically, in 21 out of the 146 combinations, TP53 mutations,
both in coding and disruptive forms, have a significant impact
on the expression of target genes (Fig. 4b). For instance, in

34.3% of BRCA samples with mutated TP53, the expression level
of BMPR1B is 4.9 times lower compared to samples without TP53
mutation. Similarly, KCNE4 and SLC39A6 exhibit a reduction in
expression levels by 76.1% and 72.5%, respectively. Another
example is the elevated expression of TACSTD2 in 58.8% of
THCA samples bearing a BRAF mutation, showing a 3.9-fold
increase. Additionally, FGFR3 expression is upregulated by 3.4
times in 13.4% of BLCA patients with a self-gene mutation.
Several other notable correlations include ERBB2_PTEN (57.4%
of BLCA samples, FC= 3.2, direction = down), MSLN_TP53
(47.4% of LUAD samples, FC= 2.6, direction = down), MET_-
BRAF (58.8% of THCA samples, FC= 2.5, direction = up), and
GPNMB_VHL (49.1% of KIRC samples, FC= 2.3, direction =

Fig. 3 Circular visualization of the differential gene expression profile of target antigens in normal tissues. Specific chromosomal location
of each gene is shown by lines coming from each target-indication combination pointing to a specific position on each chromosome, with
cytobands also included. Heatmap weights are based on the differential value of each target gene expression level in its paired indication to
that in each normal tissue. log2FC is calculated by the non-parametric Mann–Whitney U test analysis. FC refers to the ratio of gene expression
value in the paired indication to that in normal tissues. The numbers 1-22 arranged vertically represent normal tissues.
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down) (the former is the target gene, and the latter is the
mutated gene). Moreover, the correlation between gene
mutation and the expression levels of certain target genes
varies across different pathological stages (Fig. 4c). For
example, TP53 mutation has the greatest correlation with the
downregulated BMPR1B expression in BRCA pathological stage
II, and BRAF mutation is most related to the upregulation of
TACSTD2 expression in the pathological stage II of THCA.

Notably, IGF1R expression is upregulated in the pathological
stage I of BRCA patients harbouring mutated TP53, while it is
downregulated in stage II and stage III.
Irrespective of gene mutations, the expression levels of genes also

exhibit variations across different pathological stages and tumor
sizes, and further differ in cases of tumor invasion, peripheral lymph
node metastasis, and distant metastasis (Supplementary Figs. 1–5).
For instance, as cancer progresses from pathological stage I to stage

Fig. 4 Heterogeneous gene expression pattern of several target candidates. a Bubble-volcano plot represents the fold change of target
gene expression value in the mutant samples to that in the wild samples among different solid cancer types, with the proportion of patients
harbouring a gene mutation also included. The color represents different cancer types, and the size of the bubbles represents the proportion
of patients bear a gene mutation. Six subplots are used to ensure clarity. b Pie chart represents the fold change of target gene expression level
in the mutant samples to that in the wild samples by gene mutation types. The size of the fan-shaped patches painted with the color
indicating fold change represents the proportion of patients harbouring each mutation type of a given gene. c Rank-heatmap represents the
fold change of target gene expression value in the mutant samples to that in the wild samples by pathological stages. log2FC and P values are
calculated by the non-parametric Mann–Whitney U test analysis. The numerical values on the rank-heatmap represent log2FC.
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IV, the expressions of APOLD1 and ST14 undergo a gradual down-
regulation in KIRC and KIRP, respectively (Supplementary Figs. 2, 3).
Conversely, in THCA, the expressions ofMET and TACSTD2 experience
an initial down-regulation followed by an up-regulation (Supple-
mentary Figs. 4, 5). Notably, the expression level of CDH3 in ESCA at
pathological stage II is approximately double that in the other stages
(Supplementary Fig. 1). As tumors grow and spread into nearby
tissue, the expressions of APOLD1 and ST14 in KIRC and KIRP tend to
decrease. In contrast, the expressions of MET and TACSTD2 in THCA
show gradually upregulation. As tumors spread to nearby lymph
nodes and distant metastatic sites, the expressions of APOLD1 and
ST14 show a downward trend in KIRC and KIRP, respectively.
Conversely, in THCA, the expressions of MET and TACSTD2 are
notably upregulated as the tumor spreads to nearby lymph nodes
and distant sites.

Predicted protein overexpression rates of target antigens
To further characterize the tumour heterogeneity of the target
antigen, we utilized expression profiles to predict protein
overexpression rates for the 75 unique target antigens across 22

different tumor (sub)types (Supplementary Table 6). Notably, over
75% of ADC targets in their respective 243 target-indication
combinations exhibited a predicted overexpression rate of >10%
of samples. Additionally, a predicted protein overexpression rate
>75% of samples was observed for 24 ADC targets in 30 target-
indication combinations, and >50% for 41 in 54 combinations
(Fig. 5).
In BRCA (sub)types, a predicted overexpression rate of >77% of

samples for HER2 was observed in ER-negative/HER2-positive or
ER-positive/HER2-positive breast cancer. In ER-positive/HER2-
negative and triple-negative breast cancer (TNBC), the over-
expression rate dropped to 23% and 5%, respectively. For
BMPR1B, CELSR1, ERBB3, IGF1R, KCNE4, SLC39A6, and TPBG, their
overexpression rates in ER-positive breast cancer samples are
significantly higher than that in ER-negative samples, while for
CD276, LRRC15, PRLR, and VTCN1, each protein was observed to
show overexpression independent of breast cancer intrinsic
subtypes. In TNBC, the highest predicted overexpression rate with
52% was observed for VTCN1 (B7-H4), followed by 43% for CD276
(B7-H3). VTCN1 is a target antigen that has not been clinically

Fig. 5 Predicted target overexpression analysed by functional genomic mRNA profiling. Predicted protein overexpression rates per
tumour (sub)types are represent as dots. The size of dots indicates the percentage of patient-derived tumour samples. The green circle around
dots represents a percentage >75% and the red circle represents >50% and <75%. The y-axis represents these unreported target antigens
(brown) and current ADC targets (black) identified from our algorithm and discovery platform, which possess a predicted overexpression rate
greater than 50% in at least one tumour (sub)types.
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explored in breast cancer. In kidney cancer (sub)types, it was
observed that VCAM1 and HAVCR1 are two targets highly
overexpressed in both KIRC and KIRP, while MET was observed
to show overexpression independent of kidney cancer intrinsic
subtypes. In KIRC, the highest predicted overexpression rate with
93% was observed for CA9, while in KIRP and KICH, 100% and 78%
were observed for HAVCR1 and MET, respectively. In addition,
several other unreported targets screened from our algorithm,
including APOLD1, BACE2, CFTR, COL23A1, FLT1, FZD1, SLC4A1,
SLC6A3, were observed to be overexpressed in > 50% kidney
cancer (sub)type samples. In BLCA we observed the highest
predicted overexpression rate of 67% for UPK1B, followed by 56%
for TNFRSF21. In COREAD, RNF43 ranked the highest with a
predicted overexpression rate of 78%, followed by NOX1 (53%). In
LIHC, it was observed that, three target antigens -TM4SF4, GPC3,
FGFR4- show the top three highest overexpression rates. PRAD
was observed to be the cancer type with the largest number of
target antigens overexpressed in more than 75% samples, TRPM8,
SLC2A12, SLC30A4, and OR51E2 among them have not been
reported for ADC application.

Genetic basis of target antigen candidates
We systematically analyzed the genetic basis of the 90 targets, and
found that ERBB2, EGFR, MET, and FGFR3 as oncogenic driver are
frequently altered in a wide type of solid cancers. The most
common alterations in oncogene EGFR are mutation (5.5%),
amplification (2.6%), exon 19 mutation (1.8%), exon 19 deletion
(1.6%), and exon 21 mutation (1.3%). When it comes to LUAD,
these proportions rise to 26.1%, 5.3%, 11.5%, 10.7%, and 8.6%,
respectively [30] (Fig. 6a). The annotation about EGFR alterations
curated by OncoKB shows that exon 19 deletion, L858R, and
T790M, as well as amplification are all to be oncogenic and have
gain-of-function effects. ERBB2 as another oncogene alters in 13.9%
of BRCA patients with amplification and mutation present in 12.6%
and 3.4% of all patients, respectively (Fig. 6a). FGFR3 mainly alters
in BLCA patients, and mutations account for the overwhelming
proportion of its alteration. S249C is the main source the
mutations, followed by Y373C, G370C, and G380R (Fig. 6a). MET
amplification and mutation occur in many solid tumours, but the
alteration frequency in each cancer type does not exceed 5% (Fig.
6a). Copy number variations (CNVs) are usually propagated to the
proteome level, while post-transcriptional mechanisms attenuate
this impact. For ERBB2, the greatest agreements between its
transcript and CNVs and transcript and protein, are observed in
BRCA (Fig. 6b). Renal cell carcinoma, however, are with poor
correlations. Similarly, EGFR shows good agreement in transcript/
CNV and transcript/protein in multiple cancer types (Supplemen-
tary Fig. 6). We applied radar charts to exhibit various indicators
under different measurement systems. The performance of ERBB2
on BRCA and BLCA is the most prominent among all target-
indication combinations, although it is moderately expressed in
many normal tissues (Fig. 6c). Compared with the ERBB2-BRCA or
ERBB2-BLCA combination, performance of EGFR on LUAD falls
behind in terms of the expression profiling. But its performance is
superior to FGFR3-BLCA with regard to cancer stem cell features.
Regardless of the two factors of genetic basis and cancer stem cell
features, the performance of NECTIN4 on BLCA is impeccable; so is
the performance of MET in LUAD, except for its expression
heterogeneity (Fig. 6c).

DISCUSSION
The conventional approach to researching ADC target antigens
typically centers on comparing their expression in tumor tissues
with their corresponding normal counterparts, often neglecting
the comprehensive assessment of systemic expression in potential
target candidates. This oversight can lead to an underestimation
of the potential risks of toxicity across normal tissues. To address

this, we compiled an extensive human proteome map by
integrating various proteomics databases. This integration, which
combines data from immunohistochemical analysis and mass
spectrometry, enhances the confidence in the reliability of
identifying low-level expression. Drawing on lessons learned from
clinical experiences, we recognize that achieving a balanced level
of on-target toxicity between normal and tumor cells is crucial for
the success of clinical trials. Therefore, we systematically analyzed
the differential expression profiles of candidate target antigens
not only in relation to their paired indications and normal
counterparts but also in comparison to other normal tissues. By
emphasizing antigens with both high expression in tumor tissues
and low expression in normal tissues, we identified targets with
significant differential expression profiles. Additionally, targets
with relatively uniform expression patterns among patients with a
given indication are more likely to benefit a larger population.
Through the utilization of extensive oncology repositories, we
excluded antigens whose gene expression levels experienced
significant decreases in a large proportion of patients bearing a
gene mutation. Furthermore, we conducted a thorough annota-
tion of the tumor heterogeneity of target antigens based on
functional genomic mRNA profiling. It’s worth noting that target
selection should also take into account the expression in
hematopoietic stem cells (HSCs) and multipotential progenitors
(MPPs), as restricted expression in these cell populations could
enable them to consistently replenish, even after depletion by
ADCs. Overall, starting from 20,242 HUGO gene symbols across 19
solid cancer types, our algorithm identified 75 candidate antigens
with features potentially suitable for ADC targeting and their 165
target-indication combinations.
In the RTK/RAS/MAP-Kinase signaling pathway, several particu-

larly interesting receptor tyrosine kinases in our selection list
(Supplementary Fig. 7), including ERBB2, ERBB3, EGFR, FGFR3, and
MET, are recurrently altered by mutation, amplification and/or
overexpression in a large proportion of patients with various types
of cancer. Cancer type-specific alterations of these oncogenic
genes have different levels of clinical actionability. As in the
biomarker-drug association case for ERBB2 amplification in BRCA,
the first-line treatment is ‘dual HER2 blockade’ with trastuzumab
and pertuzumab plus a taxane. The mechanism of action of T-DM1
is relevant to not only the DM1 payload, but also the trastuzumab
moiety since it retains all the mechanism of action of the naked
antibody [31]. The results of DESTINY-Lung01 showed that the
overall confirmed ORR of DS-8201 in the HER2 overexpression
cohort was 24.5%, while in the HER2 mutation cohort, the
confirmed ORR was as high as 61.9% [32]. Furthermore, cancer
stem cells that are tumourigenic may be resistant to conventional
cancer therapies, and efforts are now being directed towards
exploring precision medicine to target these cell types. Several
target antigens in our target atlas, including LGR5, EGFR, ERBB2,
CSF1R, MET, IGF1R, and TPBG (5T4), are cell surface antigens with
characteristics of cancer stem cells, and thus might enable the
ADCs directed to these targets to suppress cancer relapse and
metastasis.
It is commonly agreed that faster ADC endocytosis and deeper

penetration into late lysosomes are favorable, some targets exhibit
remarkably slow endocytosis without precluding them from being
considered as ADC targets. Conversely, the HER2 double epitope
ADC (MEDI4276) demonstrates exceptionally rapid endocytosis,
but its toxicity levels are too high to be well-tolerated. The strict
internalization requirement in ADC development has been
challenged in the past decade [33]. Non-internalizing ADC were
shown to induce a potent lineage ablation for hematologic
malignancies and solid tumours [34–36]. Target antigen candidates
that lack high degree of credibility regarding endocytosis and
endocytic trafficking routes were therefore retained in our
selection list. Regarding the debate between fixed-point and
random coupling, the consensus leans towards fixed-point
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coupling as superior. However, when the fixed-point coupling
HER2 ADC climbs to 1.5 mg/kg, its on-target cardiotoxicity
becomes strikingly apparent, necessitating dosage limitations.
Meanwhile, the random coupling RC48, also targeting HER2, can
be administered at 2.5 mg/kg with considerably lower cardiotoxi-
city. Furthermore, ADC dosages are influenced by factors like
payload potency, DAR, effective internalization, linker cleavage,
payload release, and target cell responsiveness. Adjusting a single
parameter, like the effective internalization rate, would lead to an
increase in local payload concentration within the tumor and
healthy tissue. Consequently, the starting dosages along with the
maximum tolerated dosages are reduced. Therefore, ADC devel-
opment poses a complex challenge, wherein modifying a
parameter will result in corresponding adjustments in the dosages.
This study, leveraging a comprehensive annotation database

built on transcriptomics, proteomics, and genomics, represents

the inaugural effort in uncovering pan-cancer ADC targets. The
extensive landscape of ADC targets compiled herein serves as a
valuable resource for cancer researchers, clinical oncologists, and
the wider scientific and pharmaceutical community invested in
the rapidly evolving field of ADC oncology therapeutics for solid
cancers.
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Fig. 6 The common genetic alterations of oncogenes and a combinatorial analysis of their coding protein as ADC targets. a Genetic
alteration frequencies of EGFR, ERBB2, MET, and FGFR3 in different types of solid cancer. The numerical values on the bar chart represent
genetic alteration frequencies. b Correlations of ERBB2 mRNA expression with its protein level or copy number variation events calculated via
Pearson’s correlation analysis. c, d Radar charts show the combinatorial scoring of five representative target-indication combinations focusing
on four dimensions and twelve aspects.
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