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Chimeric Antigen Receptor (CAR) T cell therapy is an effective treatment approach for patients with relapsed or refractory acute
lymphoblastic leukemia (R/R B-ALL). However, identifying the factors that influence long-term response to this therapy is necessary
to optimize patient selection and treatment allocation. We conducted a literature review and meta-analysis to investigate the use of
autologous anti-CD19 CAR T cell therapy in both pediatric and adult patients with R/R B-ALL, using several databases including
MEDLINE, Cochrane Central, ScienceDirect, Web of Science, Journals@Ovid, Embase, and clinicaltrial.gov. A total of 38 reports were
analyzed, which enrolled 2134 patients. Time-to-event endpoints were estimated using reconstructed patient survival data. The
study explored key modulators of response, including costimulatory domains, disease status, age, and lymphodepletion. The
median overall survival and event-free survival were 36.2 months [95% CI 28.9, NR] and 13.3 months [95% CI 12.2, 17], respectively.
The overall response rate was 76% [95% CI 71, 81]. The use of 4-1BB costimulatory domain in the CAR construct, administration of
low-dose cyclophosphamide lymphodepletion, and pretreatment morphologic remission were associated with better overall
survival, with hazard ratios of 0.72, 0.56, and 0.66, respectively. Morphologic remission and 4-1BB domain were associated with
better event-free survival, with hazard ratios of 0.66 and 0.72, respectively. These findings suggest that CAR T cell therapy may offer
long-term benefits to patients with R/R B-ALL. However, further research is needed to optimize patient selection and better
understand the impact of various factors on the outcome of CAR T cell therapy.
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INTRODUCTION
Acute lymphoblastic leukemia (ALL) is the most prevalent type of
pediatric cancer, accounting for approximately 25% of childhood
cancers [1, 2]. Despite significant advancements in treatment, the
relapse rate remains high (15-20% for children) [3]. Patients with
relapsed or refractory (R/R) B-ALL have a much lower cure rate
with an estimated 20% overall 5-year survival [3–5]. Furthermore,
adults with R/R ALL historically have a poor prognosis, with cure
rates below 40%, largely due to associated high-risk features [6, 7].
Chimeric Antigen Receptor (CAR) T cell therapy has been
established as an effective treatment for refractory or relapsed
hematological malignancies, including B-ALL [8–12]. CAR T cells
are genetically engineered to express a synthetic receptor which
binds to tumor antigens through a single-chain variable fragment
(scFv). The scFv recognizes and binds to specific surface molecules
on target tumor cells, leading to CAR-mediated cytotoxicity.
Various CAR designs are being studied, with CD19 being the most

commonly targeted antigen, and CD28 and 4-1BB being the most
widely used costimulatory domains [13].
CD19 CAR T cell has demonstrated complete remission rates as

high as 90% in R/R B-ALL patients [12]. The U.S. Food and Drug
Administration (FDA) approved tisagenlecleucel for pediatrics and
young adults with R/R B-ALL in 2017 [14], and more recently
brexucabtagene autoleucel for adult patients aged 18 or older
[15]. While these therapies have shown significant early responses
in pivotal trials, their primary efficacy endpoints were based on
response rates [9–11]. The FDA oncologic drugs advisory
committee recommends the use of patient survival or quality of
life as the primary endpoints for measuring the clinical benefits of
cancer drugs and biologics [16]. Response rates, however, are not
always closely related to survival or quality of life [17]. Moreover,
pricing and reimbursement decisions for such therapies often
hinge on the long-term outcomes of the treatments [18–21]. Thus,
there is a critical need for research on the long-term efficacy of
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CAR T cells as a single-line treatment for R/R ALL to inform clinical
and health policy decisions.
Here, we conducted a systematic review of CD19-specific CAR T

cell studies in pediatric and adult patients with R/R B-ALL. We
analyzed patient survival data from published Kaplan-Meyer
curves to calculate overall survival and event-free survival.
Additionally, we conducted a meta-analysis of the response rates
and adverse events associated with the treatment. We also used
multivariate Cox regression models to evaluate the influence of
factors such as costimulatory domain, disease status prior to
treatment, lymphodepletion regimen, study design, and patient
age on treatment outcomes.

METHODS
Search strategy
The study protocol was registered on the Open Science Framework (OSF)
[22]. We conducted a literature search on MEDLINE, Cochrane Central,
ScienceDirect, Web of Science, Journals@Ovid, Embase, and clinicaltrial.gov
for published studies on CAR T cell therapy in patients with relapsed or
refractory B-ALL until January 7th, 2022. A research librarian assisted in the
development of the search strategies (Table S1). Two independent
reviewers (ME and MOE) screened the citations, and potentially relevant
publications were obtained and evaluated against pre-set and detailed
eligibility criteria. Any disagreement were resolved by discussions among
the reviewers and a third reviewer (MA) as required.

Study eligibility
We used the PICO framework to define our research question and establish
inclusion and exclusion criteria for our study (Table S2). We included
clinical trials and real-world reports on the efficacy and safety of anti-CD19
CAR T cell therapy for adult and pediatric patients with relapsed or
refractory B-ALL. We excluded studies on allogeneic CAR T cells, CAR T cell
and hematopoietic stem cell transplant combination therapy and CAR T
cell with other treatments such as PD-1 inhibitors. Studies with less than 3
patients and non-English language reports were also excluded. To avoid
duplication, we used the clinical trial identifiers to consolidate multiple
reports on the same trial and prioritized the one with the most recent data
and longest follow-up.

Outcomes definitions
The primary outcomes of the study were overall survival and event-free
survival after CAR T cell infusion. Overall survival was defined as the time
from the infusion of CAR T cells to death from any cause, and event-free
survival was defined as the duration from the time of infusion to relapse or
death from any cause. The median survival time and survival at 1, 2-, and
5-year intervals were also calculated. Secondary outcomes include the
response rates and adverse event rates. The overall response rate was
defined as the proportion of patients who had a Complete Response (CR)
or CR with incomplete hematologic recovery at the first disease evaluation
after anti-CD19 CAR T cell infusion. CR was defined as less than 5% blast
cells in the bone marrow with the restoration of normal hematopoiesis.
Minimal residual disease negativity was defined as less than 0.01% blast
cells in the bone marrow by either molecular methods or flow cytometry.
Safety endpoints included the incidence of any grade of cytokine release
syndrome (CRS) and neurotoxicity at any time after anti-CD19 CAR T-cell
infusion. Treatment-related deaths were also evaluated, which were
identified as deaths that are reported by authors as being related to
CAR T cell product infusion.

Risk of bias assessment
To evaluate the quality of the evidence and the validity of the results
obtained from the included reports, we performed a detailed assessment
of the risk of bias (RoB). As CAR T cells are typically tested in small single-
arm trials, we used a RoB tool specifically designed for case series and case
reports developed by Murad et al. [23]. The tool assessed four domains:
selection, ascertainment, causality, and reporting. Additionally, we also
used selected questions from the Cochrane RoB tool (selection,
performance, detection, attrition, reporting bias) as relevant to the study
design (Table S3) [24]. The reports that met the inclusion criteria were
independently reviewed by two reviewers (ME and MOE) and any
discrepancies were resolved through discussion.

Subgroups
We defined subgroups to examine potential modification of treatment
effects by study-level variables such as age of participants, disease
morphology, CAR construct design, cyclophosphamide dosage, and type
of study. We categorized populations as pediatric/young adult or mixed
population based on the upper and lower bound of the age range.
Pediatric/young adult group was defined as reports that included only
participants who are 25 years old or younger. Whereas the mixed-age
group encompassed reports that included participants of any age. Reports
were stratified based on the used costimulatory domain into 4-1BB or
CD28 and according to the disease status of participants at the time of
infusion. We defined morphologic disease as more than 50% of the
participants having a bone marrow blast count of 5% or more prior to
infusion, while morphologic remission as having more than 50% of
participants in morphologic remission. The dose of cyclophosphamide for
lymphodepletion was used to categorize the studies into high dose
(>1,500mg/m2 total dose) and low dose (<1,500mg/m2 total dose).
Finally, we categorized reports into clinical trials and real-world data (RWD).
Reports were considered RWD if they were generated from repositories
that collected data on the approved CAR T cell products (commercial use
products) in a retrospective or prospective manner outside the context of a
clinical trial.

Statistical analysis
A generalized linear mixed-effects model was fitted using R studio
software’s meta-package version 4.18.2 to estimate the effect sizes of CD19
CAR T cell therapy [25]. Forest plots were generated using the meta-
package. Heterogeneity was expressed using I-squared statistics [26]. We
conducted a sensitivity analysis using the Intention-To-Treat (ITT)
population to estimate the change in response rates due to dropouts
from the studies while waiting for CAR T cell infusion. Cochran’s Q test was
used to test for heterogeneity between subgroups for potential effect
modification by each study-level variable [26]. Publication bias was
evaluated using Peters’ regression and inspection of the funnel plots to
test for asymmetry [27].
To estimate time-to-event endpoints (overall survival and event-free

survival), data were extracted using digitizer software (available at: https://
automeris.io/WebPlotDigitizer/). Kaplan Meier curves were fed into the
software and the points on the curves were manually selected to retrieve
coordinates of each point. These outputs were then fed into the
IPDfromKM software to reconstruct patient survival data from the curves
[28]. We assessed the accuracy of the reconstruction by examining the
values of root mean squared error (RMSE), mean absolute error, max
absolute error, and the p-value of the Kolmogorov-Smirnov test [28]. The
data were pooled from all studies to estimate median overall survival,
median event-free survival, the 12-, 24- and 60-month survival probability
and 95% confidence intervals (CI) using the survival package in R [29].
Kaplan Meier curves were generated using the ggplot2 package in R [30].
We used log-rank test to compare the survival distributions of different
study-level variables on overall survival and event-free survival using the
survival package in R.
To assess the impact of study-level variables on survival outcomes,

hazard ratios were calculated using univariate Cox proportional hazard
models [31]. A stepwise selection process, incorporating a significance
level of 0.15 for entry and 0.05 for retention, was then used to determine
which effect modifiers should be included in the final multivariate model.
The assumptions of the Cox proportional hazard models were evaluated by
examining Schoenfeld residuals. The multivariate model was visualized
using the survminer package [32]. All analyses were conducted using R
Studio version 1.4.1717 (RStudio: Integrated Development for R. RStudio,
PBC, Boston, MA, USA).

RESULTS
A total of 11273 reports were retrieved, of which 298 were
obtained as full-text and 54 were eligible for analysis. Sixteen
reports were excluded due to high risk of bias (Table S4). The
remaining 38 reports were included in the quantitative synthesis,
with a total of 2134 patients, out of which 1908 received CD-19
CAR T cell products [33–51, 12, 11, 52–59, 10, 60–67] (Fig. S1). The
study found no indication of potential publication bias in the
primary outcomes through visual inspection of funnel plots and
using Peters’ test (p= 0.474). The characteristics of the included
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reports are reported in Table 1. Only 4 of the 38 reports reported
information on the race/ethnicity of the participants [10, 52, 59],
with African Americans and Asians representing 6.2% and 4.3%
respectively [52, 59, 60], and only two reported the percentage of
Hispanic participants [52, 59]. One report listed minority groups as
aggregate data which did not allow further analysis. More
information on the reports can be found in tables S5, S6, and S7.

Effect estimates
The study showed that the median overall survival was
36.2 months [95% CI 28.9, NR], and the median event-free survival
was 13.3 months [95% CI 12.2, 17] (Fig. 1). The 12-month and 24-
month overall survival rates were 70% [95% CI 67.7, 72.8] and
56.5% [95% CI 53.2, 60], while the 12-month and 24-month event-
free survival rates were 53.2% [95% CI 50.3, 56.2] and 42.1% [95%
CI 38.7, 45.8]. At 5 years, the overall survival and event-free survival
were 44.1% [95% CI 36.3, 53.5] and 35% [95% CI 28.8, 42.5],
respectively (Fig. 1). The overall response rate was 76% [95% CI 71,
81] in the ITT population (Fig. 2), and 85% in the mITT population
[95% CI 82, 88] (Fig. S3). Of the responding patients, 98% [95% CI
94, 99] achieved MRD-negative remission (Fig. S4), and 26% [95%
CI 20, 34] of infused patients went on to have a HSCT (Fig. S5).
Cytokine release syndrome (CRS) of any degree was reported in

83% [95% CI 76, 89] of the infused patients, while 21% [95% CI 16,
26] developed grade 3 or higher CRS (Figs. S6, S7). Neurotoxicity of
any grade was reported in 30% [95% CI 24, 38] of the infused
patients (Fig. S8). Of the infused patients 4% [95% CI 3, 6] suffered
from treatment-related deaths. (Fig. S9).

Treatment effect modifiers
The 38 reports included in the quantitative synthesis were
analyzed to determine the effect of various study-level variables
on patient survival (Table 2). The univariate Cox proportional
hazard analysis showed that the use of the 4-1BB signaling
domain, low-dose cyclophosphamide, and being in morphologic
remission at the time of infusion, were associated with better
overall and event-free survival (Fig. 3, Table S8, Fig. S10). The
univariate analysis of the relationship between the start date of
the studies and survival outcomes found that more recent studies
had better overall survival, with a hazard ratio (HR) of 0.90 [95% CI
0.85–0.94, p < 0.001], and better event-free survival, with a HR of
0.93 [95% CI 0.90–0.97, p < 0.001] (Table S8). Additionally, and real-
world data reports were also found to have better overall, and
event-free survival compared to clinical trials (Fig. 3E).
The multivariate analysis of study-level variables revealed that

the use of 4-1BB as a costimulatory domain in the CAR T-cell
construct, administering low-dose cyclophosphamide for lympho-
depletion, and patients being in morphologic remission at the
time of infusion were associated with better overall and event-free
survival. Specifically, the HR for death was 0.72 (p= 0.007) for the
4-1BB domain, 0.56 (p < 0.001) for low-dose lymphodepletion and
0.66 (p < 0.001) for morphologic remission (Fig. 4A). Similarly, the
HR for relapse or death was 0.66 (p < 0.001) for morphologic
remission and 0.72 (p= 0.001) for the 4-1BB domain (Fig. 4B).
The subgroup analysis of response rates found that CAR T cells

using the 4-1BB domain had a higher overall response rate (78%
[95% CI 72–83]) and MRD negative remission rate (99% [95% CI
96–100]) compared to those using the CD28 domain (58% [95% CI
51–63] p < 0.001 and 90% [95% CI 68–97] p= 0.018, respectively),
(Table 3). The proportion of patients proceeding to HSCT was higher
in the CD28 group (38.4% [95% CI 24.8–54.1]) compared to the
4-1BB group (20.5% [95% CI 15–26.7]), p= 0.017). No differences
were detected in the rate of CRS between the two domains, but
neurotoxicity rate was higher in the CD28 subgroup (p= 0.038).
The subgroup analysis also showed that reports including

pediatric/young adult patients had a higher incidence of
neurotoxicity (p= 0.0097). Reports that had a higher proportion
of patients in morphologic remission before CAR T cell infusion

had a better overall response rate (p < 0.001), with no significant
difference in the incidence of CRS or neurotoxicity (p= 0.414 and
0.983, respectively). Reports that used lower doses of cyclopho-
sphamide also had a better overall response rate. Furthermore,
RWD reports had a lower incidence of CRS compared to clinical
trials (p < 0.001) (Table 3).

Table 1. Reports and patients characteristics.

Report characteristics

Report type, n (%)

Phase I 16 (42)

Phase I/II 12 (31)

Phase II 6 (16)

Retrospective 1 (3)

Real world 3 (8)

Report location, n (%)

Asia 15 (39)

Europe 4 (11)

North America 14 (37)

Other 5 (13)

Number of centers, median (range) 1 (1–73)

Survival curves, n (%)

Yes 25 (67)

No 13 (33)

CRS Scale used, n (%)

ASTCT 5 (13)

Lee 18 (47)

MSKCC 2 (5)

Penn 7 (19)

Unreported 6 (16)

CAR design

Vector type, n %

Lentivirus 26 (68)

Retrovirus 7 (18)

Other 1 (3)

Unreported 4 (11)

Costimulatory domain, n %

4-1BB 27 (71)

CD28 5 (13)

CD28/4-1BB 4 (11)

Unreported 2 (5)

CAR Hinge, n %

CD28 5 (13)

CD8 18 (47)

IgG4 2 (5)

Unreported 13 (34)

CAR scFV Clone, n %

A3B1 1 (3)

CAT13.1E10 2 (5)

FMC63 21 (55)

HI19α 1 (3)

Unreported 13 (34)

Patient characteristics

Patients Enrolled, n 2134

Patients Infused, n 1908

Age, range 0.4–76

Median number of therapies, range 2–9

Previous HST, % (95% CI) 29 (23–37)

Median blast percentage, range 0.25–74

ASTCT The American Society for Transplantation and Cellular Therapy, CRS
Cytokine Release syndrome, CAR Chimeric Antigen Receptor, HST Hema-
topoietic stem cell transplantation, MSKCC Memorial Sloan Kettering
Cancer Center, scFv: single chain variable fraction.
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DISCUSSION
In this meta-analysis, we investigated the long-term outcomes and
safety of CAR T cell therapy in r/r ALL using data from 2134
patients and outlined factors that may affect the response to this
type of treatment. Our analysis indicates that while most patients
elicit an initial response to CAR T cells, the 5-year survival suggest

that more than half of these patients might experience relapse
after treatment. Both patient and product characteristics appear to
influence the long-term outcomes of CAR T cell therapy. We
observed worse survival in trials with high number of patients with
morphologic disease before treatment, which is consistent with
other studies [55, 68]. Recent analyses suggest that pre-existing

Fig. 1 Overall survival and event-free survival of R/R B-ALL patients treated with anti-CD19 CAR T therapy. Pooled data from published
Kaplan Meier curves were used to estimate (A) the Overall Survival (OS) of the infused population and (B) the Event-free survival (EFS) of the
infused population.

Fig. 2 Overall response in R/R ALL patients. Forest plot of the overall response in all studies using the ITT (enrolled) population. The
response rates were aggregated using a generalized linear mixed-effect model.

M. Elsallab et al.

848

Cancer Gene Therapy (2023) 30:845 – 854



CD19neg clones may contribute to relapse after CAR T cell therapy
[69]. This is noteworthy, as about half of relapses in ALL patients
treated with CAR T cells are CD19neg [11, 39]. Additionally, the
cellular composition and pharmacokinetics of the CAR T cell
product and the expansion of certain subpopulations may also
affect the response and contribute to patient relapse [70, 71].
The costimulatory domain used in the CAR T cell product can

also have a significant impact on the long-term outcome of
treatment. Published studies suggest that the CD28 costimulatory
domain induces differentiation to an effector-like cell phenotype
with higher production of cytokines compared to 4-1BB, which
induces differentiation to a memory-like phenotype of the CAR
T cells [72, 73]. Our findings provide further clinical confirmation of
these prior studies and indicate that CAR T cells with 4-1BB
costimulatory domains have a more sustained response compared
to those with CD28 domains, which may be related to the
differences in the differentiation and persistence of T cells
[70, 72, 73]. This significant difference persisted even after
accounting for variations in patient age and could explain the
higher proportion of patients in the CD28 group proceeding to
transplantation. Another product characteristic that can influence
the effectiveness of CAR T cell therapy is the quality of the starting
material used to manufacture the product. Studies have
suggested that patient age may impact the quality of the starting
material, with adults potentially having worse outcomes com-
pared to children/young adults [74, 75]. In contrast, our subgroup
analysis did not show that including adult patients in the study
population had a negative impact on long-term outcomes after
CAR T cell therapy.
We also observed that the use of low-dose cyclophosphamide

lymphodepletion before CAR T cell infusion was associated with
better overall survival. Currently, evidence regarding the optimal
dose of lymphodepletion remains largely inconclusive. While
some clinical studies suggested that high-dose cyclophosphamide
improves responses to CAR T cells, other studies suggest that
aggressive lymphodepletion and bridging therapy may not offer
additional clinical benefits and increase toxicities [10, 11, 76–78].
Furthermore, aggressive chemotherapy before CAR T cell infusion

might affect the activation and expansion of CAR T cells by
modulating the target density [79–81]. A more granular analysis
that accounts for multiple confounding factors is needed to fully
understand the impact of patient and product characteristics on
long-term survival.
We observed that the majority of patients experienced CRS of

any grade and a third experienced neurotoxicity of any grade.
While previous studies have suggested a link between disease
burden and the severity of these adverse events [82, 83], this
analysis did not find a significant difference based on disease
burden. Despite the high incidence of serious adverse effects, the
reported rate of treatment-related mortality was relatively low
[84]. Furthermore, RWD reports showed lower rates of CRS, which
could be attributed to early recognition and better management.
Overall, there is a continued need for optimization of next-
generation CAR T cell designs to improve safety profiles and
minimize toxicities.
The accurate and detailed reporting of patient characteristics is

crucial to assess the generalizability of study results [85]. Our
analysis highlighted a few areas where the reporting of clinical
data could be improved, such as providing time-to-event data and
information on the number of patients at risk and censoring in
survival curves. Additionally, we found that the racial and ethnic
backgrounds of recruited patients were often not reported or
underrepresented. This aligns with previous research, which
suggests that subjects of color and minority descent are
frequently underrepresented in CAR T cell trials [86]. It is important
to ensure diversity in clinical trials to consider the potential
differences in responses among different groups [87, 88].
Limitations in our report are largely inherit to meta-analysis. The

lack of comparator arms limits our ability to compare the
effectiveness of CAR T cell therapies to other treatment options.
Additionally, the lack of patient-level data restricts our ability to
analyze a wider range of effect modifiers or to use matching
methods to compare patients across different studies. Further-
more, the use of different scoring systems to report safety
outcomes may make it difficult to compare these outcomes across
studies. New methods for meta-analysis of single-arm trials, such

Table 2. Distribution of the studies and patients across the different subgroups and analyses.

Subgroup Response rate analysis reports Survival analysis reports

N (%) Pt enrolled N (%) Pt infused OS EFS

N (%) Pt N (%) Pt

Domain 29 32 23 21

4-1BB 24 (83) 1309 27 (84) 1289 18 (78) 1035 17 (81) 946

CD28 5 (17) 257 5 (16) 202 5 (22) 195 4 (19) 172

Age group 36 38 25 22

Pediatric/young adult (≤ 25) 11 (31) 420 11 (30) 354 5 (20) 202 4 (18) 149

Mixed (≤ 25 and/or >25) 25 (69) 1646 27 (71) 1554 20 (80) 1317 18 (82) 1223

Disease morphology 33 35 25 22

Remission (BMB < 5%) 9 (27) 464 10 (29) 485 7 (28) 453 7 (32) 453

Disease (BMB ≥ 5%) 24 (73) 1478 25 (71) 1303 18 (72) 1066 15 (68) 919

LD dose (Cy total dosea) 28 30 23 20

High (≥1500mg/m2) 11 (39) 602 11 (37) 494 10 (43) 444 8 (40) 323

Low (<1500mg/m2) 17 (61) 945 19 (63) 926 13 (57) 803 12 (60) 777

Report type 35 38 25 22

Clinical trial 32 (91) 1556 35(92) 1437 22 (88) 1055 19 (86) 908

RWD 3 (9) 488 3 (8) 471 3 (12) 464 3 (14) 464

N number of studies, Pt Patients, OS overall survival, EFS Event-free survival, BMB bone marrow blast percentage, LD lymphodepletion, Cy cyclophosphamide,
RWD Real world data.
aDose calculated as mg/m2 or equivalent.
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Fig. 3 Subgroup analyses of the Overall survival and Event free survival Study level characteristics. The survival data from the pooled
studies were used to estimate (A) the OS (right) and EFS (left) based on the co-stimulatory domain used in the study, (B) the OS (right) and EFS
(left) based on the age range of the study population, (C) the OS (right) and EFS (left) based on the pretreatment disease status, (D) the OS
(right) and EFS (left) stratified based on the dose of cyclophosphamide lymphodepletion, and (E) the OS (right) and EFS (left) based on the
study type.
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as network meta-analysis and matched-adjusted indirect compar-
ison, are being developed to overcome some of these limitations.
However, these methods would also require individual patient
data to be used effectively.

CONCLUSION
Long-term outcomes of CAR T cell therapy, despite being an
important measure of treatment efficacy, remain insufficiently
reported. Our analysis indicates that CAR T cells can offer long-

term benefits to patients with R/R B-ALL, who otherwise have a
low overall 5-year survival rate. However, the costimulatory
domain used in the CAR T cells, the disease status of the patient
at the time of infusion, and cyclophosphamide dose of
lymphodepletion had a major impact on patient outcomes and
the risk of relapse. Further research into these effect modifiers,
using well-controlled studies and improved reporting, could help
to optimize patient selection and improve the overall effective-
ness of CAR T cell therapy. These efforts are expected to ensure
administering CAR T cells that can increase patient survival, has
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Cox proportional hazard for overall survival

Morphology

Domain

Remission

Disease

41BB

CD28

(N=453)

(N=665)

(N=946)

(N=172)

0.72

 

0.66

 

(0.59 − 0.88)

(0.53 − 0.82)

0.001 **

<0.001 ***

# Events: 524; Global p−value (Log−Rank): 1.8601e−08 
AIC: 6742.39; Concordance Index: 0.57

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Cox proportional hazard for event free survival(A) (B) 

Fig. 4 Multivariate analysis of survival. Selected study-level variables were included in a multivariate Cox regression analysis of the (A)
overall survival and (B) Event-Free Survival.

Table 3. Effect modifiers of CD19 CAR T cells safety and efficacy.

Subgroup Overall response (ITT)
% (95% CI)

Overall response
(mITT) % (95% CI)

Minimal residual disease
negative % (95% CI)

Cytokine release
syndrome (CRS) %
(95% CI)

Grade 3 or higher CRS
% (95% CI)

Neurotoxicity %
(95% CI)

Domain

41BB N= 24 78 [72; 83] N= 27 86 [82; 89] N= 26 99 [96; 100] N= 23 86 [76; 92] N= 25 23 [17; 30] N= 22 29 [22; 37]

CD28 N= 5 58 [51; 63] N= 5 74 [64; 82] N= 5 90 [68; 97] N= 5 83 [75; 89] N= 5 23 [18; 30] N= 5 46 [32; 62]

p-value < 0.001* 0.0059* 0.0179 0.5834 0.9713 0.0380*

Age group

Pediatric/young adult N= 10 68 [56; 77] N= 11 82 [72; 89] N= 11 99 [93; 100] N= 9 79 [66; 88] N= 10 22 [14; 33] N= 8 42 [33; 53]

Mixed N= 25 79 [73; 84] N= 27 86 [83; 89] N= 25 96 [91; 98] N= 24 85 [76; 91] N= 26 20 [15; 27] N= 22 26 [18; 35]

p-value 0.048* 0.3608 0.2537 0.4555 0.7932 0.0125*

Disease morphology

Remission N= 9 84 [80; 87] N= 10 90 [83; 94] N= 23 97 [91; 99] N= 9 82 [61; 93] N= 10 16 [13; 20] N= 10 24 [16; 36]

Disease N= 24 72 [65; 77] N= 25 83 [78; 86] N= 10 99 [92; 100] N= 23 84 [76; 90] N= 25 23 [17; 30] N= 18 37 [28; 46]

p-value < 0.001* 0.0588 0.2831 0.8248 0.0720 0.0948

LD dose

High N= 11 66 [56; 75] N= 11 79 [71; 86] N= 11 96 [89; 99] N= 9 80 [69; 88] N= 11 25 [14; 39] N= 9 32 [24; 41]

Low N= 17 81 [74; 86] N= 19 87 [83; 91] N= 18 98 [94; 100] N= 17 86 [73; 93] N= 18 19 [15; 24] N= 17 32 [21; 45]

p-value 0.0093* 0.0413* 0.3778 0.4142 0.3843 0.9831

Report type

Clinical trial N= 32 76 [70; 81] N= 35 86 [82; 89] N= 33 97 [93; 99] N= 30 85 [78; 90] N= 33 21 [16; 27] N= 27 32 [24; 40]

RWD N= 3 80 [77; 84] N= 3 83 [80; 87] N= 3 100 [98; 100] N= 3 59 [53; 64] N= 3 18 [15; 22] N= 3 21 [15; 31]

p-value 0.1242 0.5456 0.0377* 0.0001* 0.4075 0.1061

LD lymphodepletion, RWD real world data.
* Statistically significant.
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lower incidence of toxicity, and ultimately lower the cost of
patient treatment.
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