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BACKGROUND: Tumour infiltrating lymphocytes (TILs) are a prognostic parameter in triple-negative and human epidermal growth
factor receptor 2 (HER2)-positive breast cancer (BC). However, their role in luminal (oestrogen receptor positive and HER2 negative
(ER+ /HER2-)) BC remains unclear. In this study, we used artificial intelligence (AI) to assess the prognostic significance of TILs in a
large well-characterised cohort of luminal BC.
METHODS: Supervised deep learning model analysis of Haematoxylin and Eosin (H&E)-stained whole slide images (WSI) was
applied to a cohort of 2231 luminal early-stage BC patients with long-term follow-up. Stromal TILs (sTILs) and intratumoural TILs
(tTILs) were quantified and their spatial distribution within tumour tissue, as well as the proportion of stroma involved by sTILs were
assessed. The association of TILs with clinicopathological parameters and patient outcome was determined.
RESULTS: A strong positive linear correlation was observed between sTILs and tTILs. High sTILs and tTILs counts, as well as their
proximity to stromal and tumour cells (co-occurrence) were associated with poor clinical outcomes and unfavourable
clinicopathological parameters including high tumour grade, lymph node metastasis, large tumour size, and young age. AI-based
assessment of the proportion of stroma composed of sTILs (as assessed visually in routine practice) was not predictive of patient
outcome. tTILs was an independent predictor of worse patient outcome in multivariate Cox Regression analysis.
CONCLUSION: AI-based detection of TILs counts, and their spatial distribution provides prognostic value in luminal early-stage BC
patients. The utilisation of AI algorithms could provide a comprehensive assessment of TILs as a morphological variable in WSIs
beyond eyeballing assessment.

British Journal of Cancer (2023) 129:1747–1758; https://doi.org/10.1038/s41416-023-02451-3

INTRODUCTION
Breast cancer (BC) is a heterogeneous disease with different
molecular subtypes and variable clinical behaviours [1]. Despite
the good prognosis of early-stage BC expressing oestrogen receptor
(ER) and lacking human epidermal growth factor receptor 2 (HER2)
overexpression (luminal BC), post-treatment recurrence occurs in
approximately 20% of cases [2]. This supports the existence of
aggressive subgroups within these luminal tumours, which
comprise more than 60% of all BC [3]. Therefore, prognostic
stratification of early-stage luminal BC is of paramount importance
to inform optimal treatment decision-making for these patients [4].
The role of tumour infiltrating lymphocytes (TILs) in refining BC

prognosis and possible targeted immunotherapy has been widely

studied [5–8]. It has been established that TILs play a key
prognostic role in triple-negative (TN) (ER-negative, progesterone
receptor (PR)-negative and HER2-negative) and HER2-positive BCs
[9]. However, their role in luminal BCs remains unclear and
conflicting results have been reported. Some studies reported an
association between TILs and poor prognostic parameters [10, 11],
while others did not find any prognostic significance [12, 13]. This
has led to the exclusion of TILs, as currently assessed, as a
prognostic stratifier in luminal BCs [13, 14].
To date, it is recommended that visual assessment of TILs in

routine clinical practice depend solely on stromal TILs (sTILs),
defined as the percentage of mononuclear cells (lymphocytes and
plasma cells) quantifiable in the stromal area [15]. Although this
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method of assessment would potentially increase reproducibility
in routine clinical practice, this approach precludes the assessment
of the spatial heterogeneity of TILs distribution which may be
clinically informative [15–17]. Similarly, TILs in direct contact with
or infiltrating tumour cells known as intra-tumoural TILs (tTILs) are
not quantified, despite being biologically relevant to interact with
tumour cells [15, 16]. Spatial heterogeneity and tTILs are more
challenging to quantify and are considered too complex to
visually assess in routine practice.
The widespread use of digital pathology and the increasing

applications of artificial intelligence (AI) on whole slide images
(WSIs) [18–20] have opened avenues for re-exploring the
prognostic roles of morphological features such as TILs, especially
within the molecular classes where TILs role is uncertain. The
development of machine learning (ML) algorithms for automated
computational TILs assessment to allow precise, rapid and less
exhaustive workflow is a current need [9]. This would not only
improve diagnostic concordance but will also add more informa-
tion that cannot be assessed by the human eye [21].
In this study, we hypothesised that using AI-based algorithms

would provide improved assessment of TILs in early-stage luminal
BC patients and identify additional TILs features that have
prognostic implications.

MATERIALS AND METHODS
Study cohorts
This study was conducted on two cohorts including:
A) Nottingham cohort: a cohort of 2231 endocrine-treated ER+ /HER2-

BC patients presented to Nottingham City Hospital, Nottingham, United
Kingdom. Anonymised clinicopathological data including patient’s age,
menopausal status, tumour size, histological subtype, tumour grade,
Nottingham prognostic index (NPI), lymph node (LN) status, lymphovas-
cular invasion (LVI), PR and Ki67 expression scores, as well as treatment
information were collected. All patients included were treated with
adjuvant endocrine therapy only based on local treatment protocol;
ER+ BC patients were offered chemotherapy only if the NPI score is in the
poor prognostic group and the patient tolerates chemotherapy [22, 23].
None of the patients have received neoadjuvant therapy. BC specific
survival (BCSS) identified as the time from initial diagnosis to death related
to BC was calculated for all patients. The cohort was divided into discovery
(n= 1572) and test (n= 659) sets using stratified random sampling to

ensure equal distribution of events in each set. Initially, the discovery set
underwent an internal 3-fold cross-validation, where the set was stratified
into three different splits which were used for training the model. Then the
optimised module resulting from this cross-validation process was applied
to the test set. To note, the test set remained untouched throughout the AI
model upstream steps to ensure a reliable validation. However, for the
simplification of the results, the correlation between TILs against the
clinicopathological, and outcome data was carried out on the whole
discovery set and validated on the test set.
B) External validation cohort: an external validation cohort (n= 318) was

also collected from endocrine-treated BC patients presented and managed
at the University Hospital Coventry and Warwickshire (UHCW), Coventry,
UK from 2011-2014. The clinicopathological data for this cohort was also
available.
The patient and tumour characteristics of study cohorts are presented in

Supplementary Tables 1 and 2.
Formalin-fixed paraffin-embedded (FFPE) tumour tissue blocks were

retrieved for all cases. Fresh sections were prepared and stained with
Haematoxylin and Eosin (H&E). Slides were scanned using Philips IntelliSite
Ultra-Fast Scanner, Philips Digital Pathology Solutions, Best, the Nether-
lands and Panoramic 250 Flash III: 3D Histech, Budapest, Hungary on 40x
magnification, generating high resolution WSIs. The model was trained on
images from both scanners and random brightness/contrast, median blur
and colour jitter augmentations were carried out. One representative WSI
was used for each case where largest tumour burden with associated TILs
was present.

Annotations of the WSIs
Exhaustive region and cell level annotations were performed by six
experienced pathologists for supervised ML training models. Regional
annotations involved invasive and in situ tumour areas, tumour associated
stroma (TAS), and normal breast tissue (terminal duct lobular units)
regions. Cell annotations included tumour cells with various morphologies
and degrees of pleomorphism, stromal cells either fibroblasts or
myofibroblasts, normal epithelial cells and TILs. Areas of necrosis,
calcification and tissue/image artefacts were also annotated and excluded
from the final image processing. The detailed process of image acquisition
and annotation of this cohort was previously described [24].

Deep learning pipeline for TILs quantification and distribution
To quantify sTILs and tTILs, a deep learning (DL) based pipeline is proposed
(Fig. 1). Using image thresholding and morphological operations, a tissue
mask was generated for a WSI to exclude all irrelevant image background
or artefacts from further processing. To exclude regions of carcinoma
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Fig. 1 Deep learning-pipeline for generating sTIL and tTIL. Ductal carcinoma in situ (DCIS) is filtered out by CNNDCIS prior to CNNNuc
performs nuclei segmentation and classification followed by CNNReg performs region segmentation. Both nuclear and regional results are
used to generate sTIL and tTIL (T=tumour nuclei, S=stromal nuclei, I=immune nuclei, TR tumour region, TAS tumour associated stroma
region).
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in situ from the analysis, a convolution neural network (CNN) based model
(CNNDCIS) [25] was applied. Different types of nuclei including tumour,
stromal and normal epithelium were segmented and classified by CNNNuc.
CNNReg was employed to segment stromal and other non-regions of
interest (non-ROIs). Further, the stromal regions were restricted to TAS via
morphological operations. Finally, the immune, tumour, and stromal nuclei
were processed to compute sTILs and tTILs for each WSI.

Region segmentation
Quantification of immune cells within tumour and TAS requires region
segmentation. For the purpose of sematic segmentation of the regions, a
CNN model known as the U-Net [26] was adapted by adding two
additional encoding/decoding blocks. The model was trained on
pathologists’ marked regions and the trained model, referred to as
CNNReg, was then used for semantic segmentation of stromal and other
non-stromal regions in WSIs. Parameters for training CNNReg were set as
follows: learning rate 0.01 (initial five epochs), 0.001 (epoch 6-10), 0.0001
(epoch 11-30), momentum 0.9, cross entropy loss function, patch size 512
× 512 with 96 pixels context on all sides and batch size 8. The input was
normalised to the [0,1] interval and different augmentation methods
(random rotate, random brightness/contrast, median blur) were used
during training with values of 0.5. To restrict stromal region only to TAS
instead of overall stroma, the following steps were performed: i) stromal
regions segmented by CNNReg were combined with tumour regions
segmented by CNNDCIS; ii) to capture the TAS, the tumour regions were
dilated with a disc of radius 8 pixels. This was followed by filling the holes
with a disc of radius 32 pixels; iii) any stroma captured in the final dilated
tumours was considered as TAS for further feature calculation. Immune
nuclei were then counted separately in the tumour regions as well as in the
TAS. Other features included co-occurrences of different nuclei, immune
heterogeneity, and contrast.

Nuclei segmentation and classification
To calculate different features related to immune, tumour and stroma
nuclei, an in-house developed state-of-the-art nuclei segmentation and
classification model CNNNuc based on HoVer-Net [27] was fine-tuned to
classify and segment different types of nuclei. Weights from a pretrained
version of the model on BC only subset of PanNuke dataset [28] were used
in the finetuning process. Training parameters were set as follows: learning
rate 0.0001 (initial two epochs), 0.00001 (3rd epoch onwards), patch size
256 × 256 pixels and batch size 8. During inference on a WSI, a nuclei mask
was generated by mapping the type/class of each detected nucleus at its
centroid in a five-times down sampled WSI. Combined with segmented

tumour and TAS regions, the counts of immune nuclei were used to get
the tTILs and sTILs counts (Fig. 1). Furthermore, a co-occurrence matrix
(CM) was created for tumour, stromal and immune nuclei (Fig. 2 and
Supplementary Fig. 1). Based on the CM, different features were calculated
including immune heterogeneity, stroma and immune co-occurrences,
tumour and immune co-occurrences.

Deep learning-based scoring of sTILs and tTILs
sTILs count refers to the number of sTILs scattered in stroma, while tTILs
count describes number of tTILs in direct contact with tumour cells with no
intervening stroma [29]. The percentage of tumour stroma occupied by
TILs, mimicking the visual score performed by pathologists [15] was added
to the features and is referred to as the “AI-based sTILs percentage”. The
co-occurrence of sTILs and stromal cells indicates the number of times
sTILs and stromal cells are found within certain distance of each other.
Similarly, for tTILs, co-occurrence of tTILs with tumour cells within certain
distance to each other was also assessed. Supplementary Table 3 illustrates
a simplified description of the assessed features.

Eyeballing assessment of TILs
A subset of cases (n= 300) was scored by a well-trained pathologist as a
continuous parameter following the proposed scoring method by TILs
Working Group [15], where TILs within the tumour borders were only
considered, excluding areas of necrosis or tissue artefacts. TILs around
normal breast lobules or in situ carcinoma were omitted. Scoring was
carried out blindly to the generated features and was then compared with
the AI-based sTILs percentage for measuring the concordance as a
validation method.

Statistical analysis
Analysis was performed using Statistical Package SPSS v28 for Windows
(Chicago, IL, USA). Assessed features were used as continuous variables
and association with clinicopathological parameters was evaluated using
Mann-Whitney and Kruskal-Wallis tests. Each feature was dichotomised,
into low and high for outcome analysis based on X-tile software version
3.6.1 (Yale University, New Haven, CT) [30] using BCSS as an end point. The
cut-off used for analysis was generated on the discovery set and applied to
the test set and external validation cohort. Kaplan Meier curves and log-
rank test were used to assess the significance between low and high
groups and outcome. Cox-regression analysis was performed, hazard ratios
(HR) and confidence intervals (CI) were calculated. The power of survival
analysis was calculated using Stata Statistical Software, Release 18 (College
Station, TX: StataCorp LLC). The level of agreement between visual and AI-
based sTILs percentage was assessed using intraclass correlation
coefficient (ICC). A p-value of less than 0.05 (two-tailed) was considered
significant in all the statistical tests.

RESULTS
ML modules for TILs quantification and distribution
Analytical performance of different ML modules used in TILs
quantification and distribution are shown in Supplementary
Table 4. F1-scores for tumour and DCIS segmentation were 0.71
and 0.90, respectively, whereas dice scores of 0.76 and 0.69 were
achieved for stromal versus other region segmentation. Similarly,
average F1-scores of 0.82, 0.92 and 0.81 were achieved for
classifying immune, tumour and stromal cells, respectively.
Supplementary Table 5 shows the confusion matrix for cell
classification where immune, tumour and stroma cells were
classified with accuracies of 80%, 96% and 84.7%, respectively.

TILs distribution and characteristics
AI-based sTILs percentage had a range from 1% to 76%, which
was close to results obtained by visual assessment (ranged from 0
to 80%). The concordance between the visual and AI-based sTILs
percentage, showed good agreement (ICC= 0.7).
A significant positive correlation between the numbers of sTILs

and tTILs was found (r= 0.6, p < 0.001) and this correlation was
observed in the discovery and test sets. Similarly, the sTILs count
and AI-based sTILs percentage showed significantly positive
correlation (r= 0.6, p < 0.001) in both sets. In the external
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Tumour
Stroma
Immune
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Fig. 2 Nuclei segmentation, classification and creation of a co-
occurrence matrix. The figure illustrates nuclei segmentation and
classification of the tumour, stroma, and immune nuclei (upper) and
calculation of the number of times each cell type co-occurs with
other cells (lower).
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validation cohort, the correlation between sTILs and tTILs count
and between sTILs count and AI-based sTILs percentage was
positive (r= 0.8 and r= 0.6, respectively, p < 0.001). The median
count of TILs and TILs co-occurrence scores in WSIs, was calculated
in the study cohorts (Supplementary Table 3).

Association of TILs with clinicopathological parameters
High sTILs and tTILs counts as well as the combined total TILs
counts were associated with unfavourable clinicopathological
prognostic parameters including younger age at diagnosis, larger
tumour size, higher grade, LN metastasis, poorer NPI and high Ki67
index (Table 1). Similarly high AI-based sTILs percentage was
significantly associated with higher grade, poorer NPI and a high
ki67 index (Table 2).
The presence of high sTILs-stromal cells co-occurrences,

representing the close distribution of TILs to their neighboured
stromal cells and similarly tTILs-tumour cells co-occurrences was
significantly correlated with unfavourable tumour characteristics
in both the discovery and test sets (Table 3). Similar findings were
revealed when tested on the external validation cohort
(Tables 1–3).

Outcome analysis
Patients with BC showing high sTILs had significantly shorter
survival (HR= 1.6, 95% CI= 1.01-2.5, p= 0.04, in the discovery set
and HR= 2.5, 95% CI= 1.3-4.5, p= 0.004 in the test set) than
tumours with low sTILs (Fig. 3a, b). The presence of high tTILs was
also associated with shorter survival (HR= 1.7, 95% CI= 1.08-2.6,
p= 0.01 and HR= 2, 95% CI= 1.06-3.7, p= 0.03 in discovery and
test sets, respectively) (Fig. 3c, d). The same findings were
observed using total TILs count. However, sTILs percentage (the
current recommended method for TILs assessment) did not show
any significant association with patient survival, neither using the
AI-based sTILs percentage nor eyeballing scoring (p > 0.05).
In terms of the spatial distribution, high sTILs-stromal cells co-

occurrence was significantly correlated with worse outcome
compared to tumours with low co-occurrence (HR= 1.6, 95%
CI= 1.08-2.4, p= 0.03 and HR= 2.2, 95% CI= 1.2-4.2, p= 0.01 in
discovery and test sets, respectively) (Fig. 3e, f). Similar results
were observed with high tTILs-tumour cells cooccurrence (HR=
1.7, 95% CI= 1.1-2.7, p= 0.01 and HR= 1.9, 95% CI= 1.08-3.7,
p= 0.04 in discovery and test sets, respectively) (Fig. 3g, h). The
power of survival analyses ranged from 60% to 80%.
Multivariate Cox Regression analysis of all significant features,

adjusted for tumour grade, LN metastasis, Ki67 index and tumour
size, revealed that tTILs count is an independent predictor of
outcome. Every 1000 unit increase in tTILs count is associated with
20% increase in BC- related death risk (HR= 1.2, 95% CI= 1.1-1.5
and p= 0.007).
However, a statistically meaningful outcome analysis on the

external validation cohort could not be carried out due to the
limited number of events and the short-term follow-up.

DISCUSSION
TILs have been extensively studied for their prognostic signifi-
cance [31–34]. A good prognostic value of TILs in TN and HER2-
positive BCs was reported [35–38]. However, TILs findings in
luminal ER+ /HER2- BCs were inconsistent [10, 12, 39, 40]. Luminal
BCs are biologically heterogeneous tumours with divergent
clinicopathological characteristics and variable outcomes [12]. A
considerable proportion of ER-expressing BCs are resistant to
endocrine therapy which highlights the need for further
prognostic indicators to stratify high from low-risk early stage
luminal BC patients [41].
In the era of immunotherapy, the role of the tumour

microenvironment (TME) in predicting patient outcomes, and
the possible influence of chemotherapy and hormonal treatmentTa
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Table 2. Association of artificial intelligence-based stromal TILs percentage with clinicopathological parameters in the study cohorts.

Artificial intelligence-based stromal TILs percentage

Discovery set Test set External validation cohort

Characteristics Mean Rank p-value Mean Rank p-value Mean Rank p-value

Age at diagnosis (years)

< 50 845 0.01 342 0.4 156 0.8

≥ 50 772 328 160

Menopausal status

Premenopausal 805 0.3 349 0.2 NA NA

Postmenopausal 780 325

Tumour size (cm)

< 2 775 0.1 327 0.5 160 0.9

≥ 2 816 337 159

Tumour grade

1 569 <0.001 266 <0.001 147 0.007

2 747 329 160

3 1044 414 207

Mitotic count

1 717 <0.001 302 <0.001 154 0.06

2 912 384 170

3 1054 437 196

Nuclear pleomorphism

1 704 <0.001 302 <0.001 184 0.1

2 696 292 154

3 882 376 171

Tubule formation

1 575 <0.001 257 <0.001 134 0.03

2 789 319 157

3 819 349 172

Nottingham Prognostic Index

Good prognostic group 706 <0.001 305 <0.001 154 0.3

Moderate prognostic group 886 363 169

Poor prognostic group 1228 312 184

Histological types

No special type (NST) 845 <0.001 338 0.2 158 0.4

Lobular 650 330 151

Other special types 645 275 188

Mixed NST and other tumour types 760 324 164

Lymphovascular invasion

Negative 767 <0.001 323 0.008 156 0.005

Positive 915 381 217

Lymph node status

Negative 771 0.007 333 0.4 162 0.3

Positive 848 320 146

Progesterone receptor

Negative 886 <0.001 386 <0.001 146 0.4

Positive 764 317 161

Ki67 index

Low (<20%) 300 <0.001 140 <0.001 NA NA

High (≥20%) 415 183

NA not applicable
Significant p values are in bold (Mann-Whitney test).
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on TME has been demonstrated [42]. Luminal BCs are char-
acterised by low chromosomal instability compared to TNBC,
explaining low antigenicity and immune response [43]. Addition-
ally, ER has the capability of T regulators (T-reg) activation and
inhibition of antigen-presenting cell (APC) function, promoting
immunogenic tolerance [44, 45]. The presence of relatively low
TILs levels and studies addressing the absence of prognostic or
predictive significance of TILs in ER+ /HER2- BCs has shifted
attention away from the study of TILs in this patient subgroup [46].
It has been proposed that TILs abundance is sufficient to be

assessed in TNBC to guide a prognostic benefit, while in luminal
tumours, biological stratification of TILs should be more informative
[46, 47]. However, TILs visual evaluation performed by pathologists is
limited to a single parameter, stromal TILs [15], which failed to have a
prognostic significance in several studies [48, 49]. The TILs working
group has recommended assessing only sTILs, taking into account the
correspondence with tTILs and the better reproducibility of sTILs
between pathologists [13]. Visual assessment cannot capture all
complex morphological features and the geometric distribution of
TILs in relation to tumour cells which may play a role in BC behaviour.
Additionally, low reproducibility and challenges in visual assessment
of TILs, highlight the need for reliable automated methods [50, 51].
The agreement in TILs scoring between pathologists has been
investigated in several studies with an ICC range from 0.5 to 0.8
[9, 52–54], which emphasises the necessity for a validated
standardised method of assessment.
The use of the readily available H&E WSIs in such automated

analyses will enable more cost effective use of tissue and clinical
resources [17]. Automated TILs detection is expected to enable
better identification of TILs features, which are challenging to
score by a pathologist owing to their relatively low numbers [47]
and difficult recognition among tumour nests [15] and the
complexity of assessment of distribution of TILs in relation to
stromal and tumour cells. Moreover, computational TILs assess-
ment allows the detection of underestimated parameters in an
easy quantitative method, allowing spatial distribution estimation
[14]. In the current study, a good level of concordance between
visual and automated TILs scores was achieved, which was
encouraging for further testing and validation.
Although most previous studies did not focus on tTILs due to

their lower density compared to sTILs [40], interestingly, our study
revealed that tTILs are an independent prognostic indicator of
BCSS, which highlights the under-recognised role of tTILs. In the
present study, both sTILs and tTILs were strongly positively
correlated, which is consistent with previous studies [55–57], but
contrary to Heindl et.al., who proposed that TILs tend to either
infiltrate the tumour nests or the stroma [58].
Automated TILs assessment could provide data about the

distribution of TILs in relation to stromal and tumour cells. Here
the histological ecology of TILs, or how TILs interact with their
neighbouring tumour and stromal cells, was investigated in terms
of their spatial distribution [59]. It has recently been found that
focusing on the spatial relationship may be more predictive than
the routinely used density scores [58, 60]. In our study, TILs found
in close proximity to tumour and stroma cells were significantly
associated with worse clinicopathological features and poorer
BCSS, which was consistent with a previous study [58]. However,
the co-localisation of tumours and immune cells was reported to
have a positive predictive association in luminal A subtype [61].
Their results were regardless of type of therapy received and
lacked validation. This controversy encourages further research
aiming to study the spatial distribution of TILs, adding to our
understanding of tumour progression, managed by the biological
interactions between tumour and immune cells [61, 62].
One of the features that can be generated by AI algorithms is

the TILs count, which may be a more powerful prognostic
indicator than the usual routine assessment method. In relation to
patient outcome, TILs count was significantly associated withTa
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poorer survival, unlike the sTILs percentage scored both manually
and AI-assisted, which lacked prognostic significance. This was
consistent with previous studies that reported high TILs were
negatively associated with recurrence-free survival and distant
metastasis-free survival [2, 63]. It has been reported that high
expression of TILs related genes in ER+ BCs was associated with
poor overall survival [64]. On the other hand, no prognostic

significance of TILs was detected in several studies and meta-
analyses [12, 55, 65]. In another AI-based study, none of the TILs
abundance scores showed significant association with outcomes,
though the discordance may owe to the normalisation to the
count of cancer cells [58].
TILs counts were significantly associated with unfavourable

clinicopathological parameters in this study in line with the
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findings of former studies [12, 63]. High TILs in ER+ /HER2- BCs
have been associated with highly proliferating tumours shown
with Ki67 testing which was consistent with several studies
[11, 12, 66, 67], that can be explained by increased antigenicity
caused by high proliferation. Previous publications reported no
additional significance of high TILs in relation to any of the
clinicopathological parameters [67, 68], explaining the limited
information gained from the visual score.
We propose that one of the contributors to disagreement

between studies was the use of different methodologies, whether
total TILs or subclasses quantification through IHC detected
subpopulations or using different cut-off values for defining low
versus high TILs. In our analysis, the TILs count was used as
continuous variables to avoid a biased cut-off point.
Our cohort was endocrine treated with poor prognostic

outcomes of tumours enriched with TILs. Dunbier and colleagues
reported poor response to aromatase inhibitors in ER+ tumours
rich TILs suggesting that TILs are involved in resistance to
hormonal therapy [69]. Moreover, high TILs was associated with
unfavourable outcome in patients who received neoadjuvant
letrozole [67]. This suggests that endocrine monotherapy in the
subgroup of luminal BC patients with high TILs infiltration is
insufficient for optimal patient management and outcomes.
Although a clinical trial on immunotherapy for Programmed cell
death 1 (PD1)-rich ER+ BC patients revealed poor response,
neoadjuvant trials had a promising pathological complete
response advantage suggesting that ER+ patients encompass a
group with possible benefit from immunotherapy [70–72].
We recognise the study has some limitations. Firstly, this study was

conducted on H&E-stained sections only which did not allow for the
identification of different immune subpopulations and their distinct
roles. In routine practice, H&E sections are the standards for TILs
evaluation and its association with tumour behaviour and patient
outcome, however, the identification of the makeup of the various
subpopulations would help in understanding the underlying biology.
Various immune cells, including CD8+ , CD4+ , FOXP3 T lympho-
cytes, B lymphocytes, plasma cells and macrophages (including M1
and M2 subtypes) would have different roles in tumour microenvir-
onment and behaviour. The predominate immune cell type may exert
significant control over the tumour behaviour. Secondly, although our
model showed high accuracy in identifying and distinguishing TILs
from other cell types, we must acknowledge the potential presence of
false TILs identification. As with any automated or AI-based system,
there is an inherent risk of misclassifications. Thirdly, although using
large well characterised cohort, the small number of events in our
study warrants careful interpretation of the results and further
validation utilising external independent cohorts with long term
follow up is recommended.
In conclusion, automated assessment of both TILs counts, and

spatial distribution provides independent prognostic value in
early-stage luminal BCs. The utilisation of AI algorithms would add
to the limited information pathologist can retrieve from visual
assessment.

DATA AVAILABILITY
The data presented in the current study are available upon reasonable request.
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