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BACKGROUND: The efficacy of neoadjuvant chemotherapy (NACT) correlates with patient survival in oesophageal squamous cell
carcinoma (OSCC), but optimal evaluation of the treatment response based on PET-CT parameters has not been established.
METHODS: We analysed 226 OSCC patients who underwent PET-CT before and after NACT followed by surgery. We assessed
SUVmax, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) for the primary tumour and the number of PET-positive
lymph nodes before and after NACT to predict patient survival.
RESULTS: In a stepwise analysis, we defined 60%, 80%, and 80% as the optimal cut-off values for SUVmax, MTV, and TLG reduction,
respectively, to distinguish responders and non-responders to NACT. In the ROC analysis, the TLG reduction rate was the best
predictor of recurrence among PET-CT parameters. The TLG responders achieved significantly more favourable prognoses than
non-responders (2-year progression-free survival [PFS] rate: 64.1% vs. 38.5%; P= 0.0001). TLG reduction rate (HR 2.58; 95% CI
1.16–5.73) and the number of PET-positive lymph nodes after NACT (HR 1.79; 95% CI 1.04–3.08) were significant independent
prognostic factors.
CONCLUSIONS: TLG reduction is the best predictor of prognosis. Preoperative PET-CT evaluation of both the primary tumour and
lymph nodes could accurately stratify risk in OSCC patients.
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INTRODUCTION
Oesophageal cancer (OC) is the sixth most common cause of
cancer-related death worldwide and is a major global health
challenge [1]. Neoadjuvant chemotherapy (NACT) is generally
used for locally advanced oesophageal squamous cell carcinoma
(OSCC) [2]. The response of the primary tumour to NACT is of great
prognostic importance [3–5], and evaluation by positron emission
tomography-computed tomography (PET-CT) has been reported
to be useful in developing treatment strategies for OSCC [6, 7]. A
relationship has been reported between the standardised uptake
value (SUV), a commonly used parameter for semi-quantitative
analysis of PET-CT images, and the prognosis and treatment
response in OC [8, 9]. However, the SUV is influenced by several
factors, including body composition and habitus, length of uptake
period, plasma glucose, and partial volume effects. Furthermore,
maximum SUV (SUVmax) does not represent the whole tumour
[10–12].
In contrast, tumour volume indices that take into account

metabolic activity, such as metabolic tumour volume (MTV) and
total lesion glycolysis (TLG), have been attracting attention as new
indices for PET-CT [13]. MTV is measured by contouring margins

defined by thresholds, whereas TLG is calculated by multiplying
MTV by the mean SUV (SUVmean) [14]. The use of MTV and TLG
has been proposed to assess disease burden and tumour
invasiveness by quantifying the metabolic volume burden and
activity of tumours [15]. Several reports have been published on
the relationship between these PET-CT parameters before and
after chemoradiotherapy (CRT) and the prognosis of OC [16–21].
However, evidence of PET-CT parameters, particularly volumetric
ones, before and after NACT being associated with OC patient
survival is limited [22, 23].
Therefore, we aimed to investigate the utility of measuring

SUVmax, MTV, and TLG values of the primary tumour in addition
to the number of positive lymph nodes (LNs) using PET-CT before
and after NACT as indicators of treatment efficacy and prognosis
in patients with locally advanced OSCC.

METHODS
Patient eligibility
This retrospective study included 285 consecutive patients with thoracic
OC without distant metastasis who underwent surgery after NACT at Osaka
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University Hospital from January 2010 to December 2016. Among these
patients, 233 had histologically confirmed squamous cell carcinoma and
underwent PET-CT before and after NACT. With the availability of data on
PET-CT parameters (SUVmax, MTV, and TLG), 226 cases were finally
analysed after excluding 7 with SUVmax values <2.5 in the primary tumour
before NACT. Patients with cervical or coeliac LN metastasis were eligible
for inclusion. All patients were staged according to UICC criteria before and
after surgery. Clinical staging before NACT was based on esophagography,
endoscopy, and computed tomography (CT) of the neck, chest, and upper
abdomen using continuous 5-mm-thick slices. All patients had adequate
cardiac, hepatic, renal, and bone marrow reserves and could tolerate both
the NACT and surgery. This study was approved by the Human Ethics
Review Committee of the Osaka University Graduate School of Medicine
(Osaka, Japan, approval number; 08226), and signed consent for
participation and publication was obtained from each patient.

Surgical treatment
Our standard surgical procedures comprised subtotal esophagectomy with
mediastinal lymphadenectomy via right thoracotomy, upper abdominal
lymphadenectomy, gastric tube reconstruction, and anastomosis in the
cervical incision [6, 7, 24]. A three-field lymphadenectomy was performed
for patients with supraclavicular or recurrent laryngeal nerve lymph node
metastases on preoperative staging or intraoperative diagnosis, and
patients with a primary tumour located in the upper third of the thoracic
oesophagus [25]. The remaining patients underwent a two-field
lymphadenectomy.

18F-FDG PET-CT acquisition and analysis
All patients underwent 18F-fluorodeoxyglucose (18F-FDG) PET-CT before
and within 2–3 weeks after completion of NACT as described previously
[6, 7, 22, 26]. 18F-FDG PET-CT was performed with an integrated scanner
(Gemini GXL; Philips, Amsterdam, the Netherlands), and whole-body
images, generally from the top of the skull to mid-thigh, were acquired
approximately 60min after intravenous injection of [18F]-FDG at a dose of
3.7 MBq (0–10mCu) per kilogram of body weight. Regions of interest
(ROIs) were placed over the areas of the primary tumours with maximum
FDG uptake on the baseline scans for semi-quantitative analysis. The
SUVmax was calculated using previously reported methods [26], and MTV
was defined as the tumour volume with SUV >2.5 [22]. TLG was defined as
the SUVmean multiplied by MTV. Semi-quantitative and volumetric
analyses of the primary tumours were performed to measure the PET-CT
parameters reported in the present study using the volume viewer
software SYNAPSE VINCENT® (Fujifilm Medical, Tokyo, Japan), which can
easily delineate a volume of interest (VOI) with an iso-contour threshold
method based on the SUV. The software automatically calculates SUVmax,
MTV, and TLG within the entire primary tumour when a spherical VOI is
drawn to encompass the primary lesion (Supplemental Fig. 1). SUVmax,
MTV, and TLG were measured before and after NACT in all patients, and
the reduction of each parameter was calculated and included in the
analysis. LNs with SUVmax ≥2.5 by PET-CT were considered positive. All
assessments were performed by one radiologist and more than two
surgeons that specialise in OC.

Neoadjuvant chemotherapy
Our hospital adopted the NACT regimen comprising triplet chemotherapy
with either 5-fluorouracil (5-FU), cisplatin, and doxorubicin (FAP), or 5-FU,
cisplatin, and docetaxel (DCF) as described previously [27–30]. For the FAP
regimen, 700mg/m2 5-FU was given by continuous intravenous infusion on
days 1–7, along with 70mg/m2 cisplatin by intravenous infusion, and 35mg/
m2 doxorubicin by rapid intravenous infusion on day 1 [31–33]. For the DCF
regimen, cisplatin was administered at 70mg/m2, docetaxel at 70mg/m2 by
rapid intravenous infusion on day 1, and 5-FU at 700mg/m2 by continuous
intravenous infusion on days 1–5 [31]. With either regimen, two courses of
NACT were usually used at a 3–4-week interval. Other regimens used in the
present study included 5-FU plus cisplatin (5-FU, 800mg/m2/day, days 1–5;
cisplatin, 80mg/m2/day, day 1, repeated every 3 weeks) for three patients
and nedaplatin plus paclitaxel for one patient [34].

Evaluation of clinical response
All patients were re-staged by CT, endoscopy, and PET-CT to evaluate the
clinical response 2 to 3 weeks after the completion of NACT [22, 35]. The
response was categorised based on the World Health Organisation response
criteria for measurable disease and the Japanese Society for Oesophageal

Disease criteria. Histopathological findings were classified according to UICC
TNM classifications, and the degree of histopathological tumour regression
in the surgical specimens was classified into five categories. The extent of
viable residual carcinoma at the primary tumour was assessed semi-
quantitatively based on the estimated percentage of viable residual
carcinoma about the macroscopically identifiable tumour bed that was
evaluated histopathologically. The percentage of viable residual tumour cells
within the entire cancerous tissue was assessed as follows: grade 0, no
significant response to NACT; grade 1a, more than two-thirds of residual
tumour cells; grade 1b, one-third to two-thirds of residual tumour cells; grade
2, less than one-third of residual tumour cells; grade 3, no viable residual
tumour cells [36, 37]. The severity of postoperative complications was
evaluated according to the Clavien–Dindo classification system [38].
Progression-free survival (PFS) was defined as the time from surgery to
either the first recurrence or death from any cause. Overall survival (OS) was
defined as the time from surgery to death from any cause.

Statistical analysis
We used the Student’s t test to compare the averages of continuous
variables between two groups, and the Mann–Whitney U-test, chi-squared
test, and Fisher’s exact test to compare the proportions of categorical
variables. Receiver operating characteristic (ROC) curve analysis was
applied to identify the best discriminating cut-off values for SUVmax,
MTV, and TLG. A multivariate Cox proportional hazard regression model
with stepwise comparisons was used to identify independent prognostic
markers. Prognostic variables were assessed by the log-rank test, and PFS
and OS were analysed by the Kaplan–Meier method. Univariate and
multivariate analyses of clinico-pathological variables were used to
compare the reliability of the PET-CT parameters. P < 0.05 indicated
significant differences. All statistical analyses were carried out using
JMP®14 (SAS Institute Inc, Cary, NC, USA).

RESULTS
Patient characteristics
The patient characteristics are summarised in Supplemental
Table 1. Twenty-three patients had cM1 disease, which was
confined to metastasis of the supraclavicular LNs. All 226 patients
underwent surgical resection after NACT. The most common NACT
regimen was DCF (69.5%), followed by FAP (28.8%). Curative (R0)
surgery was performed for the majority of patients (97.3%) while
six patients (2.7%) received R1 resection. Three-field lymphade-
nectomy was performed in 129 cases (57.1%).

PET-CT evaluation of primary tumour and lymph nodes
The median SUVmax, MTV, and TLG values for the primary tumour
before NACT were 12.2 (2.8–40.9), 19.2 (0.4–232.7), and 96.3
(1.2–1619.3), respectively, and after NACT were 3.4 (1.5–17.9), 1.6
(0–52.9), and 4.5 (0–345.8), respectively. All three PET-CT
parameters were significantly lower after NACT (each P < 0.0001).
The number of PET-positive LNs before NACT (pre-NACT PET-N)
was 0, 1, and >2 in 93 (41.2%), 49 (21.7%), and 84 (37.2%) cases,
respectively, and the number of PET-positive LNs after NACT (post-
NACT PET-N) was 0, 1, and >2 in 161 (71.2%), 33 (14.6%), and 32
(14.2%) cases, respectively.

Optimal cut-off values based on survival analysis
We conducted a stepwise analysis to determine the optimal cut-off
for each parameter that clearly discriminates between responders and
non-responders to NACT based on PFS. We achieved this by
evaluating cut-off values for each PET-CT parameter at each 10%
reduction from 0% to 90% (Table 1). The cut-off values of 60%, 80%,
and 80% for the SUVmax, MTV, and TLG reduction rate, respectively,
showed the largest difference in PFS between responders and non-
responders and the lowest P values (SUVmax: hazard ratio [HR]= 1.75,
P= 0.0026; MTV: HR= 1.70, P= 0.0054; TLG: HR= 2.04, P= 0.0003).
Therefore, we defined 60%, 80%, and 80% as the optimal cut-off
values of the reduction in SUVmax, MTV, and TLG, respectively, to
separate responders and non-responders to NACT for locally
advanced OSCC.
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We performed a ROC analysis of disease recurrence to determine
the optimal cut-off value for the reduction of three PET-CT parameters
as shown in Fig. 1. The area under the curve (AUC) identified the TLG
reduction to be the largest among the parameters. For all parameters,
the cut-off values obtained by the stepwise method were the
approximate values of those determined by the ROC analysis.

Clinico-pathological parameters associated with PET-CT
evaluation
Using the cut-off value for the reduction in TLG determined by the
stepwise method, we divided all patients into two groups: TLG
responders (TLG reduction rate ≥80%) and TLG non-responders
(TLG reduction rate <80%). We then compared various clinico-

Table 1. Stepwise regression analysis for the identification of optimal each parameter reduction rate cut-off value (n= 226).

SUVmax reduction rate, % 10 20 30 40 50 60 70 80 90

Number

Responders 218 203 190 166 145 119 86 45 1

Non-responders 8 23 36 60 81 107 140 181 225

5-year PFS rate, %

Responders 50.2 51.0 50.6 54.9 56.1 60.0 59.9 54.6 100

Non-responders 37.5 39.1 46.3 35.5 38.5 38.4 43.5 48.6 49.6

P value 0.45 0.066 0.29 0.0028 0.0081 0.0026 0.021 0.77 0.24

Hazard ratio 1.44 1.72 1.31 1.84 1.66 1.75 1.57 1.07 -

MTV reduction rate, % 10 20 30 40 50 60 70 80 90

Number

Responders 217 216 209 205 194 183 165 144 124

Non-responders 9 10 17 21 32 43 61 82 102

5-year PFS rate, %

Responders 51.1 50.9 51.6 51.8 52.2 53.8 53.0 56.6 56.0

Non-responders 14.8 25.0 26.9 30.2 34.7 32.1 41.2 37.8 42.3

P value 0.066 0.15 0.035 0.037 0.043 0.0066 0.078 0.0054 0.031

Hazard ratio 2.23 1.84 2.03 1.91 1.70 1.86 1.44 1.70 1.49

TLG reduction rate, % 10 20 30 40 50 60 70 80 90

Number

Responders 218 218 214 212 203 194 179 160 135

Non-responders 8 8 12 14 23 32 47 66 91

5-year PFS rate, %

Responders 50.9 50.9 51.4 51.9 51.7 53.6 54.3 57.1 58.1

Non-responders 18.8 18.8 20.8 17.1 32.8 26.6 32.1 32 37.4

P value 0.079 0.079 0.043 0.012 0.11 0.0023 0.0049 0.0003 0.0018

Hazard ratio 2.30 2.30 2.19 2.45 1.61 2.17 1.85 2.04 1.79

PFS progression-free survival, MTV metabolic tumour volume, TLG total lesion glycolysis.
Bold values indicate the optimal cut-off values of the reduction in SUVmax, MTV, and TLG showing the largest survival difference between responders and
non-responders and the lowest P values.
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Fig. 1 Receiver operating characteristic (ROC) analysis of postoperative recurrence. The area under the curve (AUC) and cut-off for each
PET-CT indicator are shown.
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pathological factors as shown in Table 2. We did not find any
significant differences between the two groups in terms of age,
sex, tumour location, tumour size, differentiation, pre-therapeutic
PET-CT value, clinical TNM status, residual tumour, pre- and post-
NACT PET-N, or postoperative complication. Compared to the TLG
non-responders, TLG responders had a higher proportion of
patients receiving the DCF regimen (77.5% vs. 50.0%; P < 0.0001),
better histological response (Grade 1b-3; 72.5% vs. 45.5%;
P= 0.0001), and less advanced pT stage (pT0-2; 65.0% vs. 30.3%;
P < 0.0001; Table 2).

Prognostic significance of PET-CT evaluation
The median follow-up time was 4.51 (range, 0.22–10.88) years. The
TLG responders achieved significantly more favourable prognoses
than non-responders (2-year PFS rate: 64.1% vs. 38.5%, P= 0.0001,
Fig. 2a; 2-year OS rate: 84.0% vs. 56.8%; P< 0.0001). When classified
into three groups according to TLG reduction rate (80–100%,
60–80%, <60%), the 2-year PFS rates were 64.1%, 46.3%, and
29.9%, respectively (Fig. 2b). Univariate analysis of PFS indicated a
correlation between PFS and cT, post-NACT SUVmax, pre-NACT MTV,
post-NACT MTV, pre-NACT TLG, post-NACT TLG, the reduction rates
for each PET-CT parameter, pre- and post-NACT PET-N, pT, pN, and
histological grade (Table 3). Among preoperative factors, TLG
reduction rate (HR= 2.58; 95% CI 1.16–5.73; P= 0.020) and post-
NACT PET-N (HR= 1.79; 95% CI 1.04–3.08; P= 0.035) were significant
independent prognostic factors in a multivariate analysis of PFS
(multivariate model #1, Table 3). In addition, the TLG reduction rate
(HR= 2.51; 95% CI 1.14–5.51; P= 0.022) and pN (HR= 1.96; 95% CI
1.24–3.10; P= 0.004) were both significant in the multivariate
analysis of all factors for PFS (multivariate model #2, Table 3). Lastly,
a Kaplan–Meier analysis of PFS for all patients classified into four
groups based on TLG reduction and post-NACT PET-N, both of which
were independent prognostic factors in the multivariate analysis
(model #1), is shown in Fig. 3a. The same analysis of PFS for all
patients classified based on TLG reduction and pN, both of which
were independent prognostic factors in the multivariate analysis

Table 2. Correlation between TLG reduction rate and clinico-
pathological parameters.

TLG
reduction
rate ≥80%

TLG
reduction
rate <80%

P value

(n= 160) (n= 66)

Median age (range) 67 (38–81) 66 (35–82) 0.63

Sex

Male 137 (85.6%) 60 (90.9%) 0.28

Female 23 (14.4%) 6 (9.1%)

Tumour location

Upper 27 (16.9%) 8 (12.1%) 0.37

Middle, lower 133 (83.1%) 58 (87.9%)

Tumour sizea (range) 500
(45–3976)

528
(86–1832)

0.3

Differentiation

Well
differentiated

27 16 0.52

Moderately
differentiated

99 40

Poorly
differentiated

13 7

Unknown 21 3

Pre-therapeutic PET-CT value

SUVmax 12.5
(2.82–40.91)

11.9
(2.89–28.41)

0.49

MTV 19.1
(0.5–232.7)

19.3
(0.4–84.9)

0.89

TLG 97.8
(1.4–1619.3)

85.6
(1.2–511.4)

0.79

Preoperative chemotherapy

DCF 124 (77.5%) 33 (50.0%) <0.0001

Others 36 (22.5%) 33 (50.0%)

cT

T1–2 50 (31.3%) 15 (22.7%) 0.19

T3–4 109 (68.7%) 51 (77.3%)

cN

N0 40 (25.0%) 22 (33.3%) 0.2

N1 120 (75.0%) 44 (66.7%)

cM lym 17 (10.6%) 6 (9.1%) 0.73

Histological response

Grade 0–1a 44 (27.5%) 36 (54.5%) 0.0001

Grade 1b–3 116 (72.5%) 30 (45.5%)

Residual tumour

R0 157 (98.1%) 63 (95.5%) 0.26

R1 3 (1.9%) 3 (4.5%)

Number of PET-
positive LNs
before NACT

0.44

0–1 98 (61.3%) 44 (66.7%)

≥2 62 (38.8%) 22 (33.3%)

Number of PET-
positive LNs
after NACT

0.49

0–1 139 (86.9%) 55 (83.3%)

≥2 21 (13.1%) 11 (16.7%)

Table 2. continued

TLG
reduction
rate ≥80%

TLG
reduction
rate <80%

P value

(n= 160) (n= 66)

Postoperative complicationb

0–II 119 (74.4%) 44 (66.7%) 0.24

III–V 41 (25.6%) 22 (33.3%)

pT

T0–2 104 (65.0%) 20 (30.3%) <0.0001

T3–4 56 (35.0%) 46 (69.7%)

pN

N0 59 (36.9%) 16 (24.2%) 0.067

N1 101 (63.1%) 50 (75.8%)

pM

M0 151 (94.4%) 60 (90.9%) 0.34

M1 9 (5.6%) 6 (9.1%)

MTV metabolic tumour volume, TLG total lesion glycolysis, DCF docetaxel,
cisplatin, and 5-fluorouracil, Others 5-fluorouracil, cisplatin, and doxorubi-
cin/5-fluorouracil and cisplatin/nedaplatin and paclitaxel, LN lymph node,
NACT neoadjuvant chemotherapy.
aTumour size: major axis × minor axis (mm).
bPostoperative complication: classified by Clavien–Dindo classification.
Bold values indicate P values with stratistical significance.
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(model #2), is shown in Fig. 3b. The 5-year PFS rates were 60.7%
among post-NACT PET-N (0–1)/TLG-responders, 36.7% among post-
NACT PET-N (0–1)/TLG-non-responders, 33.3% among post-NACT
PET-N (≥2)/TLG-responders, and only 9.1% among post-NACT PET-N
(≥2)/TLG-non-responders (Fig. 3a). Furthermore, the 5-year PFS rates
were 76.3% among pN(−)/TLG-responders, 50.0% among pN(−)/
TLG-non-responders, 45.7% among pN(+)/TLG-responders, and
26.3% among pN(+)/TLG-non-responders (Fig. 3b).

DISCUSSION
In the ROC analysis of recurrence and multivariate analysis of
survival, the TLG reduction in the primary tumour during NACT
was the best marker among the PET-CT parameters that we
examined. Furthermore, a TLG reduction rate of 80% was the
optimal cut-off to clearly discriminate between responders and
non-responders to NACT based on the stepwise analysis and its
correlation with pathological response. Multivariate survival
analysis demonstrated that TLG reduction and post-NACT PET-N
are independent prognostic parameters, suggesting the potential
utility of a PET-based treatment strategy in advanced OSCC
patients undergoing NACT plus surgery.
MTV and TLG have been reported to be better prognostic factors

for survival than SUV in several types of cancer [39, 40]. Furthermore,
in radiotherapy or preoperative CRT for advanced OC, TLG was
recently reported to be superior to SUV and MTV in predicting the
prognosis [41, 42]. Consistent with these reports, we have shown that
the TLG reduction rate is only an independent prognostic parameter
in patients with advanced OSCC who undergo surgery after NACT. In
a multivariate analysis of MTV and TLG on PET-CT, Choi et al.
previously reported that TLG was a more useful prognostic marker
before surgical resection of sarcoma [43]. Other studies have also
reported that TLG is the best marker in several types of cancer
[44–47]. The reasons are speculated to be as follows. Though MTV
represents only the amount of active metabolic tumour cells, TLG,
calculated by multiplying the tumour volume by the SUVmean of the
tumour, can provide more detailed information about the pathology
than other PET-CT parameters because it reflects both biological
features and total tumour volume throughout the body [44–46].
However, whether MTV or TLG is more useful in predicting prognosis
and determining treatment efficacy is still controversial. As these

factors are strongly related, it is difficult to compare which is the
better marker, and there is no standardised method for comparing
these parameters [15]. Therefore, the results of this study should be
validated by another cohort in a future prospective study.
The advantage of the present study is a large number of cases

compared to previous, similar PET-CT studies [23]. To the best of our
knowledge, no previous report has shown the prognostic value of
TLG reduction rate before and after NACT in such a large number of
OSCC patients. Furthermore, all patients in this study had squamous
cell carcinoma treated with NACT with a triplet regimen followed by
surgery, whereas treatment methods were not standardised in many
previous studies. Moreover, by directly comparing the correlations
between the three PET-CT indices and clinico-pathological indices
using the optimal cut-offs obtained by the stepwise analysis, a TLG
reduction rate of 80% was the best index. Among preoperative
parameters, post-NACT PET-N and the TLG reduction rate were
identified as independent prognostic factors in a multivariate analysis
of survival. This result suggests that PET-CT evaluation of both the
primary tumour and LNs can preoperatively select patients with
extremely poor prognosis who may benefit from additional
chemotherapy with a different regimen or chemoradiation instead
of immediate surgery. Goodman et al. also reported that changing
chemotherapy regimens improved prognosis in oesophageal cancer
patients with small reductions in SUVmax by PET-CT before and after
induction chemotherapy [8]. In other words, early stratification of
patients with poor response to treatment by PET-CT would be
extremely important. Furthermore, these patients at high risk of
recurrence may be good candidates for adjuvant therapy with
immune checkpoint inhibitors, especially based on the results of the
recent CheckMate577 trial [48]. Treatment strategies for the stratified
patients with poor prognosis are an urgent issue for future study.
Thus, it is notable that PET-CT during NACT, which is currently the
standard treatment for advanced OSCC, may be better utilised to
identify patients with poor prognosis at an early stage of multimodal
treatment. Although TLG reduction is an indicator focusing only on
the primary tumour, it was found to be a more accurate prognostic
marker when combined with the post-NACT PET-N or pN stage. As
the primary tumour and metastatic LNs behave differently during
chemotherapy [7, 25, 35, 37], it would be of interest to evaluate
changes in PET-CT parameters in metastatic LNs, combined or
compared with the changes in the primary tumour.
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This study has some limitations. First, this study is a retro-
spective investigation at a single institution, though a large cohort
of patients was analysed. Second, we used a SUVmax of 2.5 as an
absolute threshold for measuring MTV. There are two ways to
define MTV, the absolute SUV threshold method and the fixed %
SUVmax threshold method, but which method is better has not
been decided. No statistical difference has been reported between
the two methods [44]. The present results need to be verified in
the future in a separate cohort. Third, this study included patients
who received FAP and DCF therapy as NACT. Subgroup analysis by
NACT may be necessary in the future.
In conclusion, the present study demonstrated that the TLG

reduction during NACT, in addition to post-NACT PET-N, is useful
for accurately predicting prognosis in advanced OSCC patients
undergoing surgery following NACT.

DATA AVAILABILITY
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