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A variant in IL6ST with a selective IL-11 signaling defect in
human and mouse
Tobias Schwerd 1,2, Freia Krause3, Stephen R. F. Twigg4, Dominik Aschenbrenner1, Yin-Huai Chen 1, Uwe Borgmeyer5,
Miryam Müller3,12, Santiago Manrique6, Neele Schumacher3, Steven A. Wall7, Jonathan Jung 1,13, Timo Damm8, Claus-Christian Glüer8,
Jürgen Scheller9, Stefan Rose-John 3, E. Yvonne Jones 6, Arian Laurence1, Andrew O. M. Wilkie 4,7, Dirk Schmidt-Arras 3 and
Holm H. Uhlig1,10,11

The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a
homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We
characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived
cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that
human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF
signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling
caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our
data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.
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INTRODUCTION
GP130 is the common receptor subunit for the family of interleukin
(IL)-6 cytokines that includes IL-6, IL-11, IL-27, leukemia inhibitory
factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF),
cardiotrophin 1 (CT1), and cardiotrophin-like cytokine (CLC).1 To allow
specificity of cytokine receptor binding in different cell types, GP130
forms a multimeric complex on the cell surface with cytokine-
selective receptor subunits that are either signaling-incompetent
such as IL6RA, IL11RA, CNTFR, or signaling competent such as LIFR,
OSMR, or IL-27R facilitating downstream activation of cytoplasmic
tyrosine kinases which then phosphorylate STAT3 and STAT1 or
activate the RAS/MAPK pathway.1

Diverse biologic functions of immune and non-immune cells
depend on GP130-mediated signals. For example, bone formation
and remodeling require IL-11 signaling through the GP130/IL11RA
receptor complex. In mice, the absence of GP130 leads to skeletal
abnormalities associated with defects in osteoblast and osteoclast
function2,3 and osteoblast-specific disruption of GP130-STAT3
pathway impairs bone formation.4 Similarly, IL-11 receptor knock-
out (Il11ra−/−) mice show increased trabecular bone volume
and synostosis of premaxillary sutures associated with a cell-
autonomous defect of osteoclast differentiation.5,6

Genetic defects in genes required for IL11RA-dependent
STAT3 signaling cause skeletal abnormalities in humans. Skeletal
and connective tissue abnormalities are commonly found in
patients with autosomal dominant hyper-IgE syndrome (HIES) due
to heterozygous mutations in STAT3, including craniosynostosis,
varying degrees of scoliosis or retained primary teeth.7–13 Patients
with craniosynostosis and dental anomalies (CRSDA; MIM 614188)
were found to carry recessive loss-of-function variants of
IL11RA.5,14–18 The clinical disease phenotype is characterized by
multi-suture craniosynostosis, maxillary hypoplasia, delayed or
ectopic tooth eruption, supernumerary teeth and minor digit
abnormalities. Craniosynostosis and delayed tooth eruption
observed in individuals with IL11RA mutations, likely result from
reduced bone resorption at sutures or in the jaw, as it has been
shown that IL11RA-deficient mice display decreased bone
resorption in long bones.6 We have recently described patients
with severe immunodeficiency and skeletal abnormalities, such as
severe craniosynostosis and progressive scoliosis caused by
recessive partial loss-of-function variants in IL6ST, encoding
GP130 (hyper-IgE recurrent infection syndrome 4, autosomal
recessive; MIM 618523).19,20 Detailed functional studies demon-
strated that different homozygous non-synonymous variants had
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relatively selective effects on the broad range of GP130-
dependent cytokines with complete abrogation of IL-6 and IL-11
signals, reduction in OSM and IL-27 signaling but preserved LIF
signaling. Similarly, autosomal-dominant variants in the cytoplas-
mic tail of GP130 cause a hyper-IgE recurrent infection syndrome
due to defective IL-6 and IL-11 signaling (Beziat V., et al., JEM 2020
in press). Complete abrogation of all GP130-dependent cytokine
signaling due to biallelic essential loss-of-function variants in
GP130 causes an extended Stüve–Wiedemann syndrome with
neonatal lethality.21

Here, we describe a patient with a biallelic, non-synonymous
variant in GP130 with a highly selective defect limited to IL-11
signal transduction. The patient’s phenotype was restricted to
craniosynostosis and tooth abnormalities. We demonstrate that
the variant has incomplete penetrance in humans and mice,
suggesting a hypomorphic modifier effect.

RESULTS
IL6ST p.R281Q in a patient with craniosynostosis
We recently described loss-of-function variants in IL6ST as a novel
cause of autosomal recessive HIES with skeletal abnormalities.19,20

In order to understand the impact of IL6ST variants in patients with
skeletal abnormalities, we screened for homozygous or compound
heterozygous variants in IL6ST in a cohort of 467 unrelated
patients with craniosynostosis, who were mutation negative after
clinically driven genetic testing.19 We identified a homozygous
variant (c.842G>A; p.R281Q) in a single patient of South Asian
origin, hereafter referred to as PR281Q (Fig. 1a–c). This individual
presented at the age of 7 years with abnormal head shape
associated with sagittal and bilateral lambdoid craniosynostosis
and retained deciduous teeth, reportedly requiring the extraction
of 14 teeth aged 8 years. Intracranial pressure monitoring was
normal and on annual follow-up no clinical progression requiring

surgical intervention for the craniosynostosis was observed. There
were no infections or immune dysregulation problems up to the
age of 18 years. Clinical genetic testing had been negative for the
major causes of craniosynostosis, including ERF, FGFR1 exon 7,
FGFR2 (all exons associated with craniosynostosis), FGFR3 exons 7
and 10, IL11RA, TCF12 and TWIST1.
The amino acid R281 is conserved throughout evolution from

amphibians to mammals (Fig. 1d, Supplementary Fig. 3a). The
mutational impact of the p.R281Q substitution is predicted to be
moderate; SIFT tolerated (0.162), PROVEAN neutral (−0.81), Poly-
Phen2 probably damaging (0.999), and with a CADD score 9.782.
We initially classified this as a variant of unknown significance

since: (a) 48 (updated 20/11/2019) heterozygous individuals (but
no homozygotes) are tabulated in gnomAD v3, (b) this variant is
enriched in individuals of South Asian origin (minor allele
frequency 0.001 5), (c) the mother of PR281Q, herself the offspring
of consanguineous parents, was homozygous for the same variant
(Fig. 1a) but without any history of craniofacial or severe tooth
abnormalities, and (d) the phenotype was only partially over-
lapping with the previously described humans with IL6ST defects
(Supplementary Table 1).

p.R281Q causes defective IL-11 signal transduction while
maintaining normal signaling of other IL-6 family cytokines
To fully assess the functional consequences of the p.R281Q
substitution, we used a previously described GP130-deficient
HEK293 cell line (HEK293 GP130-KO) generated by CRISPR/Cas9
technology.19 This cell line does not phosphorylate STAT1 or
STAT3 in response to stimulation with IL-6, IL-11, IL-27, OSM, or LIF,
but has normal STAT3 signaling in response to type 1 interferon
and normal STAT1 signaling in response to IFN-γ. Transfection
with GP130 wild type (WT) restored GP130-dependent signaling
(Fig. 2). p.R281Q did not confer mRNA or protein instability (data
not shown). Titration studies on transfected GP130-KO cells
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Fig. 1 Identification of homozygous p.R281Q variant in a patient with craniosynostosis. a Pedigree of patient PR281Q (II.1) showing segregation
of IL6ST alleles. Note that both PR281Q and his mother (I.2) are homozygous for the p.R281Q substitution. DNA of the father was not available.
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Fig. 2 The GP130 p.R281Q substitution causes defective signaling of IL-11, but not IL-6, IL-27, OSM, and LIF. a–e HEK293 GP130-KO cells were
transfected with empty vector control or plasmids encoding GP130 wild type (WT) or the patient variant p.R281Q. Cells were stimulated with
indicated concentrations of IL-11 (a), IL-6 (b), IL-27 (c), OSM (d), or LIF (e) for 15 min and analyzed for STAT3 phosphorylation (pSTAT3) by
phosflow. For assessment of IL-11 and IL-6 signaling, cells were co-transfected with plasmids encoding IL11RA and IL6RA, respectively. Co-
transfection with GFP allowed gating on successfully transfected cells. Representative titration curves (on left in each panel) are shown for
each ligand and are representative of two independent experiments. Curve fitted by non-linear regression. Quantification (on right in each
panel) is based on 4–6 independent experiments per cytokine at one concentration (IL-11 1 ng·mL−1; IL-6, IL-27, OSM, LIF all 100 ng·mL−1).
f Experiments with HEK293 GP130-KO cells performed as in a–c. Cells were assayed for phospho-STAT1 (pSTAT1). Titration curves are
representative of two independent experiments. g Immunofluorescence staining of HEK293 GP130-KO cells, plated in chamber slides and
transfected as in a. Cells were stimulated with 1 ng·mL−1 IL-11 (left) or 0.5 ng·mL−1 IL-6 (right) and analyzed for STAT3 nuclear translocation
using confocal microscopy. Bars mark 10 μm. Images are representative for three independent experiments. h Quantification of g. At least 100
cells per experimental condition were quantified from three independent experiments each. Data represent mean ± s.e.m. i HEK293 GP130-KO
cells were co-transfected with luciferase reporters, GP130 variant p.R281Q, and IL11RA or IL6RA-expression vectors, respectively. After 24 h,
cells were stimulated with 1 ng·mL−1 IL-11 (left) or 0.5 ng·mL−1 IL-6 (right) for 6 h and induction of STAT3 reporter (relative to constitutively
expressed Renilla luciferase) was determined. Results are expressed as fold-induction compared to unstimulated vector control and are
pooled data from three independent experiments with 3–6 technical replicates. Data represent mean with SEM. Differences were investigated
by Mann–Whitney U test (***P < 0.001)
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revealed that the p.R281Q substitution significantly impaired
STAT3 phosphorylation in response to IL-11 stimulation (Fig. 2a),
but had little effect on IL-6, IL-27, OSM, or LIF induced STAT3
phosphorylation (Fig. 2b–e), as well as CT1, CLC, or CNTF induced
STAT3 phosphorylation (Supplementary Fig. 1a–c). The p.R281Q
substitution failed to rescue IL-11-induced STAT1 phosphorylation
in a similarly selective manner (Fig. 2f).
Next, we used confocal microscopy to assess the functional

consequences of p.R281Q mutated GP130 on IL-11-mediated
STAT3 nuclear translocation. In HEK293 GP130-KO cells transfected
with p.R281Q, the impaired STAT3 phosphorylation in response to
IL-11 was associated with defective cytoplasmic to nuclear STAT3
translocation (Fig. 2g, h). Furthermore, we investigated the
functional consequences of GP130 p.R281Q substitution in a
STAT3 luciferase reporter assay. p.R281Q caused defective
luciferase induction after IL-11 stimulation, whereas the IL-6-
dependent STAT3 gene expression was not affected (Fig. 2i).

IL-11 signaling defect in primary patient cells with endogenous
GP130 p.R281Q
We next investigated GP130-dependent cytokines on primary T
and B cells but did not find a defect in IL-6 signaling (Fig. 3a). We
confirmed this finding with primary patient PR281Q-derived T

lymphoblasts and an EBV-transformed lymphoblastoid cell line
and found normal IL-27 signaling using T lymphoblasts (Fig. 3b, c).
Primary hematopoietic cells do not express the IL11RA and the

individual PR281Q declined a skin biopsy to establish fibroblast lines
for IL-11 signaling studies. To overcome this problem and to
measure IL-11 signaling in the available primary cells that
endogenously express GP130, we transduced CD4+ lymphocytes
of the patient with a lentivirus that encodes human IL11RA and
made those cells responsive to IL-11. We used co-expression of
GFP to control for unequal transduction efficiencies (Supplemen-
tary Fig. 2a, b). In contrast to primary CD4+ T cells that do not
respond to IL-11, T cells transduced with WT GP130 became IL-11
responsive, whereas patient cells with the p.R281Q variant showed
impaired responsiveness to IL-11 (Fig. 3d, e, Supplementary Fig.
2c). We used GP130 p.N404Y expressing primary T cells as control,
as these cells do not respond to either IL-6 or IL-11 stimulation.19

This confirmed the selective IL-11 signaling defect caused by
GP130 p.R281Q variant in primary patient cells.

Homology modeling of the GP130/IL11RA/IL-11 complex provides
insight into the cytokine-selective effects of GP130 p.R281Q
We next investigated the structural effects of p.R281Q on GP130/
IL11RA/IL-11 signaling. Since published cryo-electron microscopy
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data suggest a similar hexameric arrangement for the GP130/
IL11RA/IL-11 and the GP130/IL6RA/IL-6 complex,22 but no crystal
structure is currently available for the former, we performed
homology modeling. R281 is part of the solvent-excluded GP130/
α-receptor interface between the domain D3 of GP130 and
domain D3 of IL6RA/IL11RA (Supplementary Fig. 3a, b). Amino
acids at this interface show a high evolutionary conservation
(Supplementary Fig. 3a, b) and a low genetic variation in human
populations as indicated by the minor allele frequencies in the
ExAC database (Supplementary Fig. 3c). The solvent-excluded area
is larger in the GP130/IL6RA interface as compared to the GP130/
IL11RA interface (Supplementary Fig. 3b). Our data suggest that
the GP130 Q281 amino acid disrupts all salt bridge and hydrogen
bonding to IL11RA, including interactions with IL11RA Y260, T281,
and D282, suggesting a specific interaction defect with IL11RA
(Fig. 4a–c).
We next analyzed the WT GP130 and GP130 p.R281Q variant in

molecular dynamics simulations. Side chain flexibility of R281 was
low in both GP130/IL6RA/IL-6 and GP130/IL11RA/IL-11 complexes,
consistent with the notion that R281 is engaged in salt bridges
and hydrogen bonding in both (Fig. 4d). However, Q281 in the
mutant receptor complex displayed a significantly higher degree
of freedom (Fig. 4d). Consequently, we observed an increased
interdomain distance between GP130 domain D3 and IL11RA D3,
but not the IL6RA D3 (Fig. 4e).
Given the importance of GP130 R281 interaction with Y260,

D282, and T281 for IL11RA association, we assessed evolutionary
conservation of the GP130 D3/α-receptor D3 interface. We
observed that amino acids engaged in the solvent-excluded
receptor interface, and in particular Arg (R) at the position
corresponding to 281 in human GP130, are highly conserved from
amphibians to mammals (Supplementary Fig. 3a). The size,
position, and residues of the corresponding IL11RA domain D3
receptor interface were also highly conserved. By contrast, IL6RA
domain D3 displayed a higher degree of amino acid variation
(Supplementary Fig. 3a). These data suggest that IL11RA-
containing receptor complexes, in contrast with the IL6RA-
containing receptor complexes, are strongly dependent on D3
domain interactions, making them more susceptible to amino acid
variations.
In order to analyze cytokine/α-receptor affinity to GP130

variants fused to the fluorescent protein YPet, we made use of
Hyper-IL-6-Fc (HypIL-6-Fc)23 and Hyper-IL-11-Fc (HypIL-11-Fc).24

These are artificial fusion proteins of IL-6 or IL-11 to the soluble
ectodomains of IL6RA or IL11RA, respectively, and an additional
human Fc-tag, facilitating the isolation of GP130-containing
receptor complexes at the plasma membrane (Fig. 4f). We were
able to immune-precipitate similar amounts of GP130 as detected
by anti-GFP immunoblotting against the YPet-tag of the GP130
variants using HypIL-6-Fc in either WT- or R281Q-expressing cells
(Fig. 4f). However, when using HypIL-11-Fc, the amount of
precipitated YPet-GP130 was significantly reduced when cells
expressed the R281Q variant as compared to the WT (Fig. 4f).
Therefore, these in vitro data confirm our in silico predictions that
the affinity of interactions between GP130 and IL11RA but not
IL6RA is significantly lowered by the p.R281Q variant.

A mouse model with Il6st p.R279Q variant is associated with facial
synostosis and exhibits a IL-11 signaling defect
Loss of IL11RA signaling is associated with craniosynostosis and
dental abnormalities.5,14–18 We hypothesized that impaired IL-11
signaling of the p.R281Q variant accounts for the skeletal
abnormalities in the patient. In order to test this hypothesis, we
used CRISPR/Cas9 technology to generate two independent lines
of mice (lines 4 and 6) that express GP130 p.R279Q corresponding
to human GP130 p.R281Q (Figs. 1d and 5a). For this, an sgRNA
targeting murine Il6st exon 8 and a single-stranded (ss) DNA donor
containing substitutions c.[835G>A;836A>G], i.e. the mouse

equivalent to the human variant as well as two silent substitutions
to destroy the PAM sequence used and to insert a BglII restriction
endonuclease site for genotyping, were injected into one-cell
stage mouse embryos (Supplementary Fig. 4a) and implanted into
foster mice. Offspring were identified by genotyping (Supplemen-
tary Fig. 4b, c).
To analyze the functional consequences of GP130 p.R279Q in

mice, we isolated primary skin fibroblasts from WT mice (R/R) and
those with the p.R279Q variant (heterozygous R/Q or homozygous
Q/Q). We confirmed equal expression and surface localization of
the GP130 variants in these cells (Supplementary Fig. 4d). We then
stimulated fibroblasts with different cytokines and assessed STAT3
phosphorylation by immunoblotting and flow cytometry. STAT3
phosphorylation was significantly impaired in Q/Q fibroblasts of
both mouse lines, when stimulated with IL-11 or Hyper-IL-11, but
not when stimulated with IL-6 or Hyper-IL-6 (Fig. 5b, c,
Supplementary Fig. 4e). In contrast to the human variant, there
was a partial reduction in LIF signaling (Fig. 5b).
We next investigated the phenotype of the animals. Crossing of

GP130 p.R279Q heterozygous mice resulted in the expected
Mendelian ratio of homozygotes, suggesting that the p.R279Q
variant is not lethal (Supplementary Fig. 4f). However, the litter
size was significantly reduced when mother animals carried two
mutant alleles (Supplementary Fig. 4g). This is reminiscent of the
infertility phenotype observed in homozygous female Il11ra−/−

mice.25 Flow cytometry analysis of peripheral blood did not show
any signs of abnormal hematopoiesis (Supplementary Fig. 4h, i).
In contrast to our individual PR281Q, but similar to IL11RA-

deficient mice, we did not observe signs of abnormal cranial
suture fusion in the skulls of Q/Q mice by μCT analysis
(Supplementary Fig. 5a). However, in a proportion of homozygous
GP130 p.R279Q mice, we observed macroscopically visible facial
malformations (Supplementary Fig. 5b), reminiscent of IL11RA-
deficient mice.5,26 Microcomputed tomography (μCT) revealed
individual mice with sideward deviation of snout growth (Fig. 5d),
increased ossification of premaxillary sutures (Fig. 5e), and dental
malocclusion (Fig. 5f). Although the penetrance of the phenotype
was not complete, the number of mice with facial phenotype was
significantly elevated in homozygous Q/Q mice, as assessed by the
degree of sideward deviation of snout growth (Fig. 5g). We did not
observe signs of increased deposition of bone matrix as trabecular
parameters of tibiae were similar in both, R/R and Q/Q mice
(Supplementary Fig. 5c).
Taken together, our novel mouse model demonstrates that a

selective IL-11 signaling defect of GP130 is sufficient to induce
facial synostosis reminiscent of mice with Il11ra deficiency.

DISCUSSION
The shared use of a common signal transducing receptor subunit
by cytokines and their specific α-receptor subunits is observed in
several cytokine receptor families including the IL-6 family
cytokines.27,28 Due to the combinatorial nature, variants in the
common receptor chain likely affect multiple signaling pathways.
We describe a biallelic IL6ST variant encoding a GP130 p.R281Q
substitution that confers a IL-11-selective signaling defect, while
signaling of other IL-6 family members remains intact. Albeit the
signaling effects were also observed in patient-derived primary
cells, we cannot exclude variations due to the use of non-isogenic
primary cells. The craniosynostosis and dental abnormalities seen
in the patient with homozygous GP130 p.R281Q are reminiscent
of the phenotype of patients with craniosynostosis and dental
anomalies caused by IL11RA mutations.5,14–18,29 In light of the
relatively high minor allele frequency of 0.0016 in the South Asian
population and the incomplete penetrance in this consangui-
neous family, a causal relationship between the variant and the
phenotype cannot be established with a single case. We therefore
generated a mouse model by genomic engineering of the Il6st
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Selective IL-11 signaling defect in IL6ST
T Schwerd et al.

7

Bone Research            (2020) 8:24 



locus, resulting in endogenous expression of a GP130 p.R279Q
variant. These mice had facial synostosis mirroring the phenotype
developed by homozygous Il11ra null mice,5 in particular
premature ossification of premaxillary sutures, along with
abnormalities in nasal bone growth and dental malocclusion.
Similar to IL11RA-deficient mice, the facial phenotype of our
GP130 p.R279Q mice was not completely penetrant. The apparent
reduction in phenotype penetrance in humans and mice may be
due to residual IL-11 signal transmission via GP130 p.R279Q seen
at the highest concentrations of IL-11. It is likely that high IL-11
concentrations are available in the developing connective tissue
explaining the incomplete phenotype of the variant. Similar, in
contrast to IL11RA-deficient mice,6 we did not observe a
significant increase in trabecular bone volume in young GP130
p.R279Q mice. However, at present we cannot exclude that
reduction in IL-11 signaling in GP130 p.R279Q mice might reduce
loss of bone density in aged mice as has been previously observed
in IL11RA-deficient mice.6

Environmental factors may additionally influence phenotype
penetrance. In humans multiparity, macrosomia,30,31 in utero
exposure to nicotine32,33, and alcohol34 have been identified as
potential risk factors for the development of craniosynostosis. It
will be interesting to see whether changes in the microbiota could
also contribute to the variable penetrance of skeletal abnormal-
ities in the context of impaired IL-11 signaling.
Recently, a population of Gli1+ cells within sutures of postnatal

mice was identified as a major mesenchymal stem cell (MSC)
population that gives rise to the osteogenic cells supporting
craniofacial bone turnover. Ablation of these MSCs in adult mice
resulted in craniofacial suture closure.35 Interestingly, suture fusion
occurred in mice with incomplete depletion, pinpointing to a
certain threshold of MSC number that is needed to maintain
suture patency. IL-11 promotes osteoblast differentiation into
osteogenic cells in vitro36–38 and supports osteoclastogenesis
through induction of TNFSF11 (previously termed as RANKL)
expression in osteoblasts and also effects on osteoclasts.6,39 It is
therefore tempting to speculate that IL-11 signaling is responsible
for an increase in craniofacial MSC turnover but is not necessary
for MSC maintenance. This may explain why the phenotype of
Il11ra−/− and our Il6st p.R279Q mice is not 100% penetrant as
other signals in some sutures and animals might be sufficient to
keep the number of MSCs high enough to prevent suture closure.
It may explain why in mice, in contrast to humans, loss of IL-11
signaling does not cause pathological suture fusion of the cranial
vault. A similar species-dependent discrepancy in effects of
mutant receptor signaling has been observed in Fgfr3P244R-mutant
mice that express the FGFR3-mutation associated with coronal
synostosis in human Muenke syndrome.40

In addition to the connective tissue phenotype, the GP130
variant has an effect on reproduction in mice. In mice IL-11
signaling plays an important role for decidualization of endome-
trial stromal cells. Consequently, Il11ra−/− female mice fail to
support proper embryonal implantation and are therefore
infertile.25 Consistent with impaired but not fully blunted IL-11
signaling, we observed a slight reduction in litter size in our GP130
p.R279Q mice, when female mice carried at least one mutant Il6st
allele. Interestingly, litter size was further decreased if father
animals also carried a mutant Il6st allele, suggesting additional
effects in the embryo itself. It was demonstrated that LIF promotes
human blastocyst formation, embryonal stem cell survival41 and
embryo implantation in mice.42 A reduction in LIF signaling in
GP130 p.R279Q mice that we observed in primary fibroblasts
might therefore account for a decrease in blastocyst survival in
these animals. The situation in humans might slightly differ, as
females homozygous for inactivating IL11RA variants are able to
reproduce and have healthy children.5,15 This can be explained by
species differences as in mice, decidualization of stromal cells is
dependent on the presence of a blastocyst, while in the human

female decidualization occurs spontaneously within the late
secretory phase of the menstrual cycle.43

Our data provide a structural explanation for the cytokine-
selective effect of the variant. IL-6 and IL-11 are engaged in a
hexameric complex consisting of cytokine, α-receptor and GP130.
The receptor complex is formed by contact sites of the cytokine to
α-receptor and GP130 (site I, IIa, and III),44 and further stabilized by
a receptor interface (site IIb) built up between domains D3 of
GP130, containing R281, and D3 of the α-receptor. The interface
between GP130/IL11RA seems to be smaller than GP130/IL6RA as
deduced from our in silico analysis. During evolution, site IIb in
both GP130 and IL11RA is highly conserved in all vertebrate
animal classes. The amino acid composition of IL6RA domain D3
was more variable suggesting that stability of the IL-6 receptor
complex is much less dependent on site IIb than the IL-11 receptor
complex. The IL-6 receptor complex might have evolved with a
larger surface area at site I, IIa, and III compared to the IL-11
receptor complex. This might explain why the R281Q substitution
lowers the affinity of IL-11/IL11RA but not IL-6/IL6RA interactions
with GP130. Our analysis underlines that during evolution, GP130
has developed diverse cytokine/receptor interfaces with different
characteristics meeting the needs of different cytokines in specific
tissues.
Taken together, our analysis of GP130 p.R281Q clearly

demonstrate that this variant (I) causes a selective defect in IL-
11 signaling due to a decrease in GP130–IL11RA interaction, (II)
occurs in an evolutionary conserved region of the protein, (III) is
associated with craniosynostosis in one of two human subjects,
and (IV) causes facial synostosis in a mouse model. According to
previously published guidelines for single-patient genetic variants
all criteria, except complete penetrance are fulfilled.45 Since the
penetrance of the phenotype is incomplete in both, human and
mice we only can suggest that based on our data the GP130 p.
R281Q variant is causally linked to the observed clinical phenotype.
To the best of our knowledge, the GP130 p.R281Q variant that

we identified is the first described cytokine-selective loss-of-
function variant in a common signal transducing receptor subunit
that affects signal transmission of only one cytokine. Our findings
help to understand the fundamental molecular aspects underlying
cytokine-selective signaling involving common receptor signaling
subunits.

MATERIALS AND METHODS
Case studies
The clinical studies were approved by Oxfordshire Research Ethics
Committee B (reference C02.143) and London Riverside Research
Ethics Committee (reference 09/H0706/20). The proband was
enrolled into the craniosynostosis cohort based on referral to a
craniofacial unit, with craniosynostosis proven on computed
tomography (CT) of the skull.
DNA was extracted from either venous blood collected into

EDTA or patient-derived lymphoblastoid cell lines (LCL). All DNA
was extracted using the Nucleon Blood and Cell Culture (BACC)
DNA extraction kit (Gen-Probe Inc.) according to the manufac-
turer’s instructions.
Healthy volunteer donors were recruited as part of the Oxford

Gastrointestinal Illness Biobank (REC 11/YH/0020) or obtained as
leukocyte cones from UK blood donor bank. Informed consent for
participation in this study was obtained from healthy donors,
patients, or their parents.

Targeted and Sanger sequencing
We used Fluidigm/Ion Torrent resequencing to screen IL6ST in
DNA panels from subjects with craniosynostosis who were
negative for mutations in the major causative genes as described
previously.19 Amplicons that failed quality control were reanalyzed
using molecular inversion probes.
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Cell culture and cytokine stimulation
HEK293 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal calf serum (FCS).
HEK293 GP130 knockout (KO) cell lines were generated using
CRISPR/Cas9 following published protocols.19,46 Primary cells and
cell lines were stimulated with indicated concentrations of
recombinant human IL-6, IL-21, IL-27, OSM, LIF (all Peprotech);
IL-10 and IL-11 (both R&D Systems); CT1, CNTF (both Miltenyi
Biotec), and CLC (BioLegend).

Isolation and cultivation of primary mouse skin fibroblasts
For isolation of primary fibroblasts, about 1 cm² of freshly
prepared murine ear tissue was incubated for 5 min in 70%
ethanol and subsequently handled under sterile conditions. The
tissue was air-dried, cut into pieces of a few millimeters, and
digested with a mixture of collagenase A (2 mg·mL−1), collagenase
D (2 mg·mL−1), and dispase (4 mg·mL−1) diluted in DMEM for 1 h
under constant shaking at 37 °C. Cells were isolated by grinding
the tissue through cell strainers (70–100 μm), washed once, and
then cultured in DMEM+ 20% FCS+ 1% penicillin/streptomycin
under constant conditions at 37 °C, 5% CO2, and 96% humidity. At
80%–90% confluency cells were washed with PBS and detached
applying 1× Trypsin EDTA for 10 min at 37 °C. Required cell
numbers were seeded in either DMEM without serum or DMEM
with 20% FCS.

Flow cytometry of primary mouse skin fibroblasts and peripheral
blood
Primary fibroblasts were washed with PBS and incubated with
accutase for 3 min at 37 °C. Subsequently still attached cells were
gently scraped from the plates and passed through 70 to 100 μm
cell strainers. Cell strainers were flushed with PBS and cells
collected by centrifugation. Whole blood was collected in
heparinized tubes and washed once with PBS prior to staining.
Fibroblasts were stained with anti-gp130-APC-antibody (R&D

Systems; clone: #125623) or isotype control for 1 h at room
temperature in the dark. Whole-blood cells were stained for
30min at room temperature in the dark with different combina-
tions of the following antibodies: anti-CD45-BV510 (BioLegend;
clone 30-F11), anti-CD3-FITC (BioLegend; clone145-2C11), anti-
CD19-APC (BioLegend; clone HiB19), anti-CD4-APC/Cy7 (BioLe-
gend; clone RM4-5), anti-CD8-PE/Cy7 (BioLegend; clone 53–6.7),
anti-Ly6G-FITC (BioLegend; clone RB6-8C5), anti-Ly6C-APC/Cy7
(BioLegend; clone HK1.4), anti-CD115-PE/Cy7 (BioLegend; clone
AFS98). Stained whole-blood cells were subsequently incubated
with RBC Lysis and Fixation Solution (BioLegend) for 15 min at
37 °C and washed twice with PBS. Samples were acquired in FACS
buffer [1% BSA in PBS] on a BD FACS Canto II flow cytometry
system and analyzed with FlowJo Software (Version 10.5.3,
Tree Star).

STAT3 and STAT1 phosphorylation assays
Unless indicated otherwise, phosphorylation of STAT1 or STAT3
transcription factors was assessed as described by Schwerd et al.19

by phosflow, immunofluorescence and confocal microscopy or
luciferase STAT3 reporter assay. Phosphorylation assays were
mainly performed in parallel to evaluation of patient PN404Y

described by Schwerd et al.19 and results from healthy donors or
WT controls are duplicated to ensure perfect comparability.
In addition to phosflow assessment, STAT3 phosphorylation in

murine cells was analyzed by SDS-PAGE and immunoblotting. In
brief, 24 h prior to analysis primary fibroblasts were seeded in six-
well plates. The next day cells were serum starved for 4 h and
stimulated with cytokines at the indicated concentrations for
10min at room temperature. Stimulation was immediately
followed by cell lysis for 15 min on ice with RIPA buffer
[50 mmol·L−1 Tris, 150 mmol·L−1 NaCl, 0.1% SDS, 0.3% sodium
deoxycholate, 1% Triton X-100] with freshly added protease and

phosphatase inhibitors. Samples were separated by SDS-PAGE on
10% bis-tris-gels and subjected to immunoblotting using primary
antibodies anti-gp130 (R&D Systems; clone: #125623), anti-STAT3
(Cell Signaling; clone 124H6), anti-phospho-STAT3 (Cell Signaling;
clone: D3A7), anti-beta-actin (Sigma Aldrich; clone AC-15). Signal
intensity was determined by densitometry using ImageJ (version
1.52n).

Lentivirus production and IL11RA overexpression in CD4+ memory
T cells
The empty vector pCDH-EF1-MCS-T2A-copGFP (CD526A-1) and
the vector carrying human IL11RA transcript variant 3
(NM_001142784.2) for ectopic expression were purchased from
SBI Systems Biosciences.
Lentiviral particles were produced by transiently transfecting

HEK293 cells with the above described transfer vectors together
with the ViraPower™ lentiviral packaging mix (Invitrogen) in
150mm cell culture dishes (Corning). Briefly, HEK293 cells were
transfected with a cocktail of transfer vector and packaging mix in
Opti-MEM (Gibco), using Lipofectamine® 2000 (Thermo Fisher) as a
transfecting agent according to the manufacturer’s instructions.
Culture supernatants containing viral particles were harvested at
72 h post-transfection and titers were determined by limiting
dilution on HEK293 cells.
Resting memory CD4+ T cell lines were transduced by spin

infection (60 min; 800 g; 32 °C) on anti-CD3 (5 μg·mL−1; Biolegend;
clone: OKT3) and anti-CD28 (1 μg·mL−1; BD Biosciences; clone
CD28.2) coated 24-well plates (1 × 106 cells/well) in the presence
of 5 μg·mL−1 polybrene. The medium was then replaced and cells
were cultured in IL-2-containing (500 U·mL−1) medium. After 48 h
of culture, cells were transferred to uncoated plates. Following a
minimum of 7 days of culture, expanded T cells were starved
overnight in IL-2-free medium, washed extensively, and analyzed
for IL-10 and IL-11 responsiveness after 30min of stimulation by
intracellular staining for phosphorylated STAT1 and STAT3. To
exclude non-transduced T cells from the analysis gating was
performed on the GFP+ population. Flow cytometry data were
analyzed with FlowJo (Version, Tree Star).

Receptor complex isolation and immunoblotting
GP130-deficient HEK293 cells were transiently transfected with
plasmids encoding for GP130 WT-YPet or GP130 R281Q-YPet
variant using linear polyethyleneimine Max (Polysciences #24765)
as transfection agent. Twenty-four hours post-transfection cells
were starved overnight in DMEM with 0.5% FCS followed by
incubation on ice for 30min and subsequent stimulation with
recombinant Hyper-IL-6-Fc or Hyper-IL-11-Fc for 30min on ice.
Cells were lysed at 4 °C in RIPA buffer (50 mmol·L−1 Tris,
150mmol·L−1 NaCl, 0.1% SDS, 0.3% sodium deoxycholate, 1%
Triton X-100) supplemented with protease and phosphatase
inhibitors. Lysates were cleared by centrifugation at 12 000 g for
15min.
Lysates for immunoprecipitates were incubated with Protein A/

G beads (Millipore) for 1 h at 4 °C. Subsequently washed three
times in RIPA Buffer supplemented with protease and phospha-
tase inhibitors. Beads were incubated for 5 min at 90 °C in 2×
reducing Laemmli Buffer.
All samples were analyzed by 10% bis-tris SDS-PAGE and

immunoblotting. The following antibodies were used: anti-GFP
(Roche, 11814460001), anti-beta-actin (clone: AC-15) and anti-IgG-
Fc (R&D Systems, Cat.No. G-102-C). Secondary antibodies were
anti-mouse-HRP or anti-rabbit-HRP (both Dianova).

Homology modeling and molecular dynamics (MD) simulations
Due to the unavailability of IL11RA structure coordinate files, a
model was generated using the structure coordinates of IL6RA
(pdb entry 1P9M) as template and amino acids 112–320 of the
IL11RA sequence deposited in UniProt Q14626 with matching
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alignment to the IL6RA. Modeling was performed using the
MODELLER interface of the UCSF Chimera package.47 WT R281 in
GP130 was exchanged to Q and the corresponding rotamer was
introduced searching the Dunbrack library.48 The rotamer with the
highest χ-angle probability score was chosen.
Molecular dynamics calculations were performed on trimeric

complexes either consisting of GP130/IL6RA/IL-6 or of GP130/
IL11RA/IL-11 using AmberTools17 (ref. 49) compiled for parallel
computing on 32 cores. IL-11 (4MHL.pdb) was fitted into the
complex by superimposing it with IL-6 with the tool MatchMaker
of UCSF Chimera.50 Initially, the protein force field ff14SB was
applied to the structure models and a solvate box was generated
using the tip3p water model.51 For the GP130 p.R281Q variant,
overall charge was neutralized using Na+ ions. To solve possible
high-energy states, 2 000 steps of minimization were performed
prior to MD simulation. For the MD simulation, the system was
heated to 300 K over 100 ps and hold at constant volume and
temperature conditions (NVT) for additional 20 ps. Subsequently,
parameters were changed to 1 bar constant pressure and 300 K
constant temperature (NPT) to resemble laboratory conditions and
structural dynamics were analyzed for 1 ns in the NPT ensemble.
All calculations were performed by parallel computing on a NEC
HPC Linux-Cluster at the CAU University Computer Center.
Trajectory files from the MD simulations were analyzed using UCSF

Chimera. The center of mass for GP130 D3 was defined of residues
198–298 and residues 215–317 for the IL11RA. To analyze rotamer
flexibility throughout the 1 ns simulation every 0.1 ns PDBs were
saved and subsequently superimposed using the MatchMaker tool of
UCSF Chimera. Root mean square deviation (RMSD) of arginine or
glutamine, respectively, was calculated as mean RMSD throughout
the simulation relative to positions of arginine/glutamine at 0 ns.
The mean buried area between GP130 D3 and the alpha

receptor D3 was calculated from solvent-excluded surfaces from
ten equally distributed time points of the 1 ns MD simulations of
the IL-6 and the IL-11 complex, respectively. Information about
highly contributing amino acids were extracted at the last frame
of the simulations.

Analysis of evolutionary conservation
Conservational scores were calculated with the AL2CO algorithm
in UCSF Chimera on the basis of multiple sequence alignments.
For conservation per class, 170 sequences for GP130 were
retrieved from the NCBI protein database and subjected to
multiples sequence alignment using Clustal Omega.52 Alpha
receptor sequences were obtained by blast search with a
threshold of e−4 in the RefSeq-Database against the full-length
alpha receptors (IL6RA: UniProt P40887, IL11RA: UniProt Q14626)
using NCBI Protein BLAST. We only selected sequences annotated
for IL6RA or IL11RA from species that also displayed an annotated
database entry for GP130 and subjected them to multiples
sequence alignments using Clustal Omega (Supplementary Table
2). AL2CO scores were mapped on a representative structure per
class obtained by homology modeling of a class-specific sequence
against the human ortholog. In the case of mammals, the human
structures were used. Amino acids corresponding to pos. 281 in
human GP130, as well as amino acids corresponding to pos. 269,
281, 282 in IL11RA, and the corresponding amino acids in IL6RA
were labeled in the structures. Amino acids contributing to the
buried interface were encircled.
Data on mutational hotspots in GP130, IL6RA, and IL11RA were

obtained from the Exome Aggregation Consortium (ExAC). Results
were converted into a format readable for mapping with UCSF
Chimera and subsequently mapped onto the structures of human
GP130 D3, IL6RA D3, and modeled IL11RA D3.

Mouse model generation
The sgRNA sequence targeting exon 8 of murine Il6st was
designed using the CRISPOR Program.53 The template for

transcription was derived by PCR using Q5-Polymerase (Biolabs).
Transcription was performed using the HiScribeT7 kit (Biolabs,
E20140S) with subsequent purification of the transc
ript with the MEGAClearTM kit (Fisher Scientific, AM1908), both
according to the manufacturer’s instructions.
One-cell stage embryos derived from superovulated C57BL/

6JUke mice were injected using 10 ng·μL−1 sgRNA, 20 ng single
stranded repair template (Sigma) introducing NM_010560:c.
[835G>A;836A>G] for the p.R279Q substitution and further silent
mutations for a BglII restriction site and a degenerated PAM
sequence. We selected the CAG codon for glutamine, as the CAA
codon is infrequently used in mice. The repair template
(CTCCAGTAGCCCTTCCCACTGTCCTTAATGGACCGGATCCTAAACAC
ATATTCTGTAAAAGGCTTGAGaTCtTGCACAGTGAAGGAAGTctGAGG
AGACATTGTATCTTCAAGAGGGACC) was transfected jointly with
50 ng·μL−1 Cas9 protein (IDT). Embryos were implanted into F1
foster mothers (C57BL6 × CBA) and the resulting offspring was
analyzed by PCR using (Il6st-F: GGT CTG GTT CTT TAA GAC AGG
CTC TC, Il6st-rev: CAC CAC TTT TAC GTA TGT CTT CGT ATG TG) and
BglII digestion. Correct integration of the repair construct
was verified by sequence analysis. Two independent lineages
(termed lines 4 and 6 throughout the manuscript) with Il6st c.
[835G>A;836A>G] mutation (p.R279Q) were obtained and further
bred at the CAU Animal Facility. All experiments were performed
in accordance with the local guidelines for animal care and
protection.
Il11ra-deficient mice54 were on a C57BL/6 background and

maintained as previously described.25

Analysis of craniofacial and skeletal phenotype in mice
Skulls were collected from WT, heterozygous p.R279Q mutant,
homozygous p.R279Q mutant littermates of mouse lines 4 and 6,
as well as mice and stripped of flesh and tendons. Skulls were
fixed in 10% buffered formalin at 4 °C for 1 to 2 days and
subsequently stored in PBS containing 0.05% sodium azide at 4 °C.
Images of cleaned and fixed skulls were taken and lateral twisting
of snouts further analyzed. The angle between snout tip and
sagittal suture was determined using ImageJ Software (Version
1.52n).
During macroscopic phenotype assessment, skulls were deter-

mined as phenotypically aberrant if one of the following criteria
were met: sideward deviation of snout, shortening of snout, or
downward deviation of snout.
Skulls from three animals and long bones from eight to ten

animals per genotype were embedded in 1% agarose in ddH2O
for μCT analysis. μCT scans were performed at the Molecular
Imaging North Competence Center (MOIN CC), Department of
Radiology and Neuroradiology, University Medical Center
Schleswig-Holstein using a vivaCT 40 (70 kVp, 114 μA, 300 ms
integration time, 1 000 projections on 180° 2048 CCD detector
array, cone-beam reconstruction, ScancoMedical). All scans were
done at an isotropic voxel size of 15.6 μm. Images were further
analyzed using ImageJ (Version 1.52n) and ParaView (Version 5.6.0,
Kitware) software. Morphometric analysis of tibiae was performed
ex-vivo using a VivaCT 80 (Scanco AB, Brüttisellen, Switzerland)
micro-CT scanner with 15.6 μm isotropic voxel size (70kBp, 114 μA,
31.9 mm FOV, 300 ms integration time, software binning: 1.5, no
HW binning, 1 000 projections/180°, standard reconstruction with
beam hardening correction, bone calibration in mgHA·cm–3). For
segmentation and quantification of parameters, the manufacturer´s
software was used. For trabecular measurements a volume of
interest (VOI) of 2 mm (126 slices) axial length was selected
starting 0.3 mm (20 slices) below the epiphyseal plate. Trabecular
bone was contoured automatically in the diaphyseal area, but
partially by manually drawing 2D regions of interest (ROIs) every
5–10 slice with geometric morphing approaching the thin cortex
and more complex endosteal envelope near the proximal part of
the tibiae (Scanco uct_evaluate V6.3–5). The images were
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binarized using a threshold of 250 mgHA·cm−³, resulting in a mask
solely with bone and background voxels. Trabecular bone volume
density (bone volume (BV)/total volume (TV)), trabecular number
(Tb.N), trabecular thickness (Tb.Th), and trabecular separation
(Tb.Sp) were calculated (IPL V5.15).

Protein sequence alignment
Multiple sequences were aligned using ClustalW2.55 Data were
obtained from the National Center for Biotechnology Information
(NCBI). Sequence alignment is based on the following accession
numbers: NP_001106976.1, NP_001124412.1, NP_990202.1,
NP_034690.3, NP_002175.2, NP_004834.1, NP_000751.1,
NP_002301.1, NP_003990.1, NP_005526.1 and NP_001550.1.

Statistical analysis
Results were analyzed with GraphPad Prism version 5.00
(GraphPad software, Inc., San Diego, CA) or Rstudio (version
1.2.1335). Significance was determined by two-sided Mann–
Whitney U test, one-way ANOVA, or Kruskal–Wallis with multiple
comparisons post-test. Distribution of extreme snout deformation
was analyzed using Fisher’s exact test. P values below 0.05 were
considered as significant.

Online resources/URLs
The following online data sources have been accessed:
1 000 Genomes. http://www.1000genomes.org
dbSNP. http://www.ncbi.nlm.nih.gov/SNP
GenBank. http://www.ncbi.nlm.nih.gov
gnomAD. http://gnomad.broadinstitute.org/
PolyPhen. http://genetics.bwh.harvard.edu/cgi-bin/pph
SIFT. http://sift.jcvi.org
STRING. http://string-db.org
ExAC browser. http://exac.broadinstitute.org
GDI-server. http://pec630.rockefeller.edu:8080/GDI/resultGene
Only.jsp
COSMIC. http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=IL6ST
Blast. https://blast.ncbi.nlm.nih.gov/Blast.cgi
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