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Multiple myeloma (MM) remains an incurable plasma cell (PC) malignancy. Although it is known that MM tumor cells display
extensive intratumoral genetic heterogeneity, an integrated map of the tumor proteomic landscape has not been comprehensively
evaluated. We evaluated 49 primary tumor samples from newly diagnosed or relapsed/refractory MM patients by mass cytometry
(CyTOF) using 34 antibody targets to characterize the integrated landscape of single-cell cell surface and intracellular signaling
proteins. We identified 13 phenotypic meta-clusters across all samples. The abundance of each phenotypic meta-cluster was
compared to patient age, sex, treatment response, tumor genetic abnormalities and overall survival. Relative abundance of several
of these phenotypic meta-clusters were associated with disease subtypes and clinical behavior. Increased abundance of phenotypic
meta-cluster 1, characterized by elevated CD45 and reduced BCL-2 expression, was significantly associated with a favorable
treatment response and improved overall survival independent of tumor genetic abnormalities or patient demographic variables.
We validated this association using an unrelated gene expression dataset. This study represents the first, large-scale, single-cell
protein atlas of primary MM tumors and demonstrates that subclonal protein profiling may be an important determinant of clinical
behavior and outcome.
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INTRODUCTION
Multiple myeloma (MM) is the second most common hemato-
poietic malignancy [1, 2], characterized by a clonal expansion of
malignant antibody-producing post-germinal-center plasma cells
(PCs) within the bone marrow (BM). Although the overall survival
of patients with MM has improved over time owing to the use of
novel chemotherapeutic agents, targeted therapies, and auto-
logous stem cell transplantation [3], MM remains an incurable
malignancy in most patients [4, 5].
Bulk and single-cell studies using karyotype analysis, DNA

sequencing methodologies, fluorescence in situ hybridization
(FISH), and genomic microarrays have revealed extensive
intratumoral genetic complexity and heterogeneity in MM
[6–19]. Genetically distinct MM subclones evolve over time
and contribute to chemotherapeutic resistance and disease
progression. Recent studies using single-cell RNA sequencing
have provided transcriptomic characterization of MM tumor
heterogeneity [20–25], but protein-level characterization has not
been well-reported [26]. Since most modern therapies target
protein pathways, understanding proteomic heterogeneity may

provide an opportunity for novel protein-based therapeutic
interventions.
One methodology to assess single-cell proteomic heteroge-

neity includes mass cytometry (CyTOF) [27], which allows
multiplex phenotyping of single cells providing the potential
for novel protein signature identification that may be associated
with chemotherapeutic resistance and/or disease outcome.
CyTOF utilizes transition element isotype-tagged antibodies
using time-of-flight mass spectrometry, allowing the detection
of up to 40 to 50 simultaneous epitopes in single cells without
significant spectral overlap. Previous studies using traditional
flow cytometry have identified significant changes in the protein
expression of numerous markers associated with MM disease
survival, relapse, and/or drug resistance using this approach
[28–30]. Here, we used CyTOF to analyze 34 epitopes in 49
primary MM patient samples at the single-cell level. We provide
an integrated, comprehensive, single-cell atlas of cell surface
molecules, transcription factors, and phosphoprotein targets that
were previously individually associated with drug response or
resistance in MM. We detect subclonal protein profiles that are
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shared among patients and associated with important clinical
variables, including survival.

MATERIALS AND METHODS
Patient samples
All samples were referred to the Mayo Clinic Genomics Laboratory for
routine clinical testing. Forty-nine cryopreserved BM samples from patients
diagnosed with MM were selected for analysis by CyTOF based primarily
on the abundance of PCs in the BM and having at least 500 live light-chain-
restricted PCs. This retrospective study was approved by the institutional
review board of the Mayo Clinic. A minimal risk waiver for consent was
obtained for this study.

Clinical data
FISH, S-phase calculations, and stratification for myeloma and risk-adapted
therapy (mSMART, msmart.org) assessments were performed as part of
routine clinical practice. FISH analysis of immunoglobulin (cIg)-stained
positive PCs studies were performed as previously described [31] using
probes described in Supplementary Materials and Methods. Plasma cell
S-phase data were obtained from flow cytometry, as described in [32]. Each
patient’s treatment response at 90 days was based on the International
Myeloma Working Group uniform response [33] and further described in
Supplementary Materials and Methods.

CyTOF antibody panel
Thirty-seven antibody targets (Supplementary Table 1) directed against cell
surface and intracellular proteins were initially designed using the web-
based panel designer software Maxpar Panel Designer (Fluidigm/Standard
BioTools, South San Francisco, CA) for optimal signals, minimum back-
ground due to oxidation, isotopic purity, and sufficient sensitivity for each
targeted marker. Prelabelled antibodies were purchased from Fluidigm.
Purified antibodies requiring conjugation were purchased from BioLegend
(San Diego, CA) or Sigma Aldrich (St. Louis, MO) and labelled using the X8
polymer Maxpar antibody conjugation kit (Fluidigm) according to
manufacturer’s instructions. Each antibody was validated and titrated
against positive and negative control cell lines.

Sample preparation for flow cytometry and CyTOF
Total BM cells were processed using ammonium, chloride, and potassium
(ACK) lysis buffer (Thermo Fisher Scientific, Waltham, MA) to lyse red blood
cells and centrifuged for 5 min at 1350 RPM. The pellet was washed with
PBS, centrifuged for 5 min at 1350 RPM and resuspended in Chang BMC
medium containing 20% fetal bovine serum (FBS) (Irvine Scientific, Santa
Ana, CA). A portion of the cells was prepared for FISH as part of routine
clinical testing. The remaining cells were centrifuged at 1200 rpm for 8min
and the cell pellets were resuspended in 1.5 ml of 10% DMSO (Sigma
Aldrich) in Chang BMC medium, added to a cryotube, and frozen in liquid
nitrogen.
Prior to CyTOF staining, three randomly selected BM samples from the

liquid nitrogen biobank were thawed and stained by flow cytometry to
evaluate the abundance of total viable PCs. Each cryovial was quickly
thawed and the cells were immediately washed and centrifuged at 500 x g
for 5 min in 20% FBS (Thermo Fisher Scientific, Waltham, MA, USA) in
RPMI1640 and 1:10,000 benzonase nuclease (Sigma Aldrich). The cell
pellets were resuspended in residual RPMI solution, washed again with the
same medium and resuspended in cell staining buffer including 1x PBS, 3%
BSA, and 0.1% sodium azide, followed by surface staining using the
following antibodies: CD38 HIT2 (Cat# 303504), CD229 HLy-9.1.25 (Cat#
326108), CD138 MI15 (Cat# 356524), and CD45 HI30 (Cat# 304026)
(BioLegend). Samples were processed using a BD Accuri C6 Plus Personal
Flow Cytometer (BD Biosciences, San Jose, CA) (Supplementary Fig. 1A).
For CyTOF cell staining (reagents described in Supplementary Table 2),

frozen BM cells were rapidly thawed and suspended in warmed RPMI1640
with 20% FBS containing 1:10,000 benzonase nuclease. Additional CyTOF
staining details are described in Supplementary Materials and Methods.
Briefly, 1–3 million cells were washed, incubated with Cell-ID and
resuspended in 1x Maxpar Fix and Perm Buffer. Cells were subjected to
the cell surface antibody panel, washed with Maxpar Cell Staining Buffer
(CSB) and stored overnight at −80 °C. Cells were subjected to the
intracellular antibody panel, fixed with a fresh 1.6% formaldehyde solution
(Thermo Fisher Scientific), washed with CSB and resuspended in 1ml of
Cell-ID Intercalator-Lr solution. Samples were barcoded using the Cell-ID

20-Plex Pd Barcoding Kit and combined with the Maxpar cell acquisition
solution and EQ four-element calibration beads followed by acquisition on
the Helios CyTOF system. Data were collected as flow cytometry standard
(FCS) files, debarcoded and normalized to the acquired calibration bead
signal.

Processing of Flow Cytometry Standard (FCS) files
The workflow of further processing of the FCS files is shown in
Supplementary Fig. 1B and described in detail in Supplementary Materials
and Methods. Briefly, normalized FCS files were analyzed by the Maxpar
Pathsetter software (version 2.0; Fluidigm) for cleanup to select live cell
events. To assess batch variability, unstimulated and cytokine-activated
Veri-Cell reference standards (see Supplementary Materials and Methods)
were compared between the batches. As expected [27], PMA and
ionomycin stimulation resulted in consistent increases in pp38, pERK,
pCREB, Ki-67, and pS6 and reductions in total IkBα (Supplementary Fig. 1C).
The markers SOX2, CD27, and CD147 were subsequently removed from the
downstream analysis because of batch variations among patient samples.
Additional processing steps including cell modeling (Supplementary Figure
1D) including criteria for inclusion of MM cells (Supplementary Fig. 1E) and
further data processing are described in Supplementary Materials and
Methods.

Comparison to clinical metrics
The log2 fold change of marker expression was calculated to identify
differences in the average marker abundance, proportion of cells with
marker changes from clusters, and proportion of cells assigned to meta-
clusters for the 90 day treatment response (poor vs. good), sex (male vs.
female), age ( > 60 vs. ≤ 60 years), type (relapsed refractory MM (RRMM)
vs. newly diagnosed (NDMM), primary (hyperdiploidy vs. 11;14), TP53
deletion (present vs. absent), 1q gain (present vs. absent), MYC disruption
(present vs. absent), monosomy 13 (present vs. absent), deletion 13q
(present vs. absent), mSMART (high vs. standard), and S-phase (high vs.
low). Statistical significance was determined using an unpaired t-test (t-
test of independent means) between values for each comparison. The
correlation coefficients between a pair of binary variables were calculated
with Cramer’s V method with signs (+/−) introduced from a Pearson’s
correlation test, which was used to estimate all of the remaining
correlations. Violin plots were generated using the GraphPad Prism
software (San Diego, CA).

Survival analysis
Overall survival (OS) was defined as the time from diagnosis to death from
any cause or the last follow-up, with those alive censored at the date of the
last follow-up. The APEX phase-3 clinical trial was used as a validation
cohort. Pretreatment gene expression and clinical outcomes data on the
APEX phase-3 clinical trial (039; n= 156) on relapsed and/or refractory
myeloma patients were downloaded from the Gene expression omnibus
(GEO) database (GSE9782) as Affymetrix HG-U133A/B gene probe set
analysis dataset. The APEX data set (GSE9782; n= 264) contains gene
expression data on phase-2 and phase-3 relapsed and/or refractory
myeloma clinical trials, including APEX phase-3 trial (039), a APEX
companion study (040), SUMMIT (025) and CREST phase-2 trials (024)
[34]. Median gene intensity scores were calculated for the following genes
that served as meta-cluster 1 gene signature: BCL-2, IKZF3, MYC, NFKBIA
(IkBα), and PTPRC (CD45). A combined meta-cluster activity score was
computed for each sample as the summation of the ascending ranks of
expression of median gene intensities. Survival curves were estimated
using Kaplan-Meier analysis and compared using the log-rank test. Cox
regression analysis was performed to estimate the survival risk of the
different phenotypic meta-clusters for overall survival. Statistical analyses
were performed using BlueSky (Chicago, IL, USA), with a value of
significance defined as P < 0.05.

RESULTS
Description of patient cohort
A total of 49 BM samples from patients with MM were selected for
CyTOF analysis (Table 1). The median age was 67 years (range
46–95 years), with a male predominance ( ~ 2:1 M:F ratio). Most
samples (93.9%) had available flow cytometry data as part of
routine clinical care. Of these samples, 59.2% had kappa restriction
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and the rest had lambda restriction. The median percentage of
kappa- or lambda-restricted monotypic PCs was 31% of all
nucleated cells and the percentage of polytypic PCs in relation
to all PCs examined was ≤ 5% in 93.9% of samples. The median
S-phase percentage of the monotypic PCs was 1.5% with 34.7%
having ≥ 2% S-phase reflective of high-risk disease. Twenty
samples (40.8%) were newly diagnosed MM (NDMM) and 29
(59.2%) were relapsed and/or refractory MM (RRMM). A primary,
recurrent cytogenetic abnormality determined by FISH analysis
was identified in 95.9% of samples, with most (79.6%) exhibiting
either hyperdiploidy (49.0%) or a t(11;14) translocation (30.6%).
The remaining samples had t(4;14) (8.2%), t(14;20) (4.1%), or
hyperhaploidy (4.1%). Secondary cytogenetic abnormalities
included TP53 loss (24.5%), 1q gain or amplification (57.1%),
MYC rearrangement (26.5%), and monosomy 13 or 13q deletion
(69.4%). Most samples (69.4%) were high-risk using the Mayo
Clinic mSMART risk stratification (www.msmart.org), and the
remainder (30.6%) were standard risk. The depth of response
following treatment was: VGPR (14.3%) PR, (40.8%) MR, (12.2%) SD,
(14.3%); and PD (18.4%) (Table 1).
To evaluate whether integrated cell surface and signaling

protein profiles can identify clinically significant subtypes of MM,
we analyzed these 49 samples using a custom CyTOF panel
targeting 34 cell surface or intracellular proteins simultaneously
within single cells. The panel was designed to target protein
markers associated with MM disease survival, disease relapse, or
drug resistance (Supplementary Table 3). The targets included 7
phosphorylated proteins representing mitogenic signaling path-
ways (pAKT, pCREB, pERK, pp38, pRB, pS6, and pSTAT3), 5
myeloma-specific transcription factors (MYC, IkBα, IKZF1 (Ikaros),
IKZF3 (Aiolos), and IRF4 (MUM-1)), 2 survival proteins (BCL-2 and
MCL-1), a component of E3 ubiquitin ligase (CRBN, Cereblon)
implicated in lenalidomide response, a marker of programmed cell
death (cleaved caspase 3, clCasp3), a marker of proliferation (Ki-
67), 15 cell surface markers (CD117, CD138, CD16, CD19, CD20,
CD28, CD3, CD34, CD38, CD45, CD56, CD81, CD71, CD49d, and
CD274), and intracellular kappa and lambda light chains.
Monotypic PCs were defined as CD16−, CD3−, CD19−, CD138+,
IRF4+, and kappa+ or lambda+, with light chain restriction for
each patient, consistent with clinical flow cytometry data.

CyTOF analysis recapitulates expected protein expression
patterns in MM
First, we analyzed our data and compared our findings to
previously published data in MM. We compared the average
normalized signal of each marker within each patient’s bulk PC
population across the dataset. Among the cell surface proteins,
CD38, CD49d, CD138, and CD71 were the most abundant, while
CD20, a late-stage B cell marker, was the least abundant, as
previously reported [35] (Fig. 1A). Expression of CD56, a
transmembrane glycoprotein known to be aberrantly expressed
in MM [36], was present in 24 (49.0%) and absent in 25 (51.0%)
samples (Fig. 1A, B). Consistent with previous reports [37, 38], the
average surface expression of the PC marker CD138 was lower
than that of CD38; cryopreservation and sample processing have
been reported to reduce CD138 surface expression. In addition,
detection of surface CD38 protein is influenced by treatment with
the CD38-targeting antibody daratumumab [39], interfering with
CD38 identification 4-6 months after the last exposure [40–42].
Accordingly, the fourteen samples (28.6%) from patients who had

Table 1. Patient characteristics.

Characteristic (N= 49) N (%)

Age

Median 67 years

Range 46–95 years

Sex

Male 33 (67.3)

Female 16 (32.7)

Light chain

Kappa 29 (59.2)

Lambda 20 (40.8)

Monotypic PC percentage by flow cytometry

Median 31%

Range 7–88%

7–19 12 (24.5)

20–39 21 (42.9)

40–59 5 (10.2)

60–79 6 (12.2)

80–99 2 (4.1)

No data 3 (6.1)

Polytypic PC by flow cytometry

≤ 5% 37 (93.9)

No data 3 (6.1)

S-phase by flow cytometry

Median 1.5%

Range 0.2–12%

0.2–0.9 12 (24.5)

1–1.9 13 (26.5)

2–5.9 8 (16.3)

6–12 9 (18.4)

No data 7 (14.3)

mSMART risk

Standard 15 (30.6)

High 34 (69.4)

NDMM vs. F/U

NDMM 20 (40.8)

Relapsed and/or refractory 29 (59.2)

Depth of response

VGPR 7 (14.3)

PR 20 (40.8)

MR 6 (12.2)

SD 7 (14.3)

PD 9 (18.4)

Primary cytogenetic abnormality

Hyperdiploidy 24 (49.0)

t(11;14) 15 (30.6)

t(4;14) 4 (8.2)

t(14;20) 2 (4.1)

Hyperhaploid 2 (4.1)

Undefined primary 2 (4.1)

Secondary cytogenetic abnormality

TP53 deletion 12 (24.5)

1q gain or amplification 28 (57.1)

Table 1. continued

Characteristic (N= 49) N (%)

MYC rearrangement 13 (26.5)

Monosomy 13 or 13q deletion 34 (69.4)
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been exposed to daratumumab within 6 months prior to
collection displayed reduced CD38 abundance (treatment: 40.5,
range 4.1–767.3 vs. none: 201.7, range 33.2–829.0, P= 0.021,
Fig. 1C, Supplementary Table 4).

Among the intracellular proteins, transcription factors IRF4 and
IKZF1 were among the most abundant, as recently reported [43]
(Fig. 1A). Higher levels of BCL-2 relative to MCL-1 have been
reported in association with t(11;14) MM; a feature associated with

Fig. 1 Sample level processing: Average marker expression and correlation with clinical metrics, patient demographics and tumor
genetics. A Distribution of normalized marker signal in samples averaged across all cells according to NDMM (N) or RRMM (R) status. Markers
with significant differences in bulk expression between NDMM and RRMM samples are indicated with a *P-values: ** < 0.01, *< 0.05.
B Clustering of average, normalized marker values with patient clinical metrics, demographics and tumor genetics. Signal is displayed in log2.
Cohort metrics defining response to treatment, sex, age, type (NDMM or RRMM), primary genetic abnormality, TP53 deletion, MYC disruption,
monosomy of 13, deletion 13q, mSMART score, and S-phase value. C Violin blots displaying the CD38 expression in patients that had been
exposed to daratumumab within 6 months prior to sample collection compared to patients without daratumumab treatment within 6 months
prior to sample collection (None). D Expression of BCL-2 in patients with t(11;14) compared to non-t(11;14) (Other). E Expression of Ki-67 in
patients with low S-phase compared to high S-phase.
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increased sensitivity to the BCL-2 inhibitor venetoclax [44, 45].
Consistent with those studies, samples with t(11;14) had a higher
BCL-2/MCL-1 expression ratio and higher median BCL-2 levels
than the non-t(11;14) samples (BCL-2/MCL-1 ratio: 11.8, range
0.5–91.1 vs. 6.3, range 0.3–55.1, P= 0.057; median BCL-2 expres-
sion: 114.7, range 24.3–650.9 vs. 66.0, range 3.6–348.7, P= 0.038)
(Fig. 1D). In contrast, the median expression of MCL-1 was similar
between the two groups (8.6, range 3.0–79.0 vs. 8.1, range
2.5–144.2, P= 0.228) consistent with the essential role for MCL-1
in MM survival. As expected [46], cases with high S-phase ( ≥ 2%),
had a greater median expression of Ki-67 than cases with low
S-phase ( < 2%) (12.3, range 1.7–157.3 vs. 4.4, range 1.0–15.4,
P < 0.001) (Fig. 1E). In addition, a significant positive correlation
was identified between expression of Ki-67, MYC and pERK,
between pAKT and MYC and between MCL-1 and IKZF1
(Supplementary Figure 2).
In addition, we identified numerous proteins with higher

abundance in RRMM compared to NDMM samples (Fig. 1B). The
expression levels of BCL-2 (P < 0.01), clCasp3 (P= 0.04), Ki-67
(P= 0.04) and CD81 which has been associated with chemoresis-
tant MM tumor cells [47] (P < 0.01), were significantly higher in
RRMM than in NDMM samples (Fig. 1B) consistent with a more
aggressive disease. These data using bulk protein expression
demonstrate that CyTOF profiling recapitulates key protein
features of MM as previously reported.

Thirteen commonly expressed phenotypic meta-clusters can
be detected among patients
Next, we determined whether our integrated cell surface and
intracellular protein dataset could be used to detect clinically
meaningful patterns of protein expression among subpopulations
of MM tumors. First, to identify common phenotypic meta-clusters
among our patient cohort, we used an unsupervised clustering
analysis to define phenotypic clusters in each patient sample
individually (Fig. 2A and Supplementary Materials and Methods).
This analysis revealed 11–29 phenotypic clusters per patient. A
representative sample of RRMM with t(11;14) and TP53 deletion is
shown in Fig. 2A.
To define the phenotypic clusters further, we next performed a

differential abundance analysis to identify significant markers that
differed in their expression between clusters in each patient (Fig. 2B).
This analysis generated Z-scores for each marker showing the
degree of directionality of the change in expression (increased
expression, positive Z-scores and decreased in expression, negative
Z-scores). Next, to determine if phenotypic clusters were shared
across patients, individual patient clusters were divided into meta-
clusters using the Z-score data as inputs for unsupervised clustering
to identify cluster-matched equivalents among all patients (Fig. 2C).
This allowed us to characterize similar phenotypic clusters across all
patients revealing 13 phenotypic meta-clusters among the 49 MM
samples (Fig. 2D). Each phenotypic meta-cluster was defined by the

Fig. 2 Subpopulation processing: Unsupervised clustering approach resulting in identification of 13 phenotypic meta-clusters across all
patient samples. A Top: Overall schematic of the subpopulation processing from Supplementary Fig. 1. Bottom: Unsupervised clustering of a
single patient’s sample. Cells are colored based on the cluster assigned. B Differential protein expression results from MAST output showing
driving proteins for each cluster. Red vertical lines denote a Z-score greater than or less than 1. Red horizontal lines represent a p-value of
0.001 and 0.005. The top hits for each cluster are labelled. C Correlation plot of all Z-scores from the MAST output for all clusters from all
patients (1400). D t-SNE of all unsupervised clusters between samples colored by the meta-cluster assignment with labelling of the significant
markers in each meta-cluster with CD38 included. The top significant markers with either relative increased (red) or decreased (blue) changes
are listed by the meta-cluster with the most significant meta-cluster differentiating marker bolded. E Distribution of primary cytogenetic
abnormality in each meta-cluster (blue t(11;14), purple (hyperdiploidy), red (other including hyperhaploidy, t(4;14), t(14;20) and undefined).
Number on the right indicate the number of cases with evidence of each phenotypic meta-cluster.
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most highly differentially expressed protein markers (absolute
Z-score of > 5 and significant changes in > 50% of cells within the
meta-cluster).
The phenotypic meta-clusters were as follows: Meta-cluster 1

(CD45hi, BCL-2lo), Meta-cluster 2 (CD81hi), Meta-cluster 3 (BCL-2hi),
Meta-cluster 4 (CD38lo), Meta-cluster 5 (MCL-1hi), Meta-cluster 6
(CD49dlo), Meta-cluster 7 (CD49dhi and pS6hi), Meta-cluster 8
(CD38hi), Meta-cluster 9 (CD71hi and pERKhi), Meta-cluster 10
(clCasp3hi), Meta-cluster 11 (CD56hi), and Meta-cluster 13 (Ki-67hi
and CD117hi) (Fig. 2D, Supplementary Table 5). Group 12 showed
no significant change in the expression of any marker. Each
phenotypic meta-cluster was shared by at least 11 patient samples.
Phenotypic meta-cluster 6 was present in the greatest number
(n= 41) of patient samples, while meta-cluster 5 was present in the
least number of patient samples (n= 11). The fraction of cells in
each of the 49 patient samples belonging to each of the 13
phenotypic meta-clusters and the fraction of cells in each
phenotypic meta-cluster belonging to each of the 49 patient
samples is shown in Supplementary Fig. 3. Except for meta-clusters

5 and 11, the overall distribution of primary cytogenetic
abnormalities was similar across the phenotypic meta-clusters
(Fig. 2E).

Phenotypic meta-cluster composition is correlated with
clinical behavior
Next, we asked whether the proportion of individual phenotypic
meta-clusters within each patient correlated with clinical variables
including tumor genetics, response to therapy and disease
outcome (Fig. 3A). The fold change in the proportion of cells
within a sample belonging to each meta-cluster is indicated in the
heatmap and correlated to clinical variables (Fig. 3B). Tumors
associated with a poor depth of response had a significantly
reduced abundance of meta-cluster 1, which was characterized by
elevated CD45 and low survival protein BCL-2 along with elevated
IKZF3, MYC and IkBα, suggesting that phenotypic meta-cluster 1
may be responsive to MM therapy. Meta-cluster 13, characterized
by increased expression of the proliferative marker Ki-67 and
CD117 as well as the IKZF1 transcription factor and pRB (Fig. 2D,

Fig. 3 Comparison of the 13 phenotypic meta-clusters with clinical metrics, patient demographics, tumor genetics and disease outcome.
A Overall schematic of workflow from subpopulation processing to clinical metric correlation. Meta-cluster 1 (red circle) was the only
subpopulation associated with a significant difference in response to therapy and disease outcome. B Heatmap showing the log2 fold change
in the proportion of cells within a sample belonging to each meta-cluster for different clinical and cohort metrics. Significant (P < 0.05)
changes are highlighted in a black box. Cohort metrics defining response to treatment (poor including PD vs. good including PR and VGPR),
sex (male vs. female), age (> 60 vs. ≤ 60 years), type (RRMM vs. NDMM)), primary genetic abnormality (hyperdiploidy vs. 11;14), TP53 deletion
(present vs. absent), MYC disruption (present vs. absent), monosomy 13 (present vs. absent), deletion 13q (present vs. absent), mSMART score
(high vs. standard), and S-phase value (high vs. low). C A comparison of OS (years) in patients with absence of meta-cluster 1 (red line) and in
patients with presence of meta-cluster 1 (blue line). OS time (median) was 2.2 [95%CI: 1.6–3.9] years (n= 7) and 9.4 [95%CI: 3.6-not calculated]
years (N= 17) in the 2 meta-clusters, respectively. D Distribution of high and standard mSMART (TP53 deletion and/or 1q gain) among the 7
patients without meta-cluster 1 and 17 patients with meta-cluster 1.
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Supplementary Table 5) was significantly more prevalent in RRMM
samples and in those with 1q gain, elevated mSMART and high
S-phase (Fig. 3B). Meta-cluster 13 may be associated with disease
relapse and suggests that patients with elevated meta-cluster 13
may benefit from anti-proliferative therapy. Further, samples
associated with high mSMART also had a high proportion of
meta-cluster 9, characterized by elevated cell surface transferrin
receptor CD71, and pERK suggesting targeting CD71 may be a
promising therapeutic strategy in these patients. Samples with
high S-phase had an increased abundance of meta-cluster 2,
characterized by elevated cell surface CD81 expression, another
potential therapeutic target. Meta-cluster 8, characterized by the
highest relative expression of CD38, was significantly reduced in
RRMM samples and in those with TP53 deletion and high S-phase,
possibly driven by daratumumab treatment.
Since CD38 was significantly lower in daratumumab-treated vs.

daratumumab-naïve samples (Fig. 1C), we investigated whether
differences in the phenotypic profiles of CD38-driven meta-
clusters were skewed due to daratumumab. We repeated
clustering analysis and meta-cluster classification with the
exclusion of CD38. As before, we determined significant markers
with relative increases or decreases in expression in each cluster
and compared the meta-clusters that had been analyzed with
CD38 inclusion to those with CD38 exclusion (Supplementary Fig.
4A). In comparison to the previous analysis, in which 13 different
phenotypic meta-clusters were identified, reanalysis without CD38
revealed 12 phenotypic meta-clusters. The expression character-
istics of these 12 phenotypic meta-clusters were remarkably
similar, suggesting that within these 12 meta-clusters, the
influence of CD38 on meta-cluster assignment was minimal.
Meta-cluster 8, characterized in the original analysis as having the
highest CD38 expression (Supplementary Table 5), was the only
meta-cluster lost in the reanalysis suggesting that CD38 played a
significant role in the classification of meta-cluster 8. Approxi-
mately 11% of the cells belonging to meta-cluster 8 in the
previous analysis were redistributed to other meta-clusters
(Supplementary Fig. 4A). Similar to the original analysis, meta-
cluster 13, with increased Ki-67 and CD117, remained significantly
more prevalent in samples with 1q gain and elevated mSMART.
Samples associated with a poor depth of response retained their
reduced abundance of meta-cluster 1 in the reanalysis (Supple-
mentary Fig. 4B).
We next compared whether the presence or absence of each of

the 13 phenotypic meta-clusters within 6 months of MM diagnosis
was predictive of overall survival (OS) in our patient cohort. The
only phenotypic meta-cluster associated with a significant differ-
ence in OS was meta-cluster 1 (Fig. 3C). Among patients with an
absence of phenotypic meta-cluster 1, OS was decreased compared
to patients with the presence of phenotypic meta-cluster 1 (2.2
years vs. 9.4 years, P= 0.017) characterized by increased CD45 and
reduced BCL-2 expression. Consistent with these findings, the
presence of phenotypic meta-cluster 1 was associated with
improved OS (RR 0.21 (0.05–0.84), P= 0.027) (Supplementary Table
6). A similar distribution of mSMART risk status was observed in
association with the presence (52.9%) or absence (57.1%) of
phenotypic meta-cluster 1 (P= 0.67) (Fig. 3D). In a multivariate
model including the presence of meta-cluster 1 and standard risk
mSMART status, meta-cluster 1 retained its trend toward improved
OS (RR 0.28 (0.07–1.08), P= 0.063) (Supplementary Table 6).
We sought to validate the association of meta-cluster 1 with a

survival benefit in a larger patient cohort. Since an external CyTOF
dataset is not available, we utilized gene expression and clinical
outcome data from the APEX phase-3 MM clinical trial. Median
gene intensity scores were calculated for the genes that defined
the meta-cluster 1 protein signature: high PTPRC (CD45) and low
BCL-2 as well as high NFKBIA (IkBα), MYC and and IKZF3. A
combined meta-cluster 1 activity score was computed for each
sample as the summation of the ascending ranks of expression of

median gene intensities. To determine whether the meta-cluster 1
activity score was associated with clinical outcomes, we
performed survival analysis between patients with the highest
vs. the lowest meta-cluster 1 score. Patients with a low meta-
cluster 1 score were associated with poorer OS in comparison to
patients with a high meta-cluster 1 score (Log-rank hazards
ratio= 2.052 (95% CI 1.121–3.754; p= 0.018) (Fig. 4). Further, the
odds of no response (NR) vs. response (R) between the patients
with the lowest meta-cluster 1 score vs. the highest meta-cluster
1 score was 2.6786 (PGx responder status vs. meta-cluster 1 score;
Odds ratio (OR)= 2.6786; P= 0.0338; 95% CI 1.0781 to 6.6549),
indicating a low meta-cluster 1 score was associated with > 2.5-
fold higher cancer progression in MM patients compared to a high
meta-cluster 1 score.

DISCUSSION
Here we used single-cell CyTOF to characterize MM tumor
heterogeneity among 49 patient samples. Our goal was to detect
shared MM subpopulations associated with treatment response
and disease outcome across all patient samples. We employed
differential expression analysis to group similar clusters within
each patient sample so that we could compare phenotypic meta-
clusters among all patients. Using a random forest model, we
identified cells with similar marker expression patterns, allowing
us to identify 13 unique phenotypic meta-clusters. To the best of
our knowledge, this is the first study to evaluate subclonal
heterogeneity, characterized by the analysis of ~40 phenotypic
cell surface and intracellular markers using primary MM samples.
Despite significant heterogeneity, we found common patterns of
subclonal protein profiles that were shared across patients and are
correlated with clinical behavior. Evaluation of tumor proteomic
profiles may provide an opportunity for the identification of novel
protein-based biomarkers associated with disease state and

Fig. 4 Impact of Meta-cluster 1 score on overall survival in the
APEX trial. A A comparison of OS (days) in patients with low meta-
cluster 1 (green line) and in patients with high meta-cluster 1 (purple
line). B Top and bottom 20% meta-cluster 1 scores compared to
responder status.
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therapeutic response and may even open the possibility for
innovative protein-based therapeutic interventions.
Of the 13 phenotypic meta-clusters identified, meta-cluster 1

was the only meta-cluster that had a significant impact on
response to therapy and overall disease outcomes. This impact
was validated using the APEX 3 clinical trial. Meta-cluster 1 was
primarily characterized by a subpopulation of MM cells with
increased CD45 and reduced BCL-2 expression. Reduced abun-
dance of meta-cluster 1 was associated with poor treatment
response and survival. This observation is consistent with previous
studies demonstrating that patients with CD45 negative MM had
poorer OS compared to patients with CD45 positive MM,
suggesting that the CD45 negative MM phenotype may be a
marker of progressive disease [48, 49]. CD45 low or negative MM
cells have also been identified to have a higher engraftment
ability in mice compared to CD45 positive MM cells [50]. Of
interest, the CD45 positive MM cells have been previously
associated with low expression of the pro-survival protein BCL-2
along with an increased susceptibility to apoptosis [51], suggest-
ing that phenotypic meta-cluster 1 may be more sensitive to
treatment-related cell death. Our work also revealed increased
BCL-2 expression in RRMM, a finding that has previously not been
reported and may suggest an increased sensitivity to venetoclax
in this patient cohort. Further, since we show that BCL-2
expression correlates with t(11;14), the increased BCL-2 expression
in RRMM was not a reflection of a higher frequency of t(11;14) in
the RRMM group (NDMM: 35% t(11;14) vs. RRMM: 28% t(11;14)).
Consistent with previous studies [41, 52], we found that the

monoclonal CD38 antibody daratumumab interfered with the
CD38 antibody used in our CyTOF studies, precluding the reliable
use of CD38 for initial gating approaches and in the downstream
analysis of patients treated with daratumumab within 6 months
prior to sample collection. Remarkably, the exclusion of CD38 in
the reanalysis of our data appeared to primarily impact the
identification of phenotypic meta-cluster 8, characterized by the
highest CD38 expression, and the remaining 12 clusters main-
tained their phenotype identity independent of CD38 expression.
Future studies using alternative CD38 epitopes that do not
compete with daratumumab should be conducted. Although the
overall detection of surface CD38 was lower in samples obtained
from patients treated with daratumumab than in untreated
patients (Fig. 1C), two patients represented by the highest two
data points in the treatment cohort did not have reduced CD38
detection 2 and 4-months post treatment. Whether this was a
result of altered CD38 expression [40, 41] or a lack of antibody
interference by daratumumab remains unknown [41].
This study is limited by its retrospective nature owing to the use

of cryopreserved samples for CyTOF analysis and heterogeneity in
treatment regimens in the RRMM group (Supplementary Table 4).
Despite these limitations, we showed that MM samples display a
significant degree of complexity in protein expression, but that
subclonal structure is shared among patients. We identified 13
unique phenotypic meta-clusters across the 49 MM samples.
Several of the meta-clusters were associated with unique clinical
features and disease subtypes. The marker proteins of each
phenotypic meta-cluster may serve as therapeutic targets or
biomarkers which could be evaluated in future studies.

DATA AVAILABILITY
Requests regarding data availability not already shared in the supplementary material
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