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New therapeutics beyond amyloid-β and tau for the treatment
of Alzheimer’s disease
Feng Zhang1,2, Ru-jia Zhong1,2, Cheng Cheng1, Song Li1 and Wei-dong Le1,3

As the population ages, Alzheimer’s disease (AD), the most common neurodegenerative disease in elderly people, will impose social
and economic burdens to the world. Currently approved drugs for the treatment of AD including cholinesterase inhibitors
(donepezil, rivastigmine, and galantamine) and an N-methyl-D-aspartic acid receptor antagonist (memantine) are symptomatic but
poorly affect the progression of the disease. In recent decades, the concept of amyloid-β (Aβ) cascade and tau
hyperphosphorylation leading to AD has dominated AD drug development. However, pharmacotherapies targeting Aβ and tau
have limited success. It is generally believed that AD is caused by multiple pathological processes resulting from Aβ abnormality,
tau phosphorylation, neuroinflammation, neurotransmitter dysregulation, and oxidative stress. In this review we updated the recent
development of new therapeutics that regulate neurotransmitters, inflammation, lipid metabolism, autophagy, microbiota,
circadian rhythm, and disease-modified genes for AD in preclinical research and clinical trials. It is to emphasize the importance of
early diagnosis and multiple-target intervention, which may provide a promising outcome for AD treatment.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common form of dementia in
elderly people. Worldwide, ~50 million people were living with
dementia in 2019, and there are nearly 10 million new cases every
year. The total number of people with dementia is projected to
reach 152 million in 2050 [1]. As the population ages, AD will
undoubtedly impose significant social and economic burdens to
the world. Currently approved drugs for AD in clinical use, such as
cholinesterase inhibitors (ChEIs, including donepezil, rivastigmine,
and galantamine) and an N-methyl-D-aspartic acid (NMDA)
receptor antagonist (memantine), have therapeutic effects on
symptoms but do not effectively slow the progression of the
disease [2]. Although great efforts have been made to develop
new drugs for AD, current clinical trials have not yet yielded
promising results. Amyloid-β (Aβ)-targeted immunotherapies and
β-secretase (BACE1) inhibitors such as AN-1792 [3], bapineuzumab
[4], solanezumab [5], aducanumab [6], gantenerumab [7], verube-
cestat [8], atabecestat [9], lanabecestat [10], and elenbecestat
(E2609) [11] have shown a lack of efficacy in improving cognition
in AD patients. Only a few therapeutics targeting Aβ and tau are
currently still in clinical trials, including CAD106 [12], crenezumab
[13], AADvac1 [14], ABBV-8E12 [15], and BIIB092 [16].
Increasing evidence has shown that the pathogenesis of AD is a

complex pathological process. Senile plaques of deposited Aβ and
neurofibrillary tangles formed by hyperphosphorylated tau are the
two main pathological hallmarks of the AD brain. These

abnormally accumulated proteins can cause synaptic damage,
neuritic injury, and neuronal death, leading to neurodegeneration
and cognitive impairment [17, 18]. In addition to Aβ and tau
pathologies, evidence has also shown that chronic activation of
the immune system by these protein aggregations may result in
secretion of proinflammatory cytokines; chemokines; and neuro-
toxins including reactive oxygen species (ROS), nitric oxide, and
excitatory amino acids, which can cause further neuronal damage
and neurodegeneration [19, 20]. Excessive ROS production and
impaired antioxidant defense cause oxidative stress in the AD
brain, as evidenced by significantly increased oxidation products
of proteins, lipids, DNA and RNA [21]. Mitochondrial dysfunction
featuring reduced mitochondrial membrane potential, increased
permeability, and excessive ROS production has also been
reported in AD [22, 23]. Furthermore, the autophagy-lysosome
system that degrades Aβ and various forms of tau protein has
been found to be compromised in the AD brain [24].
On the other hand, acetylcholine is a major neurotransmitter in

brain areas including the cortex, basal ganglia, and basal forebrain,
and cholinergic transmission is critical for memory, learning,
attention, and other higher brain functions [25]. The cholinergic
hypothesis of AD pathogenesis suggests that dysfunction and
degeneration of cholinergic neurons in limbic and neocortical
systems contribute substantially to the memory and orientation
loss, behavioral alterations, and abnormal personality that arise in
AD patients [25]. Thus, ChEIs that increase the availability of
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acetylcholine at synapses are helpful for relieving symptoms of
AD. In addition to cognitive impairment, behavioral and psycho-
logical symptoms such as agitation, aggression, depression,
apathy, nighttime behaviors, and sleep disturbance are also
reported in AD patients [26]. New pharmacotherapeutics for
agitation and psychosis associated with AD, such as pimavanserin,
scyllo-inositol, and mibampator, are in clinical trials [27]. In this
article, we will focus on therapeutics for cognitive symptoms in AD
beyond Aβ and tau in preclinical research and in clinical trials. In
addition, since there is a strong correlation between sleep
disturbance and cognition [28], we will also discuss the new
development of sleep-related drugs to treat cognitive impairment
in AD. It is believed that with a better understanding of the
disease mechanisms of AD, more desirable and effective
therapeutics will be developed to slow or even reverse the
progression of AD.

THERAPEUTICS REGULATING NEUROTRANSMITTERS
New ChEIs
Based on the cholinergic hypothesis of AD, acetylcholine
enhancers (including ChEIs) that can increase the level of
acetylcholine at synapses may be helpful for AD treatment.
Analogs and derivatives of the approved drugs donepezil and
tacrine showed potential cholinesterase (ChE) inhibitory activity. A
novel donepezil analog hybrid compound containing 2,3-dihydro-
5,6-dimethoxy-1H-inden-1-one and piperazinium salts, which have
inhibitory effects on acetylcholinesterase (AChE) and butyrylcho-
linesterase (BChE), was less toxic than donepezil and inhibited
BChE more effectively than donepezil or galantamine [29]. Tacrine-
hydroxamate derivatives exhibited inhibitory activity against ChEs
and histone deacetylase, and they also showed suppressive effects
on Aβ42 self-aggregation and Aβ fibril formation [30].
Some natural compounds and herbal extracts are ChEIs that

might be candidates for AD treatment. ZT-1, a novel analog of
huperzine A, was well-tolerated by healthy volunteers [31]. Two
benzophenanthridine alkaloids from Zanthoxylum rigidum root
extract, namely, nitidine and avicine, showed dual inhibition of
AChE and BChE and presented moderate Aβ42 anti-aggregation
activity and monoamine oxidase A inhibition [32]. Helminthos-
porin, an anthraquinone isolated from Rumex abyssinicus Jacq.,
showed dual inhibitory action on AChE and BChE along with high
blood–brain barrier permeability [33].
Other potential ChEIs are also under investigation. Methane-

sulfonyl fluoride, an irreversible inhibitor of AChE, was proven to
be well-tolerated by healthy volunteers in a randomized placebo-
controlled Phase I study [34]. 3-Arylbenzofuranone derivatives
with AChE inhibitory activity similar to that of donepezil can also
block monoamine oxidase B [35]. A bambuterol derivative lacking
one of the carbamoyloxy groups on the benzene ring exhibited
excellent ChE inhibition and the potential to permeate the
blood–brain barrier, as did its analogs [36].

New NMDA receptor antagonists
Excitatory amino acid signaling, such as excitatory glutamatergic
neurotransmission via NMDA receptors, is critical for synaptic
plasticity and the survival of neurons. Excessive NMDA receptor
activity results in excitotoxicity, which is mediated by excessive
Ca2+ entry into neurons and causes gradual loss of synaptic
function, neuronal death, and neurodegeneration in the AD brain
[37]. Thus, NMDA receptor antagonists are potent anti-AD drugs.
RL-208, a new NMDA receptor blocker, was shown to improve
synaptic plasticity and decrease the protein levels of cyclin-
dependent-like kinase-5 (CDK5) and the p25/p35 ratio, conse-
quently lowering the phosphorylation of tau [38]. JCC-02, N-(3,5-
dimethyladamantan-1-yl)-N′-(3-chlorophenyl) urea, is a novel
NMDA receptor inhibitor for the treatment of AD, exhibiting
blood–brain barrier permeability and anti-AD activity that

improves cognitive and memory function [39]. A synthesized
heterodimer (DT-010) of components isolated from the Chinese
herbs Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort.
showed a protective effect against excitotoxicity by blocking the
NMDA receptor in vitro [40]. Another compound, rhynchophylline,
isolated from the Chinese herb Uncaria rhynchophylla, also
showed inhibitory activity against NMDA receptors [41].

Adrenoceptor agonists
Guanfacine, an α-2A-adrenoceptor agonist that acts at postsynap-
tic α-2A receptors on prefrontal cortex spines, can strengthen the
connectivity of the prefrontal cortex and improve its cognitive
function by inhibiting the opening of potassium channels
by cAMP [42]. A randomized clinical trial showed that
guanfacine failed to improve prefrontal cognitive function in
older individuals [42].

5-Hydroxytryptamine (5-HT) receptor antagonists
5-Hydroxytryptamine (5-HT) receptors in cortical and limbic areas
are involved in cognition and emotional regulation [43]. 5-HT6
receptor blockade may induce acetylcholine release and restore
acetylcholine levels [44]. 5-HT6 receptor antagonists were shown
to have cognitive enhancing properties, with a modest side-effect
profile [45]. However, idalopirdine, a selective 5-HT6 receptor
antagonist, did not improve cognition compared with placebo in
three Phase III randomized clinical trials including 2525 patients
[46]. Two other 5-HT6 receptor antagonists, intepirdine and SAM-
760, also failed to improve cognition in AD patients when
compared with placebo in Phase II and III trials [45, 47]. SUVN-502,
a novel orally active 5-HT6 receptor antagonist meant to be used
as an adjunct to donepezil and memantine, is now under
investigation [45].

OTHER NEW THERAPEUTICS
Gut microbiota regulators
The gut microbiota, composed of a large number of microorgan-
ism species, is known to be associated with cognitive decline and
AD [48, 49]. The gut microbiota plays very important roles in
immune system development, barrier fortification, vitamin pro-
duction, and nutrient absorption [48]. A clinical trial indicated that
probiotic supplementation could improve cognitive function and
mood in community-dwelling elderly individuals [50]. Sodium
oligomannate (GV-971) is an orally administered mixture of acidic
linear oligosaccharides derived from marine brown algae [51]. GV-
971 was developed by Shanghai Green Valley Pharmaceuticals for
the treatment of AD and was approved by China’s regulators for
the treatment of mild-to-moderate AD in November 2019 [51]. A
study reported that GV-971 could remodel the gut microbiota by
decreasing the concentrations of phenylalanine and isoleucine in
the feces and blood and reducing T helper 1-related neuroin-
flammation in the brain [52]. In addition, GV-971 can easily
penetrate the blood–brain barrier to directly bind to Aβ and
inhibit Aβ fibril formation [51].

Anti-inflammatory drugs
Neuroinflammation is considered an important pathological
mechanism that contributes to the pathogenesis of AD. Chronic
activation of the immune system results in the release of
proinflammatory cytokines and toxic factors [19]. Thus, anti-
inflammatory drugs may also be worth considering as potential
anti-AD therapeutics [53]. A meta-analysis showed that the use of
nonsteroidal anti-inflammatory drugs (NSAIDs) was significantly
associated with a reduced risk of AD in observational studies;
however, in a single randomized controlled trial, NSAIDs showed
no significant effect on AD risk [54]. Minocycline, an anti-
inflammatory tetracycline, was able to protect against the toxic
effects of Aβ in vitro and in animal models of AD but did not delay
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the progress of cognitive or functional impairment in AD patients
in a clinical trial [55].

Lipid metabolism regulators
Changes in lipid metabolism, apolipoproteins, and leptin are
correlated with AD [56]. The apolipoprotein ɛ4 isoform variant is a
major genetic risk factor for late-onset AD [57].
Fish oil rich in ω-3 long-chain polyunsaturated fatty acids is

believed to be beneficial for cognitive function [58]. A study of
1293 older subjects with high cardiovascular risk found that
multidomain intervention combined with polyunsaturated fatty
acids might improve orientation and episodic memory [59].
However, a 3-year multicenter trial of 1680 participants showed
that polyunsaturated fatty acids had no significant effects on
cognitive decline [60].
Statins are a group of drugs commonly used to lower

cholesterol levels in the blood. A preclinical study found that
statins were able to reduce Aβ levels in yeast [61], and meta-
analyses reported that statins might reduce dementia risk and
have beneficial effects on Mini-Mental State Examination scores in
AD patients [62, 63]. However, other studies and meta-analyses
implied that there was insufficient evidence supporting the
efficacy of statins in treating AD or lowering AD risk [64–66].

Autophagic modifiers
Autophagy is a cellular degradation system that clears aggregated
proteins and dysfunctional organelles [67]. Autophagy in microglia
is able to degrade extracellular Aβ fibrils, and the autophagy-
lysosome system can degrade tau protein in various forms [68].
Thus, the use of autophagy inducers to promote the degradation
of Aβ or tau may be a potential therapy for AD. Rapamycin and its
analogs methylene blue and trehalose were shown to protect
against Aβ and tau in AD animal models [69]. Quercetin-modified
nanoparticles were also reported as a potential autophagy inducer
to treat AD [70].

Circadian rhythm regulators
Epidemiological studies have shown that ~40% of AD patients
have various types of sleep disorders [28, 71]. Evidence in animals
also indicated that circadian rhythm and sleep disturbances were
associated with cognitive impairment and Aβ production and
removal [72, 73]. Thus, therapeutics targeting circadian rhythm
and sleep regulation might be beneficial for AD patients.
Melatonin is a hormone mainly generated in the pineal gland
that regulates the circadian rhythm and shows neuroprotective
effects against tau pathology [74]. A 6-month multicenter clinical
trial showed that prolonged-release melatonin, compared with
placebo, had positive effects on cognitive functioning and sleep
maintenance in AD patients. However, an earlier study showed
that melatonin was not effective for the treatment of insomnia in
AD patients [75]. Ramelteon, a melatonin agonist, was shown to
provide protection against delirium in elderly subjects [76].
Suvorexant, an orexin receptor antagonist that promotes sleep
via selective antagonism of orexin receptors, was reported to
ameliorate cognitive impairments and AD pathology in a mouse
model of AD [77] and improve total sleep time and insomnia in
patients with probable AD [78].

Natural compounds
The Ginkgo biloba extract EGb 761 is widely used in the treatment
of neurological disorders, including AD. Studies showed that EGb
761 could significantly improve cognitive function, neuropsychia-
tric symptoms, and activities of daily living in patients with mild-
to-moderate dementia and relieve symptoms in patients with
mild cognitive impairment (MCI) [79]. Ginkgolide A, another
compound extracted from Ginkgo biloba, was found to
attenuate Aβ-induced abnormal depolarization and inhibit NMDA
receptors [80].

Curcumin, a free radical scavenger with anti-inflammatory
properties and the ability to permeate the blood–brain barrier,
was reported to downregulate glycogen synthase kinase-3β (GSK-
3β) and CDK5 [81]. Dietary supplementation with curcumin could
reduce circulating levels of GSK-3β and alleviate markers related
to insulin resistance to reduce the risk of type 2 diabetes mellitus
and AD [82].
Coconut oil is a source of ketone bodies that can provide direct

cellular energy. A randomized controlled trial showed that a
Mediterranean diet enriched with coconut oil seemed to improve
cognitive function in patients with AD; the effect differed by
gender [83].

Receptor for advanced glycation endproducts (RAGE) inhibitors
The receptor for advanced glycation endproducts (RAGE) is a
receptor that plays important roles in Aβ clearance, β- and γ-
secretase regulation, and activation of the inflammatory response
and oxidative stress in AD [84]. Azeliragon (TTP488) is an orally
bioavailable small-molecule inhibitor of RAGE that showed
promising results in preclinical and Phase IIb studies [85].
However, a Phase III trial of azeliragon was terminated due to a
lack of efficacy. Another Phase III trial in mild AD is still underway.

σ-1 receptor agonists
Activation of the σ-1 receptor was shown to have neuroprotec-
tive effects and could reduce key pathophysiological processes in
AD, including hyperphosphorylation of tau and oxidative stress
[86]. Blarcamesine (ANAVEX2-73), a selective σ-1 receptor agonist,
was reported to exhibit good safety and tolerability in patients
with mild-to-moderate AD in a Phase IIa clinical study [87]. Phase
IIb/III clinical studies are ongoing.
AVP-786 is a compound consisting of a combination of

deuterated (d6)-dextromethorphan and an ultralow dose of
quinidine; in vitro and in animal models, this drug was reported
to be a σ-1 receptor agonist, a serotonin reuptake and glutamate
release inhibitor, and an NMDA receptor antagonist [88]. It is
now in clinical trials for the treatment of agitation in patients
with AD [88].

GENE AND CELL THERAPIES
Antisense therapy
Antisense therapy uses antisense oligonucleotides (ASOs) to
target mRNAs in order to preferentially alter mRNA expression.
An ASO against Aβ precursor protein was reported to improve
learning and memory and reduces neuroinflammatory cytokines
in a mouse model of AD. Another study demonstrated that an ASO
targeting histone deacetylase 2 (HDAC2) mRNA could improve
memory in mice [89]. The codelivery of an antisense transcript
(short hairpin RNA) against BACE1 and an antioxidant was also
shown to remarkably improve the spatial learning and memory
capabilities of AD mice [90].

MicroRNA (miR) therapy
MicroRNAs (miRs) are short, single-stranded RNAs that modulate
protein expression. They play regulatory roles in neurite out-
growth, dendritic spine morphology, neuronal differentiation, and
synaptic plasticity [91]. Preclinical studies indicated that miRs
including miR-298, miR-31, miR-146a, miR-34a-5p, and miR-125b-
5p showed anti-AD properties [92–95].

Stem cell therapy
Mesenchymal stem cell (MSC)-based stem cell therapy can be
used in the treatment of AD by various mechanisms, including
reduction of neuroinflammation, removal of Aβ and tau, functional
recovery of autophagy, restoration of blood–brain barrier function,
augmentation of acetylcholine levels, and restoration of mito-
chondrial transport [96]. MSCs were reported to improve cognitive
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Table. 1. New therapeutics beyond amyloid-β and tau for Alzheimer’s disease.

Classification Drug Mechanism of action Status

ChEIs Donepezil analog ChE inhibition In preclinical study

Tacrine-hydroxamate derivatives ChE inhibition; anti-Aβ aggregation; anti-
inflammation

In preclinical study

ZT-1 Huperzine A analogue; cholinesterase
inhibition

In clinical trial (one trial: completed)

Nitidine and avicine Derived from Zanthoxylum rigidum; ChE and
MAO-A inhibition; anti-Aβ aggregation

In preclinical study

Helminthosporin Derived from Rumex abyssinicus Jacq.; ChE
inhibition

In preclinical study

Methanesulfonyl fluoride ChE inhibition In phase I trial

3-Arylbenzofuranone derivatives ChE and MAO-B inhibition; antioxidant In preclinical study

Bambuterol derivative ChE inhibition In preclinical study

NMDA receptor
antagonist

RL-208 NMDA receptor block; tau phosphorylation
inhibition

In preclinical study

JCC-02 NMDA receptor block In preclinical study

DT-010 NMDA receptor block In preclinical study

Rhynchophylline Derived from Uncaria rhynchophylla; NMDA
receptor block

In preclinical study

Adrenoceptor agonists Guanfacine α-2A-adrenoceptor activation In clinical trial (one phase III trial:
recruiting)

5-HT6 receptor
antagonists

Idalopirdine 5-HT6 receptor block Lack of efficacy (one phase I trial:
completed; one phase I trial: terminated;
four phase III trials: completed)

Intepirdine 5-HT6 receptor block Lack of efficacy (one phase I trial:
completed; five phase II trials:
completed; one phase III trial:
completed; one phase III trial:
terminated)

SAM-760 5-HT6 receptor block Lack of efficacy (one phase I trial:
completed; one phase II trial:
terminated)

SUVN-502 5-HT6 receptor block In clinical trial (one phase II trial:
completed, one trial: available)

Gut microbiota
regulators

Probiotic supplementation Gut microbiota regulation In clinical trial

GV-971 Gut microbiota regulation, anti-
neuroinflammation; Aβ inhibition

Approved by China’s regulator

Anti-
inflammatory drugs

NSAIDs Anti-inflammation Lack of efficacy; associated with a
reduced risk of AD (one phase II/III trial:
completed; one phase IV trial:
completed)

Minocycline Anti-inflammation Lack of efficacy (one phase II trial:
completed)

Lipid metabolism
regulators

Polyunsaturated fatty acids Neuroprotective properties Contradictory results (one trial:
completed)

Statins Lipid metabolism regulation; anti-Aβ Contradictory results (one phase I/II trial:
completed; five phase II trials:
completed; two phase III trials:
completed; three phase IV trials:
completed)

Autophagic modifiers Rapamycin and its analogs,
methylene blue, trehalose,
quercetin-modified nanoparticles

Autophagy inducement; anti-Aβ; anti-tau In preclinical study

Circadian rhythm
regulators

Melatonin Neuroprotection; anti-tau phosphorylation Contradictory results (one phase II trial:
completed; one phase III trial
completed; one trial: recruiting)

Ramelteon Melatonin agonist Protection against delirium (one phase II
trial: completed)

Suvorexant Orexin receptor antagonist Beneficial for insomnia in AD (one phase
III trial: completed)
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deficits and alleviate neuropathology in animal models of AD [97].
A combination of stem cell transplantation and neurotrophic
factors could replenish the target neurons and provide an
improved microenvironment with neurotrophic factors for nerve
repair and regeneration [98]. A recent study showed that
intranasal delivery of the MSC secretome also displayed multilevel
therapeutic potential for AD [99]. A Phase I clinical trial indicated
that administration of MSCs into the hippocampus and precuneus
by stereotactic injection was feasible, safe, and well-tolerated in
nine patients with mild-to-moderate AD [100].

NONPHARMACOTHERAPEUTICS
Nonpharmacological interventions as supplements or substitutes
for pharmacological treatment are an important part of therapy
for AD [101].

Hyperbaric oxygen therapy
Increasing evidence indicates that hypoxia may affect many
aspects of the pathogenesis of AD, including Aβ and tau
pathology, autophagy, neuroinflammation, oxidative stress, and
mitochondrial function [102]. Hyperbaric oxygen treatment to
improve tissue oxygen supply and hypoxic conditions has been
reported to ameliorate cognitive functions and enhance brain
glucose metabolism in AD and aMCI patients [103].

Brain stimulation
High-frequency repetitive transcranial magnetic stimulation over
the left and subsequently the right dorsolateral prefrontal cortices

produced an improvement in activities of daily living, depression,
and general cognitive function [104]. Transcranial direct current
stimulation can facilitate cortical excitability and thereby neuro-
plasticity [105, 106]. Deep brain stimulation delivered to the
hypothalamus or the fornix was reported to drive activity in mesial
temporal lobe structures and modulate limbic activity [107, 108].

Other nonpharmacological interventions
A number of studies reported that cognitive stimulation, cognitive
training, and cognitive rehabilitation improved well-being for both
AD patients and family caregivers [109]. Light therapy attenuated
cognitive deterioration and functional limitations, and it also
ameliorated depressive symptoms [110]. Moreover, other non-
pharmacological interventions, such as regular and long-term
exercise [111, 112], acupuncture [113], musical interventions [114],
aromatherapy [115], and vagus nerve stimulation [116], may have
positive effects on cognitive and noncognitive function in AD
patients.

CONCLUSION
Since clinical trials of Aβ immunotherapies and BACE1 inhibitors
have had limited success in recent years, the Aβ cascade
hypothesis has been challenged; however, the new drugs
targeting tau have also failed to show any promising results to
date. Early diagnosis with neuro-biomarkers and early intervention
might be a potential strategy to stop the Aβ cascade before it
produces symptoms. Therapeutics beyond Aβ and tau, including
novel neurotransmitter regulators, anti-neuroinflammation drugs,

Table 1. continued

Classification Drug Mechanism of action Status

Natural compounds EGb 761 Derived from Ginkgo biloba; antioxidant;
neuroprotective properties

Beneficial effect (one phase I/II trial:
completed; one phase II trial:
completed; one phase II trial:
terminated; one phase III trial:
completed; two phase IV trials:
completed)

Ginkgolide A Derived from Ginkgo biloba; anti-Aβ; NMDA
receptor block

In preclinical study

Curcumin Anti-inflammation; GSK-3β and CDK5
inhibition

In clinical trial (one phase I/II trial:
completed; one phase II trial:
completed; one phase II trial: active)

Coconut oil Source of cellular energy In clinical trial (one phase II/III trial:
terminated)

RAGE inhibitors Azeliragon (TTP488) RAGE inhibition; anti-Aβ; secretase
regulation; anti-inflammation

In clinical trial (two phase III trials:
terminated; one phase II, trial: recruiting)

σ-1 receptor agonists Blarcamesine (ANAVEX2-73) σ-1 receptor activation In phase II trial (two phase II/III trials:
recruiting, one phase II trial: completed)

AVP-786 σ-1 receptor activation; neurotransmitter
regulation

In clinical trial for agitation (two phase III
trials: completed, three phase III trials:
recruiting)

Antisense therapy ASOs Altering mRNA expression In preclinical study

MicroRNA therapy miR-298, miR-31, miR-146a, miR-
34a-5p, miR-125b-5p

Anti-Aβ; anti-tau; targeting BACE1 In preclinical study

Stem cell therapy Mesenchymal stem cells Anti-inflammation, Aβ and tau removal,
functional recovery of autophagy, brain
blood barrier function recovery, increasing
acetylcholine level, and recovery of
mitochondrial transport

In clinical trial (three phase I trials:
recruiting, three phase I trial: completed,
one phase II trial: recruiting, and other
four trials)

Data of clinical trials come from the U.S. National Library of Medicine (ClinicalTrials.gov).
Aβ amyloid β, AD Alzheimer’s disease, ASOs antisense oligonucleotides, BACE1 β-secretase, BDNF brain-derived neurotrophic factor, CDK5 cyclin-dependent-like
kinase-5, ChE cholinesterase, ChEIs cholinesterase inhibitors, HT hydroxytryptamine, GSK-3β glycogen synthase kinase-3β, MAO monoamine oxidase, MCI mild
cognitive impairment, miR microRNA, NGF nerve growth factor, NMDA N-methyl-D-aspartic acid, NSAIDs nonsteroidal anti-inflammatory drugs, RAGE receptor
for advanced glycation endproducts.
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multitargeted treatment, natural compounds, and neurogen-
esis inducers, may hold promise for the treatment of AD (Table 1).
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