
REVIEW ARTICLE

The impact of cannabinoid type 2 receptors (CB2Rs) in
neuroprotection against neurological disorders
Qing Xin1,2, Fei Xu3, Devin H. Taylor4, Jing-fu Zhao1 and Jie Wu1

Cannabinoids have long been used for their psychotropic and possible medical properties of symptom relief. In the past few years,
a vast literature shows that cannabinoids are neuroprotective under different pathological situations. Most of the effects of
cannabinoids are mediated by the well-characterized cannabinoid receptors, the cannabinoid type 1 receptor (CB1R) and
cannabinoid type 2 receptor (CB2R). Even though CB1Rs are highly expressed in the central nervous system (CNS), the adverse
central side effects and the development of tolerance resulting from CB1R activation may ultimately limit the clinical utility of CB1R
agonists. In contrast to the ubiquitous presence of CB1Rs, CB2Rs are less commonly expressed in the healthy CNS but highly
upregulated in glial cells under neuropathological conditions. Experimental studies have provided robust evidence that CB2Rs
seem to be involved in the modulation of different neurological disorders. In this paper, we summarize the current knowledge
regarding the protective effects of CB2R activation against the development of neurological diseases and provide a perspective on
the future of this field. A better understanding of the fundamental pharmacology of CB2R activation is essential for the
development of clinical applications and the design of novel therapeutic strategies.
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INTRODUCTION
The endocannabinoid (eCB) system is defined as the ensemble
of the two 7-transmembrane-domain G-protein-coupled receptors
(CB1R and CB2R) for Δ(9)-tetrahydrocannabinol; their two
most studied endogenous ligands, namely, the “endocannabi-
noids” N-arachidonoylethanolamine (anandamide) and 2-arachid-
onoylglycerol (2-AG); and the enzymes responsible for endocan-
nabinoid metabolism [1]. The eCB system has recently attracted
attention for its roles in various behavioral and brain functions and
as a therapeutic target for neuropsychiatric, neurodegenerative,
and neurological diseases [2–4]. However, these therapeutic
efforts have been marked by disappointment, especially in
relation to the serious psychiatric side effects, including anxiety,
depression and even suicidal ideation from activation of CB1Rs
[5, 6], which have limited the therapeutic use of drugs that
activate or inactivate this receptor. Accumulating lines of evidence
have shown the therapeutic potential of CB2R ligands and
indicated new possibilities for safe targeting of this endocanna-
binoid system. CB2R is a G-protein-coupled receptor that was
cloned in 1993 [7]. Since then, the expression and function of
CB2Rs in the brain have been debated. Early studies suggested
that CB2R was absent in the brain because mRNA transcripts of
CB2Rs were not detected in brain tissues with various methods [8–
11]. Based on these findings, CB2R has been considered a
“peripheral” cannabinoid receptor. Recently, this concept was
challenged by the identification of CB2Rs throughout the central

nervous system (CNS). Interested readers are referred to the
excellent reviews written by Atwood et al. [12], Jordan et al. [13],
Cristino et al. [4], and Reddy et al. [14] for comprehensive
overviews regarding the progress of research on the cannabinoid
system, especially CB2Rs, in the CNS. Compared with CB1Rs, brain
CB2Rs exhibit several unique features. (1) CB2R has lower
expression levels than CB1R in the brain, suggesting that CB2Rs
may not mediate the effect of cannabis under normal physiolo-
gical conditions. (2) CB2R is highly inducible; thus, under some
pathological conditions (e.g., addiction, inflammation, anxiety,
etc.), CB2R expression is enhanced in the brain [15]. This suggests
a close relationship between the alteration of CB2R expression/
function and various psychiatric and neurological diseases. (3)
CB2Rs have a unique distribution. Given that they are chiefly
expressed in neuronal somatodendritic areas (postsynaptic) [16],
the activation of CB2Rs may lead to opposing effects from those of
CB1Rs, as CB1Rs are predominantly expressed on neuronal
terminals, especially on GABAergic terminals (presynaptic) [17].
Considering these characteristics, CB2Rs appear to be an
important substrate for neuroprotection [18], and targeting CB2Rs
will likely offer a novel therapeutic strategy for treating
neuropsychiatric and neurological diseases without typical CB1R-
mediated side effects (including depression, anxiety, and suicidal
thoughts) [19, 20]. Thus, an urgent need to understand the
functional effects of CB2Rs in the brain has emerged. Extensive
evidence supports the implication of the mesocorticolimbic
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dopamine (DA) system as a key brain circuit involved in a number
of drug addictions. Alteration of the mesocorticolimbic DA circuit
is the major cellular mechanism involved in promoting or
preventing drug reward, dependence, and addiction. Emerging
evidence demonstrates that CB2Rs mediate important modula-
tions in drug-seeking behaviors in animals, including behaviors
associated with cocaine, alcohol, and nicotine [21–23]. This
suggests a significant impact of brain CB2Rs on animal drug
reward, dependence, and addiction. Given the lack of psychoac-
tivity demonstrated by selective CB2R agonists, CB2R ligands have
been developed as new candidates for treating a variety of
neurological and psychiatric disorders, including pain, neuroin-
flammation, stroke, Alzheimer’s disease (AD), Parkinson’s disease
(PD), and Huntington’s disease (HD). At the practical level, three
medicines that activate the cannabinoid receptors CB1R/CB2R are
now used in clinics: Cesamet (nabilone), Marinol (dronabinol; Δ9-
tetrahydrocannabinol [Δ9-THC]), and Sativex (Δ9-THC with canna-
bidiol). To date, there is no highly selective CB2R agonist available
in clinical medicine. However, significant attention is currently
being paid to the possibility of developing medicines from
compounds that can activate CB2Rs at doses that induce little or
no CB1R activation. This research was triggered by the evidence
that many of the adverse effects induced by mixed CB1R/CB2R
agonists result from CB1R activation, rather than from CB2R
activation, and that CB2R-selective agonists have a number of
important potential therapeutic applications [24]. Many highly
selective compounds of various chemotypes have been identified,
and several companies have initiated clinical trials. Therefore, we
anticipate the emergence of new drugs from CB2R modulations
once a better understanding of the cannabinoid receptors is
gained. In this paper, we first provide a broad overview of CB2R
expression and function in the brain, then discuss preclinical and
clinical studies of CB2R-based drugs as potential therapeutic
agents for a variety of neurological disorders in detail.

EXPRESSION OF CB2RS IN THE CENTRAL NERVOUS SYSTEM
CB2Rs were formerly considered to be exclusively peripheral
cannabinoid receptors, restricted mainly to peripheral tissues and
particularly immune cells, regulating immune responses and
inflammation [8, 9]. Although initial studies were not able to
detect the expression of CB2Rs in the brain, compelling evidence
has demonstrated decentralized expression of CB2Rs, with their
presence detected on neuronal, glial, and endothelial cells in
various brain regions, including the cerebral cortex, hippocampus,
thalamus, midbrain, pons, medulla, brain stem and cerebellum
[25–31]. In neurons, CB2R’s immunoreactivity was observed in
somata, as well as large and medium-sized dendrites [32, 33].
Labeling of CB2Rs was also found to be associated with the
plasma membrane in immunoreactive glial and endothelial cells
[25, 26, 29].
Moreover, there are clear species-based differences in CB2Rs

among humans, mice, and rats in terms of mRNA size in tissues
and cell lines. Human CB2R (hCB2R) and mouse CB2R (mCB2R)
genes are transcribed to yield two isoforms each, that is, hCB2A
and hCB2B and mCB2A and mCB2B, respectively, while the rat
CB2R (rCB2R) gene is transcribed to yield at least four isoforms,
namely, rCB2A, rCB2B, rCB2C, and rCB2D [34]. The species-based
differences in CB2R gene and receptor expression in the brain may
partly explain why initial studies were not able to detect CB2R
expression in both human and rodent brains. Human CB2A mRNA
expression was observed predominantly in the testis, where the
expression level was more than 100-fold lower that in the spleen
and leukocytes. Human CB2A expression was also observed in the
human caudate nucleus, amygdala, hippocampus, cerebellum,
nucleus accumbens, putamen, and cortex of the brain, with similar
levels of expression in peripheral tissues, such as muscle and
spleen. In contrast, CB2B mRNA could not be detected in brain

regions at a significant level and is predominantly expressed in
spleen and leukocytes [35]. In mice, both mCB2A and mCB2B
isoform transcripts were detected in brain regions such as the
frontal cortex, striatum, and brain stem at ~1% of the spleen
expression level [34, 35]. rCB2R mRNA was also present in some
brain areas (retina, cerebellum, cortex, and brainstem) of rats
[30, 36]. In situ hybridization RNAscope assays found higher levels
of CB2R mRNA in different brain regions and cell types in mice
than in rats. CB2R mRNA levels in tyrosine hydroxylase (TH)-
positive dopamine (DA) neurons and TH-negative cells were very
similar in mouse ventral tegmental areas (VTAs) but were
significantly lower in dopamine transporter (DAT)-positive DA
neurons than DAT-negative neurons in rat VTAs, suggesting
species-based differences in CB2R mRNA expression in VTA DA
neurons [37].
Generally, the expression of CB2Rs in the CNS has been found in

many different types of cells, e.g., neurons [38], glial cells [39, 40],
endothelial cells [26], retinal ganglion cells [36, 41] and neural
progenitor cells [42]. The expression data of CB2R mRNA and
protein in the CNS have been compiled in both Tables 1 and 2,
from general distribution to cellular and subcellular localization.

NEUROPROTECTIVE ROLE OF CB2RS IN ISCHEMIC STROKE
Stroke is the second most common cause of death and the third
leading cause of disability worldwide (see Tables 3 and 4), and
ischemic stroke accounts for ~87% of all strokes [43]. The final
consequence of stroke is patient death or disability characterized
by multiple cognitive, motor and psychiatric problems associated
with a major sanitary and socioeconomic burden. Despite
significant advances in the development of neuroprotective
compounds for ischemic stroke, recombinant tissue plasminogen
activator (rt-PA) and endovascular thrombectomy are currently
available to only a small subpopulation of stroke victims [44].
Considering the critical role of inflammation in the pathogenic

progression of postischemic neuronal damage and the anti-
inflammatory therapeutic potential of CB2Rs observed in several
peripheral organs and CNS diseases, CB2R has drawn great
attention as a potential therapeutic target for the treatment of
ischemic stroke. Early activation of CB2Rs has been observed in
animal models of stroke, and the binding levels of the CB2R tracer
[11C] NE40 were significantly higher in the cerebral cortical region
on the lesion side than on the non-lesioned side in a
photothrombotic stroke model [45]. Moreover, the selective
CB2R agonists (O-3853, O-1966) caused a reduction in white
blood cell rolling and adhesion along cerebral vascular endothelial
cells, reduced infarct volumes and improved motor function in a
mouse focal ischemia/reperfusion model [46]. Treatment with O-
1966 contributed to protecting the brain through the attenuation
of cerebral microcirculatory dysfunction, such as increased
leukocyte/endothelial interactions, upregulation of adhesion
molecule expression and disruption of the blood-brain barrier
(BBB) [47]. In addition, it has been shown that the CB2R agonist
JWH-133 protects against cerebral ischemia by inhibiting the
recruitment of neutrophils to brain endothelial cells and the
chemotaxis of neutrophils [48], ameliorating mitochondrial
depolarization through modulation of AMPK/CREB signaling [49]
and suppressing hypoxia-induced activation of the NF-κB-
dependent neuroinflammatory pathway in microglial cells [50].
Recent research demonstrated, in a gerbil model of transient
cerebral ischemia, that N-linoleyltyrosine, as an anandamide
analog, could improve motor coordination, alleviate learning
and memory impairments, attenuate ischemia-induced neural loss
in the hippocampus and decrease inflammation in mice via the
PI3K/Akt signaling pathway by activating CB2R [51].
Some studies have suggested that the effectiveness of CB2R

agonists in animal models of stroke is affected by treatments.
Delayed treatment with a CB2R agonist, AM1241, failed to
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suppress brain damage after stroke. In contrast, pretreatment with
AM1241 significantly reduced the area of infarction and neurolo-
gical deficits [52]. Similar reports have also indicated that
pretreatment with O-1966 was protective against cognitive
impairments and neuronal tissue damage after permanent
cerebral ischemia but may also influence the neuronal or glial
function of learning and memory circuits in the uninjured brain
[53]. CB2Rs in microglial cells following hypoxia-ischemia (HI)
insult act as a neuroprotective mechanism to prevent inflamma-
tion mediated through modulation of the inflammation-related
HIF-1α/TIM-3 signaling pathway [54]. Furthermore, CB2Rs were
also found to be fundamental for driving neurogenesis by
promoting neuroblast migration toward the boundary of the
infarct area, increasing the number of new cortical neurons and
improving functional outcome after stroke [55]. Regarding the
underlying molecular mechanisms, CB2R activation has been
shown to inhibit neuroinflammation, attenuate neuronal tissue
damage, drive neurogenesis and improve motor function and
memory impairment. Overall, the neuroprotective effects of CB2Rs
in ischemic stroke pathogenesis present a novel promising
therapeutic strategy that might overcome the limitations of
current stroke treatment.

NEUROPROTECTIVE ROLE OF CB2RS IN ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is the most common progressive
neurodegenerative disease in the aged population and is
characterized by abnormal accumulation of β-amyloid (Aβ) in
senile plaques in the brain. The excessive deposition of Aβ triggers
neurodegeneration, synaptic dysfunction, inflammation, and
microvascular alterations, which can eventually lead to cognitive
impairment, memory loss, and behavioral changes [56].
Emerging evidence indicates the involvement of CB2Rs in the

pathological progression of AD. There is a great deal of
experimental evidence demonstrating that CB2R is expressed at
very low turnover rates in the healthy CNS, but the expression of
CB2Rs is highly induced in plaque-associated microglial cells and
astrocytes in brain tissues from AD patients and in genetic mouse

models expressing pathogenic variants of amyloid precursor
protein (APP) [57–60]. Interestingly, it seems that CB2R correlates
with two relevant AD molecular markers, namely, Aβ42 levels and
senile plaque score, even though cognitive status shows no
correlation [61]. Moreover, CB2Rs might be a suitable target for
the development of PET radiotracers that could serve as a
biomarker for neuroinflammation in the early preclinical stages of
AD, when no significant neuronal loss has yet developed [62].
Previously, it was observed that a lack of CB2Rs enhanced the

level of Iba1 staining and exacerbated soluble Aβ42 and plaque
deposition, which might confirm the constitutive role of CB2Rs in
reducing amyloid plaque pathology in AD [63]. Pharmacological
activation of CB2Rs with JWH-015 was also able to induce the
removal of Aβ plaques from human AD tissue sections by human
THP-1-derived macrophages via inhibition of the secretion of IL-1β
and TNF-α [64]. The specific CB2R agonist JWH-133 could improve
cognitive impairment, inhibit neuroinflammation and oxidative
stress responses, and lower tau hyperphosphorylation in the
vicinity of Aβ plaques when administered presymptomatically
[65]. Moreover, JWH-133 could also improve the endothelial-
dependent relaxations impaired by Aβ and exert vasodilatory
effects that were maintained in Tg APP mice, thus being beneficial
in the treatment of AD [66]. Similarly, pharmacological studies in
rodents have also identified a crucial role of CB2Rs in AD-
associated inflammatory processes, demonstrating that treatment
with 1-((3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl) carbo-
nyl) piperidine (MDA7), a novel selective CB2R agonist, suppressed
the activation of microglial cells and astrocytes, decreased the
upsurge of CB2R, and promoted the clearance of Aβ, which
eventually promoted recovery of neuronal synaptic plasticity and
improved cognition and memory in AD models [67, 68]. In
addition, both selective (JWH-133) and nonselective (WIN55212-2)
CB2R agonists, but not a CB1R-selective agonist (ACEA), stimulated
glucose uptake in the mouse brain, increasing the therapeutic
interest in CB2R agonists as nootropic agents [69]. Furthermore, a
recent study reported that CB2R activation by JWH-015 played a
beneficial role in novel object recognition ability concomitant with
region-specific regulation in microglia-mediated

Table 1. Protein expression of CB2Rs in the CNS.

Brain region Cell types Subcellular localization Species Ref

Olfactory tubercle Neurons Healthy SD rats [25]

Cerebral cortex: (layers III and v) Pyramidal neurons Cell body and apical dendrite Healthy SD rats [25]

Hippocampus: CA1
CA2, CA3 and subiculum

Neurons
Gila cells
Endothelial cells
Pyramidal neurons

Cell body and dendrite
Plasma membrane
Plasma membrane

Healthy SD rats
Healthy SD rats
Healthy SD rats
Healthy SD rats

[26, 29]
[26, 29]
[26, 29]
[25]

Thalamus Cell body Healthy SD rats [25]

Hypothalamus Cell body Healthy SD rats [25]

Midbrain: (periaqueductal gray, paratrochlear
nucleus, paralemniscal nucleus, red nucleus,
amygdala, geniculate nucleus and
interpeduncular nucleus, inferior colliculus,
substantia nigra)

Neurons
Glial and endothelial cells

Cell body and dendrite
Plasma membrane and some
unmyelinated axons

Healthy SD rats
Healthy SD rats

[25, 26]
[26]

Pons: (pontine nucleus) Astrocytes or microglial cells Cell processes Healthy SD rats [25]

Medulla: Neurons Cell body Healthy SD rats [25]

Brain stem: Neurons Healthy wistar rats, ferret [28, 30]

Cerebellum: (molecular layers. Purkinje cell
layers, the granule layers)

Neurons
Endothelial cells
Perivascular microglial cells

Cell body and dendrite Healthy rats, ferret
Healthy rats
Post-mortem brain

[25, 30]
[27]
[31]

Retina: (segment of photoreceptor Layer, Outer
nuclear layer, Henle fiber layer, outer plexiform
layer, inner nuclear layer, inner plexiform layer,
ganglion cell layer)

Cones
Rods
Müller cells
Horizontal cells
Rod bipolar cells
Cone bipolar cells
Amacrine cells
Ganglion cells

Cell body
Cell body
Cell fiber
Soma and dendrite
Soma and dendrite
Soma
Soma
Soma and nuclei

Healthy mice
Healthy mice
Healthy SD rats and monkeys
Healthy mice
Healthy mice
Healthy mice
Healthy mice
Healthy mice and monkey

[150]
[150]
[151, 152]
[150]
[150]
[150]
[150]
[150, 152]
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neuroinflammation and dendritic complexity in AD model mice
[70]. These results may constitute the basis of CB2R-based
therapies or diagnostic approaches for AD.
Although CB2R has been thought to play an important role in

neuroinflammatory responses and has been proposed as a
therapeutic target for AD, the exact mechanism of CB2R signaling
in AD remains elusive. Moreover, conflicting results have also been
reported wherein CB2R is not required for ameliorating neuro-
pathy or preventing cognitive decline by inhibiting 2-
arachidonoylglycerol (2-AG, a full agonist of CB1R and CB2R)
metabolism in AD model animals [71]. Similarly, the anti-
inflammatory and neuroprotective effects of pharmacological
and genetic inhibition of 2-AG metabolism were not mediated by
CB1Rs or CB2Rs [72]. In another study, researchers suggested that
CB2Rs participated in Aβ processing in a mouse model of AD and
played a minor role in the therapeutic properties of a cannabis-
based medicine, as CB2R deficiency did not affect the viability of
AβPP/PS1 transgenic mice, did not accelerate memory impair-
ment, did not modify tau hyperphosphorylation in dystrophic
neurites associated with Aβ plaques, and did not attenuate the
positive cognitive effect induced by cannabis-based medicine in
these animals [73]. Interestingly, Schmöle et al. [74] found that
microglial cells harvested from CB2R(−/−) mice were less
responsive to proinflammatory stimuli than CB2R(+/+) microglial
cells harvested from wild-type mice. Transgenic APP/PS1 mice
lacking CB2Rs showed reduced percentages of microglial cells and
infiltrating macrophages, lower expression levels of proinflamma-
tory chemokines and cytokines in the brain, and diminished
concentrations of soluble Aβ40/42. Recently, the authors further
reported that the genetic deletion of CB2Rs improved cognitive
and learning deficits in APP/PS1*CB2R−/− mice, which was
accompanied by reduced neuronal loss and decreased plaque
levels, which coincided with increased expression of Aβ-degrading
enzymes. In addition, plaque-associated microglial cells in APP/
PS1*CB2R−/− mice showed a less activated morphology, while the
plaques were smaller and more condensed than those in APP/PS1
mice [58]. These divergent results from previous studies reflected
the complex roles of CB2Rs in the neuropathology and
pathogenesis of AD. Nevertheless, CB2R might serve as a new
potential therapeutic target for preventing, alleviating and
treating AD through several mechanisms. CB2Rs appear to be
part of a protective system that might be detrimental when
engaged continuously. Further research is needed to elucidate the
potential molecular mechanisms.

NEUROPROTECTIVE ROLE OF CB2RS IN PARKINSON’S DISEASE
Parkinson’s disease (PD) is the second most common neurode-
generative disease and the most common motor disorder
affecting millions of people worldwide [75]. Loss of the
neurotransmitter dopamine has been regarded as the major
pathological characteristic of PD, leading to motor dysfunction
and cognitive impairment. However, until now, there has been no
fully effective therapy developed to treat the clinical syndromes of
PD, as current pharmacotherapies could only temporarily relieve
PD symptoms but not prevent or slow down disease progression.
There are several reports that describe the potential roles of CB2Rs
as a viable target for anti-inflammatory therapy for PD. CB2R levels
were significantly elevated in animal models of PD, and this
increase correlated significantly with an increase in microglial
activation [76]. Moreover, postmortem studies of human patients
with PD have revealed that the expression of CB2R is elevated in
microglial cells recruited and activated at lesioned sites in the
substantia nigra of PD patients [39]. In short, the expression of
CB2Rs in glial cells is upregulated in PD, but this receptor may also
be located in certain neuronal subpopulations and serve as a
marker of neuronal loss. For instance, Garciá et al. observed that
CB2R was located in TH-containing neurons in the substantia nigraTa
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at levels significantly lower in PD patients than in controls [77].
Similarly, mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced parkinsonian syndrome also showed a down-
regulation of the CB2R protein in the substantia nigra and
hippocampus three weeks after MPTP injection [78]. Additionally,
CB2R-deficient mice displayed intense activation of microglial cells
and much more intense deterioration of TH-containing nigral
neurons in the case of the substantia nigra in models of PD, which
supported the potential neuroprotective role of this receptor [39].
One in vivo study has also shown that pharmacological activation
of CB2Rs with the nonselective cannabinoid receptor agonist
WIN55,212–2 or the CB2R agonist JWH-015 protected against
MPTP-induced nigrostriatal degeneration by inhibiting microglial
activation/infiltration [79]. In addition, the selective CB2R agonist
AM1241 has been shown to have a significant therapeutic effect
on PD and regenerate DA neurons after the neurotoxic effect of
MPTP treatment. The possible mechanisms underlying the
neurogenic effect of AM1241 might be the induction of CB2R
expression and an increase in phosphorylation of the PI3K/AKT
signaling pathway [78]. Similar findings were observed in an LPS-
induced animal model of PD after administration of Δ9-
tetrahydrocannabivarin (THCV), which has antioxidant properties
and the ability to activate CB2Rs and block CB1Rs. In another
animal model of PD induced by rotenone (ROT), the authors
reported that treatment with β-caryophyllene (BCP), a natural
CB2R agonist, attenuated oxidative/nitrosative stress and neuroin-
flammation, inhibited gliosis and proinflammatory cytokine
release, and decreased nigrostriatal degeneration [80]. Further-
more, it has been shown recently that the use of BCP offers
significant protection against 1-methyl-4-phenylpyridinium (MPP)-
induced neurotoxicity by activating a cellular redox enzyme
system [81, 82]. In summary, agonists of CB2Rs that exert
antioxidant and anti-inflammatory activities might have promising
pharmacological profiles for ameliorating parkinsonian symptoms
and delaying disease progression in PD.

NEUROPROTECTIVE ROLE OF CB2RS IN HUNTINGTON’S
DISEASE
Huntington’s disease (HD) is a genetic neurodegenerative disease
caused by the expansion of a CAG triplet repeat in the gene
encoding the protein huntingtin, which results in neuron
degeneration mainly in the striatum. This leads to abnormal
motor movements (chorea) and cognitive decline [83]. Currently,
no successful treatment is known to prevent or slow the
progression of HD. However, it is worth noting that CB2R is
emerging as a new therapeutic target for the treatment and early
diagnosis of different neurodegenerative disorders, including HD
[84]. In the transgenic R6/2 Huntington chorea mouse model, the
expression of CB2Rs was increased in the hippocampus, cortex,
striatum and cerebellum, as shown by real-time polymerase chain
reaction [85]. The upregulation of CB2Rs was also observed in
striatal microglial cells of HD transgenic mouse models and in the
caudate nucleus/putamen from HD patients. Notably, genetic
ablation of CB2Rs in R6/2 mice enhanced microglial activation,
aggravated disease symptomatology and reduced mouse life-
spans. Likewise, microglial CB2Rs exerted neuroprotective effects
against HD excitotoxicity by reducing neuroinflammation, brain
edema, striatal neuronal loss and motor symptoms [86]. In line
with these findings, a Sativex-like phytocannabinoid combination
was capable of delaying signs of disease progression in a
proinflammatory model of HD generated by intrastriatal injection
of malonate in a CB1R- and CB2R-dependent manner. The role of
CB2Rs was further confirmed by two observations: CB2R-deficient
mice were more sensitive to malonate than wild-type animals [87],
and genetic deletion of CB2Rs both accelerated the onset of
motor deficits and increased their severity [88]. However, the
authors found that treatment with GW405833, a high-affinity andTa
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highly selective partial CB2R agonist, extended life spans and
suppressed neurodegeneration, synapse loss and motor deficits
by CB2R signaling not in parenchymal microglial cells but rather in
peripheral immune cells [88]. Moreover, Dowie et al. [89]
demonstrated that CB2Rs were localized on the CD31-positive
blood vessel endothelium and vascular smooth muscle but not
expressed on microglial cells or astrocytes in the postmortem
brains from HD patients. Although there is ambiguity about the
cellular localization of CB2Rs, it could be speculated that selective
CB2R agonists might have potential therapeutic value in the
treatment of HD. Further mechanistic studies are still warranted to
investigate the function of central CB2Rs in HD.

NEUROPROTECTIVE ROLE OF CB2RS IN MULTIPLE SCLEROSIS
Multiple sclerosis (MS) is an autoimmune disorder of the
nervous system characterized by inflammation, neurodegenera-
tion, and demyelination of neurons, which are associated with
symptoms such as sensory and motor impairment, ataxia and
spasticity. Despite ongoing progress in the understanding of
the pathogenesis of MS, new therapeutic approaches are still
needed to overcome the lack of effective treatments for this
disease, as there is no cure [90]. Among the new therapeutic
strategies for the treatment of MS, the modulation of CB2Rs has
recently emerged as a promising target for therapeutic
intervention [84, 91]. Recently, a significant genetic association
was observed between the CB2R rs35761398 (Q63R) poly-
morphism and MS, which implied the involvement of the CB2R
gene in susceptibility to MS [92]. Moreover, several studies
confirmed that CB2R expression was upregulated in brain

tissues from patients or animal models of MS. Microglial
activation was accompanied by the upregulation of CB2Rs at
both the mRNA (100-fold) and protein (10-fold) levels compared
to microglial cells in the resting state in an experimental
autoimmune encephalomyelitis (EAE) mouse model of MS,
suggesting that CB2Rs play an important role in the function of
microglial cells in the CNS during autoimmune-induced
inflammation [93]. Studies performed by Yiangou et al. indi-
cated that human postmortem spinal cord specimens had a
significantly greater density of CB2R-immunoreactive microglial
cells/macrophages in the white matter in MS sections with
lesions, appearing in clusters, usually within the edges of
plaque-containing areas [94]. Furthermore, the expression of
CB2Rs was found in T lymphocytes, astrocytes, and both
perivascular and reactive microglial cells in postmortem brain
tissues from donors with MS. Specifically, CB2R-positive micro-
glial cells were evenly distributed within active plaques but
were located in the periphery of chronically active plaques [95].
Experimental work has provided robust evidence of the

immunomodulatory and neuroprotective properties by activa-
tion of CB2R in EAE animal models. CB2R knockout mice showed
an exacerbated clinical score of the disease, which occurred in
concert with extended axonal loss and microglial activation. In
contrast, administration of the CB2R-selective agonist HU-308
markedly ameliorated EAE symptoms, reduced axonal loss, and
inhibited microglial activation [96]. Investigations of the effects
of O-1966 (a full CB2R agonist) on EAE progression demon-
strated that administration of O-1966 resulted in reduced white
cell rolling and adhesion to cerebral microvessels, inhibited the
invasion of immune cells and improved neurologic function

Table 4. Neuroprotective effects of selective CB2R ligands.

Agonists Ki (nM) /CBR Neuroprotective effects Ref

O-3853 815 ± 127/CB1R
17.3 ± 2.5/CB2R

Inhibiting white blood cell rolling and adhesion, reducing infarct volumes,
improving motor function in stroke.

[46]

O-1966 5055 ± 984/CB1R
23 ± 2.1/CB2R

Attenuating cerebral microcirculatory dysfunction, cognitive impairments and
neuronal tissue damage in stroke; reducing white cell rolling and adhesion to
cerebral microvessels, inhibiting the invasion of immune cells and improving
neurologic function after insult.

[47, 53, 97]

JWH-133 677/CB1R
3.40/CB2R

Inhibiting nueroinflammation and mitochondrial depolarization after stroke;
increasing the migration of neural progenitor cells in vitro stroke model; improving
cognitive impairment, inhibiting neuroinflammation and oxidative stress responses,
and lowering tau hyperphosphorylation in the vicinity of Aβ plaques; improving
endothelial-dependent relaxations impaired by Aβ; stimulating glucose uptake in
the mouse brain; suppressing both mechanical and cold hypersensitivity in an EAE
mouse model; attenuating mechanical allodynia.

[48–50, 55, 65, 66, 69, 100, 139]

AM1241 280/CB1R
3.4/CB2R

Reducing cerebral infarction and neurological deficits; regenerating DA neurons
after MPTP treatment; slowing motor neuron degeneration and preserving motor
function and increasing survival interval in ALS model; attenuating mechanical
allodynia.

[52, 104, 78, 105, 139]

JWH-015 383/CB1R
13.8/CB2R

Removing Aβ plaques from human AD tissue sections, attenuating novel object
recognition ability in AD mouse model; protecting against MPTP-induced
nigrostriatal degeneration, inhibiting microglial activation/infiltration, attenuating
mechanical allodynia and thermal hyperalgesia.

[64, 70, 79, 139]

MDA7 2565 ± 695/CB1R
238 ± 143/CB2R

Suppressing activation of microglial cells and astrocytes, promoting Aβ clearance,
promoting neuronal recovery, synaptic plasticity and improving cognition and
memory in AD models, attenuating mechanical allodynia.

[67, 68, 139]

BCP 155 ± 4/CB2R Attenuating oxidative/nitrosative stress, neuroinflammation, gliosis and nigrostriatal
degeneration; diminishing axonal demyelination. and modulating Th1/Treg
immune balance; attenuating mechanical allodynia

[80, 101, 139]

GW405833 4772/CB1R 3.92/
CB2 R

Extending life spans and suppressing neurodegeneration, synapse loss and motor
deficits; attenuating mechanical allodynia

[88, 139]

HU308 >10,000/CB1R
22.7/CB2

Ameliorating EAE symptoms, reducing axonal loss, and inhibiting microglial
activation and reactive astrogliosis

[96, 106],
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after insult [97]. Exogenous administration of the endocannabi-
noid 2-AG significantly ameliorated the demyelinating and
neurodegenerative processes partially through CB2Rs since it
delayed disease onset, reduced relapse severity and chronic
disability, and eliminated mortality in severe chronic EAE [98]. IL-
12 and IL-23 are functionally related heterodimeric cytokines
that play essential roles in the pathogenesis of MS, and the
endocannabinoid anandamide inhibited the IL-12/IL-23 axis
through the ERK1/2 and JNK pathways in human and murine
microglial cells, partially mediated by CB2R activation [99]. In
addition, activation of CB2Rs with a CB2R-specific agonist (JWH-
133) suppressed both mechanical and cold hypersensitivity
without producing signs of sedation or ataxia in an EAE mouse
model [100]. This was the first preclinical study to directly
promote CB2Rs as a promising target for the treatment of
central pain in an animal model of MS. Alberti et al. demon-
strated that BCP significantly ameliorated both the clinical and
pathological parameters of EAE, which seemed to be linked to
the ability of BCP to inhibit microglial cells, CD4+ and CD8+ T
lymphocytes, as well as the protein expression of proinflamma-
tory cytokines. Furthermore, BCP diminished axonal demyelina-
tion and modulated Th1/Treg immune balance through the
activation of CB2Rs [101].
Taken together, these observations indicate a neuroprotective

role of CB2Rs in EAE pathology. We conclude that nonpsychoac-
tive and selective CB2R agonists possess strong therapeutic
potential for the treatment of both neurologic dysfunction and
central pain in MS patients.

NEUROPROTECTIVE ROLE OF CB2RS IN AMYOTROPHIC
LATERAL SCLEROSIS
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease
of unknown etiology characterized by progressive deterioration of
both upper and lower motor neurons. Approximately 90% of ALS
cases are sporadic, and 10% are familial, due to genetic mutations
[102]. Currently, there is no effective cure for this illness, with some
evidence supporting an improvement in median survival by two
to three months with the anti-excitotoxic agent riluzole, which
remains the sole treatment option for ALS patients in the US and
Europe. This drug has offered modest survival benefits since its
approval in the 1990s [103]. Despite significant research efforts, an
overwhelming majority of human clinical trials have failed to
demonstrate clinical efficacy in the treatment of ALS. More
effective drug therapies targeting disease progression are sorely
needed.
As shown by several studies [104–106], cannabinoid CB2R-

selective compounds may slow motor neuron degeneration,
preserve motor function and represent a novel therapeutic
modality for the treatment of ALS. Several observations have
suggested that CB2Rs were markedly upregulated in activated
microglial cells and astrocytes in both patients with ALS and
experimental transgenic mouse models of ALS. The upregulation
of CB2Rs appeared to occur in activated microglial cells in
postmortem human spinal cord specimens from patients with ALS
[94] and in spinal gray and white matter areas in TDP-43
transgenic mice at the postsymptomatic stage [107]. Additionally,
the mRNA, receptor binding and function of CB2Rs were found to
be dramatically and selectively upregulated in the spinal cords of
G93A-SOD1 mice in a temporal pattern paralleling disease
progression. More importantly, daily injections of the selective
CB2R agonist AM1241 initiated at symptom onset increased the
survival interval after disease onset by 56% [104]. CB2R expression
was also found to be upregulated predominantly in reactive
astrocytes in canine degenerative myelopathy [108] and the
postmortem motor cortex of ALS patients [109]. Treatment with
AM1241 was effective at slowing signs of disease progression

when administered after the onset of these signs in G93A-SOD1
mutant mice [105]. Targeting glial cannabinoid CB2Rs delayed the
progression of the pathological phenotype in TDP-43 transgenic
mice by improving motor behavior, completely preserving motor
neurons in the ventral horn, and attenuating reactive astrogliosis
[106]. The CB2R is, therefore, considered a very promising target
for therapeutic approaches as well as an imaging tool. To date, by
applying in vitro autoradiography, the translational relevance of
CB2R imaging was demonstrated with specific binding of [11C]KD2
[110] and [11C]RS-028 [85] to postmortem human ALS spinal cord
tissues.

MODULATION OF CB2RS IN THE TREATMENT OF EPILEPSY
Epilepsy is a common chronic neurologic disorder that is
characterized by recurrent spontaneous seizures that are associated
with an imbalance between excitatory and inhibitory systems in
various regions of the brain [111]. Treatment-resistant epilepsy
affects 30% of epileptic patients and is associated with severe
morbidity and increased mortality [112]. Accumulating data have
demonstrated that cannabinoid systems, including endocannabi-
noids, anandamide, and 2-arachidonoyl glycerol, and their targets
CB1Rs and CB2Rs appear to regulate seizure activity [113–120]. The
rationale for the antiepileptic effects of the cannabinoid system
contends that the CB1Rs (possibly also CB2Rs) are linked to
inhibitory G-protein (Gi/o) signaling, which reduces neuronal
excitability and/or neural synchronization. For example, the activa-
tion of brain CB1Rs modulates A-type K+ channels and N- and P/Q-
type voltage-gated Ca2+ currents, which stabilizes membrane
potentials [121, 122] and modulates presynaptic neurotransmitter
release [123–125]. Based on these concepts, numerous cannabinoid
analogs have been examined in a variety of animal models
[115, 116, 119, 126–129]. Although cannabinoid ligands and CB1R
agonists possess some antiepileptic effects, nonspecific modulations
of cannabinoid systems will limit their therapeutic use for the
treatment of human epilepsy because of their severe adverse
effects. Therefore, significant attention is currently being directed
toward the possibility of developing medicines from compounds
that can selectively activate CB2Rs and have important potential
therapeutic applications at doses that induce little or no CB1R
activity.
Emerging evidence has indicated that CB2Rs are involved in

epileptic activity in animal models. In a rat model of acute
pentylenetetrazole (PTZ)-induced seizure, pretreatment with
palmitoylethanolamide (PEA) increased the latency of seizure
initiation and reduced the duration of seizures. This antiepileptic
effect was attenuated by either the CB1R (AM251) or CB2R
(AM630) antagonists, suggesting that CB2R mediated PEA’s effect
[130]. In developing rats, Huizenga et al. examined the anti-
epileptic effects of a variety of cannabinoid ligands and found that
CB1R/CB2R or selective CB1R agonists exhibited antiepileptic
effects in 10-day-old rat models of either chemo-convulsing
methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate- or
PTZ-induced seizure [131]. Although the CB2R-selective agonist
HU308 did not show an antiepileptic effect, the CB2R-selective
antagonist AM630 increased seizure severity [131]. In addition, a
recent report showed that CB1R knockout mice did not have an
epilepsy phenotype, but co-KO CB1Rs and CB2Rs caused epilepsy
in animals [132], suggesting that CB2Rs play a role in stabilizing
the neuronal system. Overall, while manipulation of CB2Rs is a
reasonable and promising rationale, the current data are still very
limited, and the effects of CB2R ligands on human epilepsy have
not been tested. New insights into the exact mechanism by which
CB2R agonists modulate neural networks and how they control
human seizure activity are needed to determine the efficacy of
CB2Rs as a therapeutic target for epilepsy and the associated
seizure activity.
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THERAPEUTIC POTENTIAL OF CB2RS IN THE TREATMENT OF
PAIN
Pain is a ubiquitously unpleasant feeling among humans, as well
as many animal species, often caused by actual and potential
tissue damage. Opioids and nonsteroidal anti-inflammatory drugs
have proven efficacious in the treatment of pain, but their use is
significantly hampered due to serious adverse effects. A great
need exists for the development of novel analgesics to control
pain with long-term effectiveness [133]. Some studies have
demonstrated that CB2Rs are redistributed in many important
portions of pain pathways, such as DRG and afferent fibers in the
dorsal horn of the spine, and may be upregulated under
inflammatory and neuropathic pain conditions [134, 135]. In
addition, it is being increasingly recognized that CB2Rs are located
in neuronal circuits in the brain relevant for pain control and
dopamine-mediated reward [32, 136]. These data provide an
anatomical basis for the involvement of CB2Rs in the modulation
of neuropathic pain.
Hyperalgesia and allodynia induced by sciatic nerve injury were

enhanced in CB2R−/− mice, while a reduced manifestation of
neuropathic pain was observed in transgenic mice overexpressing
CB2Rs. Deletion of CB2Rs also contributed to the development of
contralateral mirror image pain, associated with enhanced
microglial and astrocytic activation in the contralateral spinal
horn [137]. Recently, it has been shown that deletion of CB2Rs in
DA neurons led to a significantly higher threshold for tail flick
responses along with decreased, but insignificant, paw lick latency
in the hot plate test [138]. There is an overwhelming body of
convincing preclinical evidence demonstrating that CB2R agonists
produce antinociceptive effects in laboratory animal models of
pain [139–141]. Activation of CB2Rs by agonists inhibited sensory
nerve activity, decreased the sensitization of the nerves and
reduced these inflammatory mediators in animal models of acute
and chronic pain, suggesting that CB2Rs are involved in the
attenuation of inflammatory and neuropathic pain pathways
[138, 139].
Tolerance and physical dependence are common complications

of long-term treatment of pain with opioids. Glial cells became
activated in response to opioids. This activation opposed opioid
analgesia and enhanced both opioid tolerance and dependence.
Conversely, the clinically relevant efficacy of opioids was improved
in animal models by inhibition of glial activation or proinflamma-
tory cytokine actions [142]. Previous studies have shown that CB2R
expression is increased in microglia in different models of
neuropathic pain [139]. CB2R activation stimulated the release of
endogenous opioid beta-endorphin from keratinocytes, which in
turn acted at opioid receptors on primary afferent neurons to
inhibit nociception [143]. Treatment with CB2R agonists induced
morphine analgesia and attenuated morphine tolerance, possibly
via either decreasing proinflammatory mediators or inducing the
expression of μ-opioid receptors [144–146]. Thus, microglial CB2Rs
may be a new target for preventing the development of opioid
tolerance and may be highly efficacious in neuropathic pain states
that are responsive to opioid analgesics. Given that the combina-
tion of selective CB2R agonists with conventional analgesics may
lead to enhanced antinociception and reduce untoward side
effects, therapeutics targeting CB2Rs hold promise as novel
analgesics.

CONCLUSIONS AND PERSPECTIVES
In summary, the present review reveals that CB2Rs are expressed
at low levels in specific brain areas of healthy individuals but are
significantly upregulated in glial elements during most neuro-
degenerative disorders. This inducible feature allows CB2Rs to
serve as diagnostic markers of neuroinflammation in the context
of pathological conditions. Although the detailed mechanisms
underlying the inducibility of CB2Rs are still unclear, the disease-

associated epigenetic modulations, CB2R promoter regulations,
and transcription factors and their downstream cannabinoid
receptor signaling, as well as cytokines, growth factors,
hormones, and other factors released in response to tissue
injury and inflammation, are rational starting points for further
investigations of the inducible mechanisms. Moreover, a growing
body of scientific literature has demonstrated that activation of
CB2Rs suppresses neuroinflammation and prevents neuronal
degeneration by a variety of mechanisms both in vitro and
in vivo. At the same time, CB2R activation alters several ion
channel functions, which, in turn, reduces neuronal excitability,
leading to neuroprotection. Collectively, if proven therapeutic in
clinical settings, selective CB2R activation may represent an
avenue for the development of novel therapeutic agents that
provide neuroprotection against a variety of neurological
disorders (Fig. 1). On the other hand, the challenge of selectively
targeting brain CB2Rs without affecting peripheral CB2Rs
remains, as CB2R levels are much higher in peripheral tissues
(e.g., T-cells in spleen) than in the brain. Thus, systemic exposure
of CB2R ligands to activate brain CB2Rs will always activate
peripheral CB2Rs. We have two thoughts regarding this
challenge: (1) brain CB2Rs are strongly inducible, meaning that
they are upregulated during disease conditions such as
addiction, degeneration, and inflammation. This pathology-
associated increase significantly enhances the benefit to side-
effect ratio. (2) Activation of brain CB2Rs protects neurons
against pathological conditions (e.g., addiction, anxiety, stroke,
epilepsy), which additionally activates peripheral CB2Rs (e.g., T-
cells), while peripheral CB2R activation will be beneficial to the
central protective effect by reducing inflammation and immune
responses. Therefore, the activation of peripheral CB2Rs may not

Fig. 1 Activation of CB2Rs after neurological disorders. Although
brain CB2R levels are low in healthy individuals, they are significantly
upregulated in glial elements in response to various neurological
insults. Existing evidence demonstrates that signaling through
CB2Rs can be mediated via G protein and β-arrestin, each with
their own downstream effectors [147–149]. As shown in Fig. 1, CB2Rs
are coupled to Gαi/o to inhibit adenylyl cyclase (AC) activity, leading
to a decrease in cAMP levels. On the other hand, the Gβγ subunits,
upon dissociation from Gαi/o, are known to activate G protein-gated
inwardly rectifying K+ channels and PI3K and inhibit voltage-gated
Ca2+ channels. Alternatively, β-arrestin 2 recruitment to CB2Rs
results in activation of the ERK pathway. Overall, activation of CB2Rs
plays neuroprotective roles, including attenuation of neuroinflam-
mation, amelioration of mitochondrial depolarization and stimula-
tion of neurogenesis, which could eventually reduce deficits in
cognition, memory and motor inhibition. In addition, the activation
of CB2Rs also modulates ion channel functions, thereby altering
neuronal excitability, and leads to neuroprotection.
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induce side effects when brain CB2Rs are activated. Rather, both
central and peripheral CB2Rs may work together to protect the
brain’s neurons against pathological alterations through neuro-
nal and nonneuronal mechanisms.
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